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ABSTRACT Based on automated guided vehicle (AGV), the intelligent parking system provides a novel
solution to the difficulty of parking in large cities. The automation of parking/pick-up in the system hinges
on the path planning efficiency of the AGV. Considering the numerous disconnected paths in intelligent
parking systems, this paper introduces the fallback strategy to improve ant colony optimization (ACO) for
path planning in AGV-based intelligent parking system. Meanwhile, the valuation function was adopted
to optimize the calculation process of the heuristic information, and the reward/penalty mechanism was
employed to the pheromone update strategy. In this way, the improved ACO could plan the optimal path for
the AGV from the starting point to the destination, without sacrificing the search efficiency. Next, the optimal
combination of ACO parameters was identified through repeated simulations. Finally, a typical parking lot
was abstracted into a topological map, and used to compare the path planning results between the improved
ACO and the classic ACO. The comparison confirms the effectiveness of the improved ACO in path planning

for AGV-based intelligent parking system.

INDEX TERMS
optimization (ACO).

I. INTRODUCTION

The rapid growth of car ownership adds to the difficulty
of parking in large cities, where parking spaces are already
very limited. Based on automated guided vehicle (AGV),
the intelligent parking system provides a novel solution to
the difficulty. The performance of the system hinges on the
path planning for the AGV. Its main purpose is to find an
optimal non-collision path for each automatic guide car from
the pre-stored parking space to the target parking space, and
to orderly complete all the path planning tasks.

Several algorithms have long been applied to plan the
optimal path for the AGV, including the Dijkstra’s algorithm,
the A* algorithm and the genetic algorithm (GA). Based on
the Dijkstra’s algorithm, Kim and Tanchoco [1] planned AGV
path using the free time window (TW) on the TW graph.
Yu and Egbelu [2] classified the idle AGV, and minimized the
idle time of the AGV through genetic iteration. Mimicking the
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process of natural evolution, Umar et al. [3], [4] applied the
GA to search for the optimal path for the AGV.

In recent years, some heuristic algorithms have been intro-
duced to path planning. For example, Occena and Yokota [5]
proposed a heuristic search algorithm, in which the best
search direction is identified by evaluating every search
position, and the optimal path towards the destination is
determined by searching along the direction. Meanwhile,
some scholars have modified and improved the ant colony
optimization (ACO) for path planning [6]-[9]. For instance,
Chaari et al. [10] combined the ACO with the GA, and
improved to crossover operator of the ACO to avoid the
local optimum trap. Saidi-Mehrabad et al. [11] developed a
two-stage ACO for AGV path planning. Some other scholars
optimized the ACO with the artificial potential field (APF)
method, speeding up the convergence of path planning algo-
rithm [12], [13].

The number of AGVs depends on the number of parking
spaces and scale of intelligent parking. The complexity of
path planning increases with the number of AGVs. If there
is only one AGV [14], the optimal path can be computed
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solely based on the parking environment and node distri-
bution; the path planning is only affected by static factors,
rather than the other vehicles. If there are multiple AGVs,
the path planning becomes a dynamic problem: the poten-
tial conflicts between the target vehicle and other vehicles
should be considered, in addition to the shortest length of
the path. Smolic-Rocak ef al. [15] developed a multi-AGV
dynamic method to plan the operation paths for multiple
vehicles in industrial job-shops. Based on vehicle scheduling
model, Nishi er al. [16] presented a bi-level decomposi-
tion algorithm, which realizes conflict-free path planning for
multiple AGVs. Based on the above research results, it can
be found that most of the current path planning algorithms
for intelligent parking systems are mainly focused on solv-
ing collision avoidance conflicts and realizing multi-vehicle
scheduling, and rarely involve the improvement of path plan-
ning efficiency. In order to improve the operation efficiency
of small-scale intelligent parking systems, this research put
forward the improved ACO model for single AGV path
planning.

