
Received March 4, 2020, accepted March 23, 2020, date of publication April 1, 2020, date of current version April 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984902

Algorithm on Higher-Order Derivative Based
on Ternary Optical Computer
KAI SONG 1,3, QINGQING JIN 1, GONG CHEN 1, LIPING YAN 2,3,
YI ZHANG 1, AND XIANCHAO WANG 4
1School of Information Engineering, East China Jiaotong University, Nanchang 330013, China
2School of Software Engineering, East China Jiaotong University, Nanchang 330013, China
3Department of Computer Science and Engineering, SUNY, University at Buffalo, Buffalo, NY 14260, USA
4School of Computer and Information Engineering, Fuyang Normal University, Fuyang 236037, China

Corresponding authors: Kai Song (skpark@163.com) and Liping Yan (csyanliping@163.com)

This work was supported in part by the National Natural Science Foundation of China (NSFC) under Grant 61862023 and Grant 61672006,
in part by the Natural Science Foundation of Jiangxi Province under Grant 20181BAB202007, and in part by the Science and Technology
Project of Jiangxi Provincial Education Department under Grant GJJ190325.

ABSTRACT As an important tool in the field of mathematics, higher-order derivation problems are
widely used in differentials, quantum mechanics, and engineering applications. However, in the electronic
computer (EC), due to the existence of the carry in the calculation, the computational efficiency is low when
solving the higher-order derivation problem. In response to this problem, the ternary optical computer (TOC)
has the advantages of no carry-in and the characteristics of numerous data bits, reconfigurable processors
and parallel computing. Solve the higher-order derivation problems with complex operations by constructing
multipliers and adders on the TOC platform, and copying multiple composite operator units (COUs). This
article introduces the design of the higher-order derivative algorithm based on TOC in detail, the reconfigu-
ration process of the multiplier and adder, and the number of bits of the multiplier and adder required in the
implementation is given. Besides, the hardware resources and clock cycles in the operation are analyzed. The
feasibility of the implementation scheme is verified by experiments. Compared with the traditional higher-
order derivative, the higher-order derivative based on the TOC is superior in time performance, computational
efficiency, and processing of complex operations. Due to the limitation of the research stage, the algorithm
is only applicable to the function of polynomials, which lays a foundation for the further research of higher-
order derivative algorithms, and has certain application significance.

INDEX TERMS Ternary optical computer, higher-order derivative, MSD adder, MSDmultiplier, composite
operator unit.

I. INTRODUCTION
Internet technology has experienced the rise of the late
20th century, and the rapid development at the beginning
of this century. The rapid growth of the number of internet
users has led to the growth of data volume, and the large-
scale data computing problems brought about by this are
compelling [1]. The speed and efficiency of higher-order
derivation is critical in practical applications, especially in
engineering and scientific computing. For the ordinary elec-
tronic computer (EC), the process of higher-order derivative
addition, subtraction, multiplication and division is realized
by the logic operation of hardware. The addition is the basic

The associate editor coordinating the review of this manuscript and
approving it for publication was Sukhdev Roy.

operation, the logical relationship is ‘‘XOR’’, the same is 0,
the difference is 1, the result of ‘‘XOR’’ is the value of
the local sum, and then determine whether to perform the
carry according to the operation requirements; subtraction is
a complement-addition operation; multiplication operations
use shift-addition or a large amount of hardware for logic
operations; division is performed by shift-subtraction and
performing a complement-addition operation. This process is
repeated multiple times to complete the update of the higher-
order derivative [2]. It can be seen that the EC is inefficient
in dealing with the complicated computing requests.

When the functions are complex, the processing time of
higher-order derivatives will increase sharply, which cannot
meet the needs of users for quick response. Therefore, peo-
ple began to construct many CPUs as parallel computing

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 64499

https://orcid.org/0000-0002-1113-4536
https://orcid.org/0000-0003-4560-8303
https://orcid.org/0000-0003-3700-7268
https://orcid.org/0000-0003-0019-7766
https://orcid.org/0000-0003-1541-7047
https://orcid.org/0000-0003-3581-607X


K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

platforms to handle such complex operations [3]. However,
since the number of CPUs is not proportional to the process-
ing power obtained, when the number of CPUs exceeds a
certain value, the processing power of the parallel computing
platform grows slowly. In fact, only 6% to 12% of the energy
is actually used to respond to user requests for computing.
Most of the energy is used to solve communication and I/O
problems, and the energy consumption is huge.

