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ABSTRACT Compound—protein interaction (CPI) is one of the essential interaction patterns in living
organisms. However, its underlying mechanism has not been fully revealed because of its complicated
processes. Determining CPIs with traditional experiments can reveal solid results. However, their defects,
such as low efficiency and high cost, are also evident. Designing effective computational methods is an
alternative way to determine CPIs. Several methods have been proposed, but such methods can provide
limited information to reveal the mechanism of CPIs because most of them are black boxes. In this study,
we tried to develop rule-based classifiers for the identification of CPIs. The obtained rules involved gene
ontology, KEGG pathway, and molecular ACCess System fingerprint descriptor, which could describe the
functional enrichment of CPIs, to constitute the criterion. Although the performance of rule-based classifiers
was lower than that of previous black box classifiers, these classifiers could clarify the identification
procedures and provide more information on the mechanism of CPIs. The reliability of the obtained rules
was also analyzed.

INDEX TERMS Compound-protein interaction, gene ontology, KEGG pathway, molecular fragment,

explicable rule, RIPPER.

I. INTRODUCTION

In all living creatures, proteins are one of the major compo-
nents that support and maintain the fundamental biological
processes [1], [2]. However, proteins cannot act alone or
independently. They have to interact with one another and
other effective compounds to accomplish objective living
processes and determine related capabilities [3]. Therefore,
compound—protein interaction (CPI) is one of the essential
interaction patterns in living creatures [4].

The basic forms of CPI can be artificially divided into var-
ious subtypes based on the chemical essentials of interactive
chemicals [4], [5]. For instance, protein—protein interac-
tion (PPI) is an essential form of CPIs because proteins are
also a specific subtype of compound [5]. Apart from PPIs,
another compound subgroup, specifically small molecule
compounds, has been identified to participate in CPIs and
contribute to the precise regulation of biological processes
in humans. This phenomenon reflects the complicated bio-
logical contribution of CPIs. Originally, CPIs were first
and widely used in pharmacology to help describe in
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vivo pharmacokinetics and pharmacodynamics processes in
detail [5]-[8]. Early in 1984, the concept of CPI was intro-
duced to describe specific platelet recognition and aggrega-
tion processes induced by a famous drug, namely, aspirin
(compounds), and two in vivo components, namely, throm-
bin (protein) and fibrinogen (protein) [9]. However, this
complicated and functional group of molecular biological
interactions has not been systematically studied for a long
time because of the limitation of biological techniques that
can be used to identify novel CPIs.

With the development of high-throughput sequencing
techniques and mass spectrometry, CPIs have been widely
explored, and chemical genomics, a novel biological field,
has been presented [10]. Chemical genomics (chemoge-
nomics) aims to systematically screen and identify effec-
tive chemicals or small molecules that may directly interact
with or be functionally related to human in vivo proteins,
especially traditional drug targets, such as receptors, kinases,
proteases, and transmembrane proteins [10]-[12]. The poten-
tial core research objective of chemogenomics is the iden-
tification of definite CPIs. However, too many chemicals
and in vivo proteins are available for one-by-one verifica-
tion, which is not only expensive but also time consuming.
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Two optimal strategies have been presented to solve this prob-
lem: (I) high-throughput automated small molecule/chemical
screening technology [13] and (II) computational stimula-
tion prediction [14]-[21]. Experimental approaches based
on high-throughput automated screening technologies have
been widely used in industrial drug screening and recogni-
tion, whereas computational stimulation prediction has been
applied to fundamental research on the detailed biological
contributions and characteristics of in vivo CPIs [13], [14].
The concept and basic biological importance of CPIs have
been widely used in fundamental research and industry.
However, most studies and applications have introduced the
concept of CPIs by taking single interaction as a unit, and
summarizing the functional enrichment and distributed char-
acteristics of such CPIs as clusters is difficult. Therefore,
CPIs’ biological contributions and importance are difficult to
be macroscopically described. Most computational methods
have focused on the performance of methods. The predicted
accuracy is increasing. However, most methods are black
boxes, which provide limited biological insights.