The AGV-based intelligent parking systems have several
common features: the parking lot usually covers a large area,
many paths in the lot are disconnected, and vehicles drive
through the same gate upon entry and exit. The characteristics
of incomplete path connectivity in AGV-based intelligent
parking systems seriously restrict the path search efficiency
of classical ant colony algorithm. In the light of these features
and the previous studies, this paper introduces the fallback
strategy to improve the ACO, and creates a path planning
model for intelligent parking system based on the improved
ACO. To prevent the ACO from the local optimum trap
and poor convergence, the valuation function was adopted
to optimize the calculation process of the heuristic infor-
mation, and the reward/penalty mechanism was employed
to the pheromone update strategy, ensuring the search effi-
ciency. Finally, the improved ACO was proved effective for
single-AGV path planning, in comparison with the classic
ACO. The algorithm proposed in this study can not only
improve the efficiency of intelligent guidance vehicle path
planning, but also help to improve the theoretical and tech-
nical system of the ACO and expand the application field
of the ACO.

The remainder of this paper is organized as follows:
Section 2 proposes the path planning model for intelligent
parking system based on the improved ACO, in the light of
the features of intelligent parking system; Section 3 verifies
the improved ACO through example analysis, in comparison
with the classic ACO; Section 4 puts forward the research
conclusions.

Il. METHODOLOGY

Intelligent parking system based on AGV has the character-
istics of large parking area, many disconnected paths and the
same inlet and outlet, etc. According to the abstract topology
model of typical underground parking garage, this paper
proposes an intelligent parking path planning model based on
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improved ant colony algorithm by introducing ant regression
strategy to enhance the adaptability of the algorithm. The
path planning for intelligent parking system was realized in
three steps: Firstly, the driving rules of the AGV in intelligent
parking system were analyzed, and the constraints of the path
planning model were put forward; Next, the environment of
parking lot was modelled as a topological map, and the basic
requirements were raised for environmental modelling, facil-
itating the subsequent analysis of data; Finally, the improved
ACO based on the fallback strategy was established according
to the features of intelligent parking system.

A. CONSTRAINTS

In intelligent parking system, the entry and exit of vehicles are
completed by the AGV, eliminating the need for driver oper-
ations. It is only necessary to consider the impacts of parking
infrastructure and the environment on the AGV. Therefore,
there is usually only one gate for both entry and exit in
most intelligent parking systems. To increase the number
of parking spaces and parking area [17], the internal paths
in the parking lot are often bidirectional single-lane roads.
In view of the above features, the following constraints were
presented to simplify the path planning model for AGV-based
intelligent parking system:

(1) Vehicles drive through the same gate to enter or exit the
parking lot;

(2) The AGV will start executing the next parking/pick-up
task from the end position of the current task;

(3) The internal paths in the parking lot are bidirectional
single-lane roads, which are wide enough for the maximum
turning radius of the AGV;

(4) In the parking lot, many parking spaces are located at
the end of non-connected road sections;

(5) The AGYV either starts from or ends up at the gate, i.e.
only two kinds of paths need to be planned: the inbound path
and the outbound path;

(6) The AGV is regarded as a particle with a safe radius;
the AGV drives at a constant speed and makes every turn with
the same amount of time.

B. ENVIRONMENTAL MODELLING

This paper models the environment of parking lot as a
topological map, with the aim to reflect the features of
actual scenario, meet the needs of the parking process,
and facilitate the subsequent data analysis. The modelling
must satisfy the following requirements: First, the topolog-
ical map must consider the spatial locations of environ-
mental factors, and demonstrate the relationship between
things in the real world; Second, the topological map
should be consistent with the actual behavior of path
planning for parking, so as to prevent unreasonable plan-
ning results; Third, the topological map should be as sim-
ple as possible to enhance the planning efficiency and
save computing resources, without violating the objective
conditions.
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C. PATH PLANNING METHOD FOR INTELLIGENT PARKING
SYSTEM BASED ON FALLBACK STRATEGY

Considering the model constraints and features of intelligent
parking system, the fallback strategy was introduced to the
ACO to create a novel path planning method. Moreover,
the valuation function was adopted to optimize the calculation
process of the heuristic information, and the reward/penalty
mechanism was employed to the pheromone update strategy,
ensuring the search efficiency.

1) FALLBACK STRATEGY

There are many disconnected paths in the topological map
of intelligent parking system. In this scenario, it is difficult
for the classic ACO to converge to the optimal path, for the
nodes to be updated are selected based on parameters like
pheromone weight, heuristic information weight.