The ternary optical computer (TOC) is a photoelec-
tric hybrid computer. It expresses information through
no-light state and two polarization states. The liquid crystal
array (LCA) is used to control the polarization direction of
the light beam, and the polarizer is used to complete the
information processing. From the application point of view,
the number of pixels in the LCA is large, which makes it have
a large number of processor bits; the calculation function of
the processor bits can be reconstructed, and the running time
can be reconfigured according to user requirements, which is
more advantageous than EC [4]. In addition, TOC’s second-
generation experimental system already has a reconfigurable
optical processor with thousands of data, and the number
of bits is easily extended, which can efficiently calculate a
large amount of complex data. This paper combines the two
characteristics of TOC’s numerous data bits and the recon-
figurable processor. A ternary optical processor with multiple
data bits is used to solve the higher-order derivative problem
of complex calculations by constructing multipliers, adders,
and replicating multiple composite operator units (COUs),
and computational efficiency is analyzed.

II. RESEARCH BACKGROUND
At present, the Modified Signed-Digit (MSD) digital system
of TOC has matured, and the design of adders and multipliers
has also been implemented, which provides a basis for the
algorithm research of higher-order derivatives.

A. MSD DIGITAL SYSTEM
In 1960, in order to solve the problem of fault tolerance
during operation, Algirdas Avizienis used redundant symbols
to limit the carry process to two binary digits, thereby elim-
inating the carry chain [5]. Later, Drake proposed the MSD
digital system and the specific operation method [44]. For the
real number A, it can be simply expressed by MSD as the
following formula:

A =
∑
i

ai2i (1)

Among them, the ai has three representations of u, 0, 1,
corresponding to the vertical polarization state, the no-light
state, and the horizontal polarization state in the TOC, respec-
tively, the liquid crystal and the polarizer are used to achieve
the transition between these three states, thereby completing
the corresponding operations.

B. ONE-STEP MSD ADDER
Based on the operating method of the MSD digital sys-
tem, MSD addition uses four logical transformations T

(calculating carry value), W (calculating local value), T’, W’,
a parallel algorithm that can be completed without carry [39].
However, each operation in the MSD adder requires 3 pho-
toelectric conversions and 3 data feedbacks, and the overall
speed of the addition is still not high. The symmetric MSD
encoding can eliminate continuous 1 or continuous u in the
data. Two conversion methods of T’ and W’ can be used to
easily implement the two-step MSD number without carry
addition, and it is easier to achieve parallelization, but there
is still an intermediate process in this method [6].

The one-step non-carry MSD adder is based on the above
MSD addition principle and the symmetric MSD encoding
technique, which reduces the three steps of the general addi-
tion to one step, so that the addition of thousands of bits can
be completed in one step. The process is as follows: the coded
two numbers are padded with 0 at the end, and the results of
adding two data can be obtained by using the one-step MSD
addition truth table.

C. MSD MULTIPLICATION
The nature of themultiplication is the addition operation, as is
the MSD multiplication. It is an improved addition algorithm
based on theMSD addition. Enter twoMSDnumbers A andB
to multiply them, and the product result is set to P, which
means the following:

P = A× B =
n−1∑
i=0

A× bi × 2i =
n−1∑
i=0

Si × 2i =
n−1∑
i=0

p(i) (2)

Perform the M operation on the i-th bit in multiplier B and
each bit of multiplicand A (the logical operation correspond-
ing to the two one-bit MSD multiplication is called the M
operation.). And the result is shifted to the left by i bits, which
is called the partial product of the multiplication operation.
In the formula (2), Si = A × bi is called partial product,
p(i) = Si × 2i is called sum term, and finally the result P
of the multiplication operation is obtained.

D. MSD MULTIPLIER OF THE MINIMUM MODULE
In multiplication, two multi-digit multiplications can be split
into multiple low-bit multiplications, and then the weights in
the original data are restored by adding 0 to the lower bits.
Based on the theory, the MSD multiplier of the minimum
module (MM) is 4-bits, and two multi-digits in the multi-
plication operation can be separately split, and the split is
performed from the low to the high position with 4 bits as
a basic unit. After splitting, each basic unit in the multiplier
is multiplied with each basic unit of the multiplicand, com-
plement 0 according to the weight of the two basic units in
their original data, and then add them to get two multi-digit
multiplication results [1], [7].