The present study is a continuation of one previous
study [14], which investigated CPIs with gene ontol-
ogy (GO) [22], KEGG pathways [23], and molecular ACCess
System (MACCS) [24] fingerprint descriptors. A random
forest (RF)-based model was built, and several important GO
terms were extracted and analyzed. However, our previous
study discussed the single relationship between CPIs and
one GO term. One GO term or pathway cannot determine
CPIs because the underlying mechanism of CPIs is compli-
cated. In the present study, we tried to analyze CPIs with the
combination of GO, KEGG pathway, and MACCS finger-
print descriptor by building rule-based classifiers. We used
the dataset reported in a previous study [14], which were
retrieved from The Binding Database (BindingDB) [25].
After a rigorous feature analysis procedure, the remaining
features were fed into a rule learning algorithm, namely,
repeated incremental pruning to produce error reduction
(RIPPER) algorithm [26]. As a result, a series of classifi-
cation rules that may contribute to the distinction of events
with differential binding affinity and possibility is established
during interactions between compounds and proteins. The
establishment of rules for CPI recognition may help identify
functional and essential CPIs and enhance our understanding
on the potential biological and functional characteristics of
CPIs.

Il. MATERIALS AND METHODS

A. MATERIALS

A total of 22,473 actual CPIs used in the present study
were retrieved from the previous study [14], which were
extracted from 211,888 CPIs obtained from BindingDB
(http://www.bindingdb.org/, accessed in April 2014) [25],
a public and web-accessible database focusing primarily onto
the interactions of proteins and small/drug-like molecules.
These actual CPIs were termed positive samples that included

70006

756 Ensembl IDs (proteins) and 15,914 PubChem IDs
(small/drug-like molecules).

Negative samples were necessary to reveal the under-
lying mechanism of CPIs, that is, which proteins and
small/drug-like molecules could interact with one another.
Here, we used five different negative sample sets from a
previous study [14]. Each set contained 112,365 pairs of pro-
teins and compounds, five times as many as positive samples.
Negative samples were also called non-CPIs in the present
study. After each negative sample set was combined with the
positive sample set, five datasets were accessed and denoted
as DSy, DS, DS3, DS4, and DSs.

B. FEATURE REPRESENTATION

Each sample was represented by the same features used in the
previous study [14]. Proteins were encoded into 18195-D vec-
tors. Each component indicated the linkage of proteins and
one GO term or one KEGG pathway, which was measured in
accordance with enrichment theory [27]. Among 18195 pro-
tein features, 17916 features were for GO terms and 279
features were about KEGG pathways. The compounds were
represented by 166 MACCS fingerprint descriptors. After the
features of proteins and compounds were combined, each pair
of protein and compound was represented by 18,361 features.

C. FEATURE ANALYSIS

Each sample was represented by numerous features, and all
features did not equally contribute to describing the mech-
anism of CPIs. Feature analysis was performed on each
dataset. The protein features were approximately 109 times
more than the compound features. The following feature
analysis was only executed on protein features.

Feature analysis included two stages. At the first stage,
all protein features were evaluated by using their mutual
information (MI) to targets. For variables x and y, their MI
value can be computed by

I0ry) = / f plx. y) log }Z()pfy)) dy (1

where p(x) represents the marginal probabilities of x, and
p(x,y) indicates the joint probabilistic distribution of x
and y. Features with MI values larger than or equal to
0.01 were selected. At the second stage, the remaining
features were analyzed by conducting a powerful feature
selection method, namely, minimum redundancy maximum
relevance (mMRMR) [28], which has wide applications in tack-
ling different biological problems [29]-[33]. This method
was used to evaluate the importance of each feature by rank-
ing all features in two lists, namely, MaxRel feature list and
mRMR feature list. For the former list, features were sorted
on the basis of their relevance to targets. For the latter list,
the redundancies between features were further considered.
As such, the MaxRel feature list was suitable for analyzing
the contribution of a single feature, whereas the mRMR
feature list was appropriate for measuring the contribution
of a combination of features. The mRMR feature list at this
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stage was used because the underlying mechanism of CPIs
might involve several features. For each obtained list on each
dataset, 500 top-ranked protein features were selected for
further analysis because of our limited computational power.