To overcome the difficulty, this paper introduces the fall-
back strategy into the ACO to prevent the algorithm from
falling into an endless loop and failing to converge to the
optimal solution. Under the fallback strategy, a vehicle look-
ing for the optimal path will fall back to the previous node
to select another node, if the current node leads to a discon-
nected path.

On the upside, the fallback strategy makes the ACO adapt-
able to the path planning for intelligent parking system.
On the downside, the ACO with the fallback strategy becomes
much less efficient. To ensure the efficiency, both heuristic
information and pheromone update strategy were modified.

2) IMPROVE HEURISTIC INFORMATION

The valuation function [18] of the A* algorithm was adopted
to improve the heuristic information, making the improved
ACO more accurate, efficient and directional in search. The
improved heuristic information can be computed by:

1
/

1;; () 25 O+ Iom () ey
where, i and j are node positions; g;;(t) + h;;(t) is the valuation
function of candidate node j; g;;(¢) is the cost from the current
node i to the candidate node j at time t, which equals the
weight of edge ij; h;;(t) is the minimum estimated cost from
the candidate node j to the destination n, which equals the
Manhattan distance between nodes j and n:

hjn (1) = Vs (X) = ns (O] + e () — s ()] @)

where, n;(x) and n;(y) are the x- and y-coordinates of the
destination n, respectively; j;(x) and j;(y) are the x- and y-
coordinates of the candidate node j, respectively.

As shown in (2), the smaller the £, (¢) value, the better the
path and the lower the estimated cost from the candidate node
to the destination.

3) IMPROVED PHEROMONE UPDATE STRATEGY

In addition to improving the heuristic information, this paper
introduces the reward/penalty mechanism to the pheromone
update strategy. Under this mechanism, the improved ACO
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FIGURE 1. Workflow of improved ACO.

will not fall into the local optimum trap, and become more
efficient and effective in iterative updates. The improved
pheromone update strategy can be described as:

P (1) = g (0 + 1) + N x Ap[gi (1,1 4 1)]

—Np x Ap[bij(t, 1+ 1)] 3)
£ if (i, j) e the best path
Lo U@y p
At [gij 2+ 1)] - {(; otherwise @

L2 if (i, j) € the worst path
— 1 ’
A [b,:/' (t,t + 1)] - {(; otherwise ®

where, ¢ is the iteration time; p is the pheromone inten-
sity coefficient; Au[g;(t, t+1)] and Au[by(t, t+1)] are the
amounts of pheromone to be rewarded and penalized, respec-
tively; Ny and N, are the number of ants to be rewarded and
penalized, respectively; /, and [, are the path lengths to be
rewarded and penalized, respectively.

4) WORKFLOW OF THE IMPROVED ACO

Based on the improved heuristic information and pheromone
update strategy, the improved ACO can be implemented
in the followings steps (Figure 1): initialize the parameters
according to the data on the topological map; evaluate the
necessity of fallback against the fallback strategy; perform
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path selection with the improved pheromone update strategy
and transfer formula, until all the ants complete path search
in the current iteration; calculate the best and worst paths
in the current iteration, and update the pheromone on all
paths by (3)-(5); execute the previous steps iteratively until
reaching the termination condition, and output the optimal
path.

Ill. EXAMPLE ANALYSIS

This section aims to verify the effectiveness of the improved
ACO in path planning for AGV-based intelligent parking
system. For this purpose, a topological map was plotted for
the road network in a typical parking lot, according to the
above-mentioned requirements and constraints. The sketch
map and topological map of the parking lot are shown in
Figures 2(a) and 2(b), respectively. Then, the Matlab program

28
&) s
8 &
z g
-,
E
™, 1
g |8
Entrance/ =] s
exit ‘(’g‘l B;‘)‘

(a) Sketch map

|82 81 80 79 78 77 76 75

|
74 I
o Ne) C O O O O ’%) O O C @) Q i
i T |
L N

,tsz 134 C I
Q J7 85 g6 87 88 89 90 91 gf g%’,, 96 97 98 99 100 101!
) O4—— |
D % |