A two-input multiplication operation is performed in the
MSD multiplier of the ternary optical processor based on the
MM. The specific steps are as follows:

64500 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

Step 1: Reconstructing the number of the MSD multipliers
of the MM required to satisfy the multiplication operation
according to the number of the input two digits;
Step 2: Data calculation. Input the divided multiplier and

multiplicand, and pass them to the MSD multiplier of the
MM reconstructed by the processor of the TOC for parallel
calculation;
Step 3: According to the weights of the two basic units in

their original data, perform a zero-padding operation on the
obtained results, and then add them to obtain the product of
two multi-digit numbers [38].

III. ALGORITHM DESIGN OF HIGHER-ORDER
DERIVATION BASED ON TOC
This article analyzes the higher-order derivatives of polyno-
mial functions, and concludes the laws through summary. The
algorithm design of the higher-order derivatives is completed
on the TOC platform, and then through the analysis of the
actual complex operation process, an improved higher-order
derivative is proposed.

A. HIGHER-ORDER DERIVATIVES
Let the function f (x) be expressed as:

f (x) = a1xb1 + a2xb2 + a3xb3 + · · · + aixbi + · · · + anxbn

(3)

For the convenience of discussion, b1, b2, · · · , bi, · · · bn
are algebraic expressions without x, then the first derivative
of the function is:

f ′(x) = a1b1xb1−1 + a2b2xb2−1 + a3b3xb3−1 + · · ·
+ aibixbi−1 + · · · + anbnxbn−1 (4)

The second derivative of f (x) is:

f ′′(x) = a1b1(b1 − 1)xb1−2 + a2b2(b2 − 1)xb2−1

+ a3b3(b3 − 1)xb3−1 + · · · + aibi(bi − 1)xbi−2

+ · · · + anbn(bn − 1)xbn−2 (5)

According to inductive reasoning, we can get the m-order
derivative of f (x) as:

f m(x) = a1b1(b1 − 1) · · · (b1 − m+ 1)xb1−m

+ a2b2(b2 − 1) · · · (b2 − m+ 1)xb2−m

+ a3b3(b3 − 1) · · · (b3 − m+ 1)xb3−m + · · ·
+ aibi(bi − 1) · · · (bi − m+ 1)xbi−m + · · ·
+ anbn(bn − 1) · · · (bn − m+ 1)xbn−m (6)

By analyzing the equation (6), it can be concluded that the
general formula of the coefficient in the function f m(x) is set
to c, which is expressed as:

c = aibi(bi − 1)(bi − 2) · · · (bi − m+ 1) (7)

The general formula composed of the power of x is set to d ,
which is expressed as:

d = xbi−m (8)

The function f m(x) is a polynomial composed of c and d .

From the above discussion, f (x) is the higher-order deriva-
tive formula obtained in the ideal case, namely, bi is not
an algebraic form of x and the value is large. However,
in general, bi is finite, so we must first determine bi when
we want to obtain the higher-order derivative f m(x). When
bi is larger than m, we can obtain the m-order derivative of
f m(x). When bi is smaller than m, m-order derivative of f (x)
is 0. Taking formula (6) as an example, it can be determined
that the relationship between c and bi is represented by D(m)
as follows:

D(m) =
{
0, m > bi/2
aibi(bi − 1)(bi − 2) · · · (bi − m+1), m < bi/2

(9)

It can be seen that in m > bi/2, the general formula c of
the coefficient in the function f (x) contains m+1 different
numbers multiplied, and whenm is large, the time cost of cal-
culating the coefficient is large, and the coefficient can be up
to n terms. In the case where calculating a single coefficient
takes a lot of time, the calculation amount of the n coefficients
can be imagined. After the calculation of each coefficient is
completed, if you need to calculate the value of the specific
point of the higher-order derivative, it is also necessary to
multiply each coefficient by the power of the point and then
add the products of each item, which increase the amount
of data, making the calculation amount complicated and the
computational efficiency is low. The solution to this problem
is described in detail in the following sections.