The mRMR program used in this study was accessed
at http://home.penglab.com/proj/mRMR/index.htm. mRMR
program was executed with default parameters.

D. RULE LEARNING
In contrast to a previous study [14], which aimed to build an
effective model for predicting CPIs and extract important GO
terms and biological pathways, the present study tried to learn
explicable rules to clearly identify the difference between the
actual CPIs and general pairs of proteins and compounds.
Thus, the underlying mechanism of CPIs was determined.

For each dataset with samples represented by 500 impor-
tant protein features and 166 compound features, the RIPPER
algorithm [26] was applied to the dataset. RIPPER is an
improved version of Incremental Reduced Error Pruning [34].
In this algorithm, a greedy strategy was used to produce
rules one by one. In each step, RIPPER generated a rule
that could cover the remaining training samples as much
as possible. The covered training samples were removed,
and the following rule was generated on the remaining sam-
ples in the same manner. A rule generated by RIPPER was
displayed with an IF-THEN clause. For example, a rule
can be IF (featurel>0.002, featrue2>1.2, and feature3<1.6),
THEN CPI. This rule learning algorithm has been applied to
investigate several biological problems [35]-[37].

In the present study, the tool “JRip” in Weka [38]
was used, which implemented the abovementioned RIPPER
algorithm. Default parameters were used.

E. ACCURACY MEASUREMENT
The performance of the rules was evaluated by tenfold cross-
validation to indicate the utility of rules learned by RIPPER
algorithm [39]-[41]. With this method, the samples were
divided into 10 parts. Each part was singled out individually
as the testing dataset, and the remaining parts constituted the
training dataset. Lastly, each sample was tested exactly once.
The predicted results yielded by tenfold cross-validation
were counted as true positives, true negatives, false positives,
and false negatives to calculate four measurements: sensitiv-
ity (SN), specificity (SP), accuracy (ACC), and Matthews’s
correlation coefficient (MCC) [29], [42]-[47]. The formulas
of such measurements were presented as follows:

TP

N=—
TP + FN
TN
SP=——
TN + FP
TP + TN
ACC = +
TP+ TN + FP + FN
TP .TN—FP-FN
MCC =
J(IN+FN)-(IN+FP) - (TP+EN) - (IP+FP)

@
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MCC was selected as a key measurement because it is a
balanced measurement, even if class sizes greatly differ.
In addition, we also reported other three measurements:
recall, precision and F1-measure, to provide a more complete
evaluation of classifiers. They can be computed by

P
Recall = ——
TP + FN
TP
Precision = ——— 3)
TP + FP

2 - Recall - Precision

F1 — measure = —
Recall + Precision

Clearly, recall is same as SN.

Ill. RESULTS

In this study, we tried to extract explicable rules and to reveal
the underlying mechanism of CPIs with GO terms, KEGG
pathways, and MACCS fingerprint descriptors. The entire
procedures are illustrated in Fig. 1.

A. RESULTS OF FEATURE ANALYSIS

In Section II.A, five datasets were constructed. In these
datasets, each sample was represented by 18,195 protein
features and 166 compound features. Protein features were
evaluated through feature analysis. In Section II.C, each
protein feature was first assigned a MI value, and features
with MI values larger than or equal to 0.01 were selected.
As a result, 5,720 features remained on DS7; 5,684 features
remained on DS5; 5,624 features remained on DS3; 5,672 fea-
tures remained on DSy; and 5,685 features remained on DSs.
A Venn diagram is plotted in Fig. 2(A) to show the relation-
ship of these five feature subsets. A total of 5,523 features
were the common features of the five feature subsets, indi-
cating that the similarity of any two feature subsets was high.
Important protein features (i.e., key GO terms and KEGG
pathways) were included.