121 120( ) o
C 118 117 11(| us| ] s 1 ‘ 17 110 10,2 1o Jln/ 106|105 Jim [103 1021
| ] I
| O 0 0 O O O O 0O 0 0 0 0 |
| 54 5 56 57 58 59 60 61 62 63 64 65 66 |
I i
i |
| 53 52 51 50 49 48 47 46 45 44 43 42 41 |
Y ( O ) C Q (@] Q @) O C C DI
i i
Y122 L33 Q O i
O s |z v uos Lg 130 lsj 132133 134 13 136 137 e iz 40l

(
B2 o ‘
s 3
16 — . — 150 149! 5 P W
160~ 138 157 1)1 155 1od "i = s & [147 146 Lu, Jm Lu; lm;
| o o O O O O O 0 O 0 O O}
p 2 3 3 32 38 3

I

| |
I

! 28 29 30 31 33 34 35 36 37 3 39 40
I

27 26 25 24 23 22 21 20 19 18 17 16 15 |

T @] O O C O O O O

v
3

165|166 [167 [168 Jiv o !7! 13173 174 176 L7 178 179 Iso mi

|

|

2 F 115

Iy
»

7
1

. Q 188C >

196 195 194 193 192 191 ( 187 186 185 184 183 182!

190 ‘Hiso !

% |

| p N Lo/ A A i

o O O > O Q O O O O O

2 3 4 6

N
)
©
3
®
=
=

FIGURE 2. The road network in a typical parking lot.
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was prepared for the improved ACO, and adopted for path
planning on the topological map.

In the topological map, node 0 is the entrance/exit,
nodes 1-82 are parking spaces, and nodes 83-199 are on
paths leading to the parking spaces and intersections; A-F
are intersections. Note that every path in the parking lot is
bidirectional; the AGV must always keep to the right in the
forward direction, but it is allowed to cross over the reverse
path to enter a parking space; the AGV can go straight, turn
left and turn right at each intersection, but not allowed to make
a U-turn.

A. PARAMETER SELECTION

The results of the improved ACO could be affected by the
combination of parameters and the number of nodes. Hence,
the pheromone weight «, the heuristic information weight
and pheromone intensity coefficient p were divided into
5 value intervals, respectively; the number of nodes was set
to 30, 50, 100, 150 and 200 in turn.

Then, multiple Matlab simulations were conducted on
a laptop (CPU: Intel Core i7; Memory: 32G), under
different parameter combinations and number of nodes.
In each simulation, only one parameter was adjusted,
while the other parameters were fixed. Under each num-
ber of nodes, every parameter was simulated 10 times.
Finally, the optimal parameters were selected by compar-
ing the mean optimal path lengths of different parameter
combinations (Table 1).

The results in Table 1 show that the parameter combination
varies with the number of nodes. The optimal parameter
combination under each number of nodes is summarized
in Table 2. It can be seen that, when there were fewer than
100 parking spaces, the path length was optimized at o« = 1,

TABLE 1. The mean optimal path lengths of different parameter
combinations.

er of nodes
30 50 100 150 200
Parameter valuo

0 23.51 3273 97.18 186.68 181.97
0.5 19.78 2745 8426 131.09 149.62
a 1 19.09 2892  77.26 124.29 108.34
2 20.51 3273 87.18 136.69 121.97
5 2460  38.63 9192 157.34 144.70
0 3584 3899  83.60 83.75 142.79
1 3251 3273 85.18 86.68 128.91
g 3 28.31 2693 8201 86.20 134.12
5 3460 28.63  79.92 67.34 124.70
8 35.11 4169  82.11 71.21 94.25
0.1 30.11 4169  82.11 121.21 154.25
0.3 25.04 3248  75.18 116.68 141.91
p 0.5 28.51 3273 63.73 116.20 134.12
0.8 3176 35.82  87.18 136.69 121.97
1 31.67 41.78 9192 157.34 144.70
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TABLE 2. The optimal parameter combination under each number of
nodes.

ber of nodes
<100
Parameters

100-150 >150
Pheromone weight a 1 1 1
Heuristic information
. 3 5 8
weight
Pheromone intensity
0.3 0.5 0.8

coefficient p
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FIGURE 3. Comparison between improved and classic ACOs in parking
task.

B = 3 and p = 0.3; when there were 100 to 150 parking
spaces, the path length was optimized at « = 1, 8 = 5
and p = 0.5; when there were more than 150 parking
spaces, the path length was optimized at « = 1, 8 = 8
and p = 0.8.