B. HIGHER-ORDER DERIVATIVE ON THE TOC
TOC is a ‘‘three-value’’ opto-electric hybrid computer. It uses
the redundant numeral system with {0, 1, u} digits in radix 2.
There are 19,683 logic transformations, which can calculate
more than one thousand data in parallel on one optical proces-
sor, or multiple programs can be paralleled on one processor,
beyond the computing ability of ECs.
Taking f m(x) as an example, it can be observed that each

coefficient c is multiplied by m+1 data, and there are such
n coefficients in f m(x). Since the TOC has a reconfigurable
processor, the multiplier can be constructed based on the date
contained in ci in the formula (10).

f m(x) =

m+1 multipliers︷ ︸︸ ︷
a1b1(b1 − 1) · · · (b1 − m+ 1)︸ ︷︷ ︸

coefficientc1

xb1−m︸ ︷︷ ︸
d1

+

m+1 multipliers︷ ︸︸ ︷
a2b2(b2 − 1) · · · (b2 − m+ 1)︸ ︷︷ ︸

coefficientc2

xb2−m︸ ︷︷ ︸
d2

+ a3b3(b3 − 1) · · · (b3 − m+ 1)︸ ︷︷ ︸
coefficientc3

xb3−m︸ ︷︷ ︸
d3

+ · · ·

+ aibi(bi − 1) · · · (bi − m+ 1)︸ ︷︷ ︸
coefficientci

xbi−m︸ ︷︷ ︸
di

+ · · · + anbn(bn−1) · · · (bn − m+1)︸ ︷︷ ︸
coefficientcn

xbn−m︸ ︷︷ ︸
dn

(10)

VOLUME 8, 2020 64501



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

The detailed algorithm steps are as follows:
Step 1: Data preprocessing, which is completed by the

TOC’s task management software, converts the calculated
values into MSD binary data. TOC uses MSD binary paral-
lelism, so the internal data of the TOC is MSD binary data.
Step 2: The derived higher-order derivative formula uses

the SZG file to transfer the user-submitted operation request
to the TOC. The SZGfile is a way for users to interact with the
TOC’s task management software. For the specific content
of SZG file, refer to the literature [40]. With the help of the
SZG file, the order of the higher-order derivative and the
corresponding coefficient can be passed to the TOC.

FIGURE 1. The specific reconstruction process of the multiplier.

Step 3: Construct the number of multipliers constituting
a single coefficient according to the order m of the higher-
order derivative. The construction process of the multiplier is
shown in Figure 1, the detailed steps are as follows:

1) When m is an even number, m+1 is an odd number,
and the multiplier is converted to an even number by
increasing the vertical polarized light u) of the TOC,
and d(m + 1)/2e multipliers are constructed (d e for
upward taking integer);

2) Using the result of the previous step, namely, the total
d(m+ 1)/2efi s as the input of the next column of MSD
multipliers, d(m + 1)/4e multipliers are constructed to
complete multiplication of d(m + 1)/2e numbers, and
d(m+ 1)/4e products are obtained after completing the
MSD multiplication.

3) Repeat the above steps t =
⌈
log2(m+ 1)

⌉
times.When

the reconstructed MSD multiplier is 1, the reconstruc-
tion ends and the operation result is output.

Step 4: The process of reconstructing the multiplier in step
3 is encapsulated into a COU. The number of multipliers and
the specific construction process are not recalculated, and the
COU is copied from the next data bit according to the number
of coefficients c.

C. IMPROVED HIGHER-ORDER DERIVATIVE
ALGORITHM BASED ON TOC
In practical applications, there are many complex oper-
ations that require high precision and are not suitable

for direct operations. The solution is to use Taylor series
method to expand the function, generate simple multipli-
cation and addition operations, and then perform higher-
order derivative operations, but the efficiency problem is not
solved [37]. This section proposes an improved higher-order
derivative algorithm for higher-order derivatives in practical
applications.

In formula 10, when performing higher-order derivative
operations on specific points in f m(x), the multiplier cannot
be constructed by the number of coefficients, but the mul-
tiplier should be constructed by the number of exponents.
In addition, the adder needs to be constructed according to
the number of items n, which is used for the implementation
of parallel computing.

Taking f m(x) as an example, the higher-order derivative of
f m(a) is actually solved. The algorithm steps are as follows:

Steps 1 and 2 are the same as section 3.2.
Step 3: Define the data bit sequence. For more details,

please refer to reference [39]. In the actual operation process,
according to the user’s operation requirements, data bits need
to be allocated to prepare for the construction of multipliers
and adders below.
Step 4: Construct a multiplier from the raw data. Analyze

the number of multipliers for each multiplication operation
in f m(a), and construct the multiplier based on the multiplier
contained in the largest exponent bi, and then avoid the
reconstruction time by copying the COU.
Step 5: Analyze the number of addition operations, and

construct the adder according to the number of terms n,
the detailed steps are as follows:

1) When the number of terms n is an odd number, a zero
value is added tomake the whole number of terms even.
It is necessary to construct dn/2e adders.