The remaining protein features on each dataset were ana-
lyzed with the mRMR method, resulting in a mRMR feature
list. We selected 500 top-ranked features in each list for
further analysis. The relationship between these feature sets
is shown in Fig. 2(B). In contrast to the Venn diagram in
Fig. 2(A), these five feature subsets were quite different; each
set contained more than 20% of exclusive features, implying
that each dataset included the exclusive information of CPIs.
All information extracted from five datasets should be com-
bined to provide a complete overview of the mechanism of
CPIs.

B. PERFORMANCE OF THE RULES YIELDED BY RIPPER

In Section III.A, 500 key protein features were extracted
on each dataset. They were combined with 166 compound
features in representing each pair of proteins and compounds.
Explicable rules on each dataset could be learned to deter-
mine the mechanism of CPIs. Before the rules were extracted,
the utility of rules yielded by RIPPER should be evalu-
ated. Thus, a tenfold cross-validation was executed on each
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FIGURE 1. Entire procedures of feature analysis and rule learning.
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FIGURE 2. Venn diagrams of the protein features extracted from five datasets. (A) Venn diagram of the
protein features with MI of > 0.01 on five datasets; (B) Venn diagram of 500 top-ranked protein features in

the mRMR feature list on five datasets.

dataset. The predicted results were calculated as SN (recall),
SP, ACC, MCC, precision, and F1-measure as mentioned in
Section IL.E (Table 1). SN (recall), SP, ACC, MCC, precision,
and recall were approximately 0.579, 0.963, 0.899, 0.606,
0.758, and 0.656, respectively. The performance of RIPPER
classifiers was acceptable. The performance of RIPPER clas-
sifiers was quite stable with regard to standard deviation
(Table 1).
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In a previous study [14], RF, a powerful classification algo-
rithm [29], [44], [48], [49], was used to identify CPIs. The
performance of the optimal RF classifiers and RF classifiers
with 500 top-ranked protein features on five datasets is shown
in Fig. 3. It can be observed that SN of RIPPER classifiers
was much lower than those of two RF classifiers, whereas
SPs of three classifiers were almost at the same level. The
entire performance of RIPPER classifiers was lower than that
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TABLE 1. Performance of ripper classifier on five datasets.

Dataset SN SP ACC MCC Precision  Fl-measure
DS, 0.583 0.962 0.899 0.606 0.754 0.658
DS, 0.584 0.962 0.899 0.608 0.756 0.659
DS, 0.577 0.962 0.898 0.602 0.753 0.653
DS, 0.584 0.963 0.900 0.610 0.759 0.660
DSs 0.567 0.965 0.899 0.603 0.766 0.651

Mean 0.579 0.963 0.899 0.606 0.758 0.656

Standard 5 S)p 03 | 41E-03 7.24E-04 3.42E-03 5.29E-03  3.88E-03

deviation

1.200

1.000

0.800 — [ [ |
0.600 ’ ‘
0.400 ‘ ‘
0.200 ’
0.000 - -
sp ACC MCC

SN

® Optiaml RF classifier
u RF classifier with 500 top-ranked protein features
RIPPER classifier with 500 top-ranked protein features

FIGURE 3. Average performance of three different classifiers on five
datasets.

TABLE 2. Information of rules on five datasets.

Number of Number of used Most used
Dataset
rules features features
DS, 141 284 G0:0033029
DS, 124 268 GO:0070542
DS; 117 262 G0:0034694
DS, 109 251 G0:0032891
DS;s 130 279 G0:0034694

of the two other classifiers. However, RF was a black box,
which provided limited information to reveal the mechanism
of CPIs. Although the RIPPER classifiers gave low perfor-
mance, they could yield rules that could clearly display the
feature combination that was a key biomarker in determining
a CPL