B. ALGORITHM VERIFICATION

The parking lot selected for simulation contains 82 parking
spaces. And there are 199 nodes in the topological map.
According to the results in Table 2, the optimal parame-
ter combination was identified as: « = 1, 8 = 8 and
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FIGURE 4. Comparison between improved and classic ACOs in pick-up
task.

p = 0.8. In addition, the maximum number of iterations
was set to 100 and the number of ants was set to 50. On this
basis, the improved ACO and the classic ACO were both
applied to plan the optimal path for parking and pick-up
tasks. The starting point and destination of the parking task
were node 0 and node 70, respectively; the starting point and
destination of the pick-up task were node 79 and node 0,
respectively.

Figure 3 compares the optimal paths and convergence
curves of the improved ACO and the classic ACO in the
parking task. It can be seen that the improved ACO output
a 42.34m-long optimal path at the 12 iteration, while the
classic ACO output a 50.40m-long optimal path at the 43™
iteration. The optimal paths of the improved and classic
ACOs were respectively 0 — 199 — 163 — 160 —
159 — 158 — 157 — 156 — 155 — 154 — 153 —
152 - 151 — 148 — 147 — 146 — 137 — 45and 0 —
199 - 163 — 160 — 123 — 120 — 119 — 118 —
117 - 116 - 115 - 114 - 113 —» 112 — 111 —
110 — 133 — 148 — 147 — 146 — 137 — 45. The
improved ACO clearly outshines the classic ACO in AGV-
based parking.
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Figure 4 compares the optimal paths and convergence
curves of the improved ACO and the classic ACO in the
pick-up task. It can be seen that the improved ACO output a
27.30m-long optimal path at the 8™ iteration, while the classic
ACO output a 53.40m-long optimal path at the 23 iteration.
The optimal paths of the improved and classic ACOs were
respectively 79 — 87 — 86 — 85 — 121 — 122 —
161 — 162 — 199 — 0and79 — 87 — 116 —
115 - 114 — 113 - 112 - 111 - 110 —» 133 —
150 - 173 — 172 - 171 — 170 — 169 — 168 —
167 — 166 — 165 — 164 — 199 — 0. The improved
ACO still greatly outperforms the classic ACO in AGV-based
pick-up. This is because the classic ACO has difficulty in
convergence, due to the lack of the fallback strategy. The
path selected by the classic algorithm is highly stochastic, and
tends to be much longer than that planned by the improved
algorithm.

Compared with other similar research results, the search
efficiency of the improved ant colony algorithm proposed
in this paper can satisfy the intelligent parking path plan-
ning of general node size. It should be pointed out that
when the node size exceeds 1000, the efficiency of the algo-
rithm is slightly lower than that of the conventional algo-
rithm. In other words, the algorithm in this paper has a
more obvious effect on parking path planning for small-scale
nodes.

In addition, the above results show that the improved ACO
is superior to the classic ACO in both the length of planned
path and iterative efficiency, during the execution of park-
ing and pick-up tasks. This fully demonstrates the excellent
adaptability of our algorithm to path planning for AGV-based
intelligent parking system.

IV. CONCLUSIONS

This paper mainly proposes an improved ACO for the path
planning of AGV-based intelligent parking system. Firstly,
the constraints of path planning were determined according
to the operation features of the intelligent parking system,
and the driving rules for the AGV in the parking lot. Next,
the topological map of the parking lot was plotted, laying
the basis for path planning. Since there are many discon-
nected paths in the parking lot, the fallback strategy was
introduced to the ACO to enhance the search efficiency for
effective paths. Considering the significant impact of param-
eter combinations on ACO results, the optimal combination
of parameters was identified through simulations under five
different numbers of nodes. Finally, the improved ACO and
the classic ACO were separately applied to plan the optimal
path for a typical parking lot with the AGV-based intelligent
parking system, using the optimal parameter combination.
The results show that the improved ACO is more feasible
than the classic ACO. Finally, an example is given to show
that the improved ACO is more practical than the previous
one. Compared with other similar research results, the search
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efficiency of the improved ACO proposed in this research can
meet the requirement of the intelligent parking path planning
within general node size. When the node size exceeds 1000,
the efficiency of the algorithm is lower than that of the
conventional algorithm.
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