2) Using dn/2e date in (1) as the input of this layer,
construct n/22 adders so that n2i−1 and n2i (i =
1, 2, 3, . . . dn/2e) get P(2)i

3) When k round iterations,
⌈
n/2k

⌉
is obtained as an odd

number, it is supplemented with a value of 0 to make it
an even number

⌈
n/2k

⌉
+ 1, and using this as the next

input, which need to construct
⌈
n/2k+1

⌉
adders so that

P(k)2i−1 and P
(k)
2i (i = 1, 2, 3, . . .

⌈
n/2k

⌉
) to get P(k+1)i

4) Repeat 3) until iterative k =
⌈
log2 n

⌉
times, the recon-

struction endswhen the number of reconstructed adders
is 1, and finally the result of the higher-order derivative
value f m(a) is obtained.

Step 6:Write step 5 into the form of an SZG file [40], send
it to the underlying control software, and integrate it into the
reconstruction module of the TOC.
Step 7: Enter multiple pairs of data that need to be calcu-

lated. This step is directly completed by the corresponding
functional modules in the monitoring system of the TOC,
which is not part of the research content of this article.

An improved higher-order derivative calculation routine
based on the TOC is shown in Figure 2.

64502 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

FIGURE 2. Reconstruction process of multiplier and adder.

IV. IMPLEMENTATION AND ANALYSIS
OF HIGHER-ORDER DERIVATIVE
ALGORITHMS FOR TOC
A. EXAMPLE
Let a function be

f (x) = 2019x2018 + 2018x2017 + 2017x2016 + 2016x2015

(11)

After derivation, the derivative formula of the function is
as shown in equation (6). To find the 8-order derivative
of the function, the multiplier needs to be reconstructed⌈
log2(8+ 1)

⌉
= 4 times according to the order. The higher-

order derivative f 8(x) contains four different coefficients,
which are set to A, B, C, andD, respectively. The construction
results are shown in Table 1:

TABLE 1. Multipliers reconstruction process of 8-order derivative
function.

It can be seen from Table 1 that each coefficient needs to
construct 11 multipliers, and the required multipliers are 11+
11 + 11 + 11 = 44. The multiplier constructed by a single
coefficient can be packaged into a COU. After 4 iterations,
it is equivalent to constructing 4 COUs [8].

If f 8(2) is found, it is calculated by the improved TOC
higher-order derivative algorithm. f 8(x) contains four differ-
ent coefficients, which are respectively set to A’, B’, C’, D’,
and the higher-order derivative is determined by the expo-
nent bi in f (x). Therefore, it is necessary to analyze it sepa-
rately. The reconstruction results of the multiplier are shown
in Table 2.

From the results of the construction of Table 2, the num-
ber of multipliers required to construct A’, B’, C’, D’ is

very small, and A’ contains the largest exponent, which con-
structs the multiplier to avoid the reconstruction time of each
coefficient.

The adder is constructed, and the results obtained by the
above multipliers are used as the input to the adder. Con-
struct n=4 adders from the number of terms in f 8(2). It is
necessary to construct

⌈
log2 n

⌉
= 2 times, the first time

p(1)i (i = 1, 2, . . . , dn/2e) needs to construct d4/2e = 2
adders, the second p(2)i (i = 1, 2, . . . , n/22) takes the sum
of the previous iteration as the input of this layer, and needs
to construct an adder to get the final higher-order derivative
value.

B. DATA BIT ANALYSIS OF MULTIPLIER AND ADDER
The data bit analysis is performed with the higher-order
derivative function f m(x). The total number of constructing
multipliers is determined by the number of coefficients, and
the general formula constituting a single coefficient is com-
posed of at most m+1 data.
If m is an even number, the first layer needs to construct
d(m+ 1)/2e multipliers, and the second layer needs to con-
struct

⌈
(m+ 1)/22

⌉
multipliers; the i-th layer needs to con-

struct
⌈
(m+ 1)/2i

⌉
multipliers, and a total of

⌈
log2(m+ 1)

⌉
columns need to be constructed, so for a single coefficient,
the multiplier that needs to be constructed is [41]

d(m+1)/2e +
⌈
(m+1)/22

⌉
+ · · · +

⌈
(m+1)/2i

⌉
+ · · · + 1

=

dlog2(m+1)e∑
i=1

⌈
(m+ 1)/2i

⌉
.