C. EXPICABLE RULES OBTAINED BY RIPPER

With regard to the acceptable performance of the rules yielded
by RIPPER, we applied RIPPER to all the samples in each
dataset, resulting in a group of rules. We obtained 141, 124,
117,109, and 130 rules from the five datasets (Supplementary
Material S1). Several features were used for constructing
rules in each group. The number of these features is listed
in column 3 of Table 2. For rules on DS, GO:0033029 was
used most. Such features on other four datasets are listed
in the last column of Table 2. By investigating all these
rules, the mechanism of CPIs could be partly determined. The
combination of some features could be a latent biomarker
in determining CPIs. In Section IV, some rules would be
extensively analyzed to indicate their reasonability.
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TABLE 3. First rule yielded by ripper on each of the five datasets.

Condition * Result
(GO: 0071379 > 1.409) and (GO: 0071393 > 1.214)
and (GO: 0042421 > 1.144) and (A131 <0) and
(A133>1) and (A92 > 1) and (GO: 0071578 >
0.356) and (A88 > 1) and (A59 > 1) and (A104 < 0)
(GO: 0034694 > 1.939) and (GO: 0033240 > 1.591)
and (GO: 0071393 > 1.297) and (A131 < 0) and
(A133 > 1) and (GO: 0008747 > 0.754) and (A136 >
1) and (A127 <0) and (A110>1)

(GO: 0034694 > 1.939) and (GO: 0033240 > 1.591)
DS; and (GO: 0070530 > 0.558) and (A131 <0) and CPI
(A135>1)and (A117 > 1) and (A59 > 1)

(GO: 0034694 > 1.900) and (GO: 0042415 > 1.433)
and (GO: 0071393 > 1.297) and (A135 > 1) and

Dataset

DS, CPI

DS,

Q

PI

DS: (A131<0) and (GO:1902186 > 0.496) and (A92 > CPI
1)and (A130> 1)
(GO: 0034694 > 1.939) and (GO: 0071393 > 1.214)

s, @1 (GO: 0042421 > 1.144) and (A135 > 1) and ol

(A131 <0) and (GO: 0030799 < 13.088) and (A92 >
D
“Features with initials “A” represent MACCS fingerprint descriptors.

IV. DISCUSSION

In this study, five groups of explicable rules that might distin-
guish unbinding events (non-CPIs) and binding ones (CPIs)
were extracted. For the first time, functional annotations
(GO [22] and KEGG pathways [23]) and MACCS [24] finger-
print descriptors were applied to quantitatively describe each
rule. Other studies have shown that some rules could confirm
their reasonability, thereby validating the reliability of all new
finding rules.

Five groups of rules that might contribute to the distinction
of CPIs and non-CPIs were identified. A total of 621 rules
were obtained. Analyzing these rules one by one is difficult
because of our limited human resource. According to the
principle of RIPPER, the first rule is quite important because
such rule is constructed by viewing all the samples in the
dataset. Thus, the first rule of each group was screened for
a detailed discussion (Table 3).

The first rule on DS; contributed to the identification
of CPIs. Four GO terms and six MACCS descriptors were
involved. The simultaneous satisfaction of four biological
processes (GO: 0071379 [cellular response to prostaglandin
stimulus], GO: 0071393 [cellular response to progesterone
stimulus], GO: 0042421 [norepinephrine biosynthetic pro-
cess], and GO: 0071578 [zinc II ion transmembrane import])
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was included. The interactions involved in such biological
processes must participate in the interactions either between
hormones (prostaglandin and progesterone) [50], [51] and
receptors or between biosynthetic catalyzing enzymes and
substrates [52], which are the subtypes of CPIs. Therefore,
the interactions enriched in such GO terms may be CPIs,
validating the distinction effects of this rule. For the MACCS
descriptors, A131 (QH > 1) described that the molecules
participating in such interactions must have heteroatoms with
at least one hydrogen attached [53]. Considering the com-
plicated interactions, molecules with or without heteroatoms
might not contribute to the interaction-associated binding
process (<0), which was also inferred by recent publications.
For other MACCS descriptors, A88 presented whether this
sulfur-containing atom may contribute to the identification of
binding processes, and A104 indicated that compounds with
acylamino-like structures may also contribute to the specific
subtype of CPIs [54]. Considering that various proteins and
effective substrate have a sulfur atom [55] and acylamino
(e.g., thioethers) [54], establishing this rule as potential dis-
tinguishers for CPIs and non-CPIs is quite appropriate.

For the top rule on dataset DS>, four GO terms and
five MACCS descriptors are presented to contribute to this
distinction. GO: 0034694 (response to prostaglandin), GO:
0033240 (positive regulation of cellular amine metabolic
process), GO: 0071393 (cellular response to progesterone
stimulus), and GO: 0008747 (N-acetylneuraminate lyase
activity) are optimal parameters that may contribute to
distinguishing CPIs and non-CPIs. All these GO terms
may participate in either hormone-associated ligand-receptor
interactions or catalysis, which interacts with binding pro-
cesses and validate the efficacy and accuracy of this rule. For
structural-associated MACCS descriptors, molecules must
have at least one heteroatom with at least one hydrogen
attached. Considering that most interactive compounds can
satisfy this rule, this parameter can be considered a com-
plementary filter. For other MACCS descriptors, a specific
structure (A110) describing acylamino may also be quite
significant for the distinction of CPIs and non-CPIs [55],
corresponding to the similar parameter (A104 describing
acylamino-like structures) mentioned above.

According to the first rule on DS3, three GO terms and
four MACCS descriptors were used for such distinction. Two
GO terms (GO: 0034694 [response to prostaglandin] and
GO: 0033240 [positive regulation of cellular amine metabolic
process]) also enriched binding-associated interactions on
the basis of the quantitative prediction parameters. Consid-
ering the detailed biological functions of these GO terms,
effective CPIs like interactions between alanine and aspartate
aminotransferase [56] and interactions between exogenous
prostaglandin E2 and related receptors [57], [58] have been
widely reported and validated in such two biological pro-
cesses, validating the efficacy and accuracy of this rule. For
the MACCS descriptors, a specific item named A117 was
selected to describe the modified version of a nitrogen—
oxygen double bond for detailed discussion [59] and analysis.
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Considering that this double bond has been identified in
multiple drugs, such as isostrychnine [60], the enrichment of
this descriptor may be quite reliable.

According to the first rules on DS4 and DSs, each dataset
contained four GO terms. In such rules, two GO terms (GO:
0034694 [response to prostaglandin] and GO: 0071393 [cel-
lular response to progesterone stimulus]) were shared and
discussed, and they reflected the efficacy, accuracy, and corre-
spondence of these two rules. Apart from the two GO terms,
GO: 0042415 (norepinephrine metabolic process) and GO:
0042421 (norepinephrine biosynthetic process) were pre-
dicted to enrich functional binding interactions with sta-
tistical significance (p < 0.05). Considering the metabolic
and biosynthetic processes, which the two GO terms have
described, we can confirm that genes enriching in these
biological processes are definitely involved in CPIs. Similar
to GO terms, the identified MACCS descriptors have quite
high confidence. A131, A135, and A92 that have been dis-
cussed and have been identified as quantitative markers for
CPI recognition with similar tendency and threshold. These
results validated the efficacy and accuracy of these two rules.

Overall, similar to our analysis, all first rules can be vali-
dated by recent publications. The remaining rules may also
be reasonable for distinguishing CPIs and non-CPIs. Con-
sidering all the rules, we can partly reveal the underlying
mechanism of CPIs.

V. CONCLUSION

This study investigated CPIs by extracting explicable classi-
fication rules with GO terms, KEGG pathways, and MACCS
fingerprint descriptors. In contrast to several previous studies,
which tried to construct more effective models for the identifi-
cation of CPIs, the obtained rules could clarify the prediction
procedures and indicate the important combination of key
features (GO terms, KEGG pathways, and MACCS finger-
prints) to determine a CPI. The discussion section suggested
that the obtained rules were important for the identification
of CPIs.
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