There are n coefficients in f m(x), then the total number of
constructing multipliers is at most

n
∑log2(m+1)

i=1

⌈
(m+ 1)/2i

⌉
.

If m is an odd number, the total number of multipliers that
need to be constructed is at most

n
∑log2(m+1)

i=1
(m+ 1)/2i.

The data bit analysis is performed with the higher-order
derivative function f m(a). Themaximum exponent is bi, when
bi is even, the number of multipliers that need to be con-
structed in the first layer is d(bi + 1)/2e; the second layer
needs to construct

⌈
(bi + 1)/22

⌉
multipliers [7], and the j-th

layer needs to construct
⌈
(bi + 1)/2j

⌉
multipliers [41]. A total

of
⌈
log2(bi + 1)

⌉
columns need to be constructed, and the

number of multipliers corresponding to a single coefficient is∑log2(bi+1)

j=1

⌈
(bi + 1)/2j

⌉
.

Although the value of bi is different, the number ofmultipliers
constructed with the maximum exponent bi, the total number
of multipliers that need to be constructed is at most

n
∑log2(bi+1)

j=1

⌈
(bi + 1)/2j

⌉
.

VOLUME 8, 2020 64503



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

TABLE 2. Number of reconstructed multipliers.

The number of items of f m(a) is n, When n is an odd number,
the first layer constructs dn/2e adders, the second layer is⌈
n/22

⌉
adders, and the i-th layer needs to construct the adder

to be
⌈
n/2i

⌉
, which construct the

⌈
log2 n

⌉
columns. Then the

number of adders constructed is at most∑dlog2 ne
i=1

⌈
n/2i

⌉
.

When n is an even number, the number of the constructed
adders does not need to be rounded up. To calculate the
higher-order derivative function f m(a), which needs to con-
struct multipliers and adders, the total number is up to∑dlog2(bi+1)e

j=1

⌈
(bi + 1)/2j

⌉
+

∑log2 n

i=1
n/2i.

C. ANALYSIS OF THE NUMBER OF LIQUID CRYSTALS
When performing higher-order derivation operations, f m(x)
can be expressed as

f m(x) = c1d1 + c2d2 + · · · + cidi + · · · + cndn

=

∑n

i=1
cidi. (12)

In the formula 12, c1d1, c2d2, . . . , cndn can be calculated
in parallel, so the calculation time of the function f m(x)
is the calculation time of one real multiplication, and the
constructed multiplier does not slow down as the number of
bits increases. Compared with EC, TOC hasmany advantages
when dealing with extremely large numbers of data. At the
same time, TOC has a large number of bits and is easy to
expand [9].

When calculating f m(a), the multiplication operation in∑n
i=1 cidi can be calculated in parallel, but there are n-1 addi-

tion operations, so the calculation time of one
∑n

i=1 cidi is
the calculation time of one real multiplication and n− 1 real
addition operations.

The number of multipliers and adders required is analyzed
from section IV-B. For the higher-order derivation operation
of d-bits in f m(a), the adder and multiplier are constructed
to perform continuous multiply-and-accumulate operations,
and the number of liquid crystals is analyzed.

Analyze the number of liquid crystals of a singlemultiplier.
A single multiplier is determined by the number of liquid
crystals of the M converter. The number of liquid crystals of

a singleM converter is d , and the total number of M converter
required is

n
∑dlog2(bi+1)e

j=1

⌈
(bi + 1)/2j

⌉
.

Then, the total number of liquid crystals of the M converter
is at most

d × n
∑dlog2(bi+1)e

j=1

⌈
(bi + 1)/2j

⌉
.

After M transform, the number of data bits input to the
MSD adder of the first layer becomes 2d-1, when sent to
each adder, the number of upper layer bits is increased by
2 bits, and the number of data bits pi input by the MSD
adder in the i-th layer is 2d − 1 + 2(i − 1) [33]. Therefore,
the number ofMSD adders in different layers is different from
each other. Since the one-step MSD adder is used, there is
only one conversion in one MSD adding device, the number
of bits is pi, and the required number of liquid crystals is pi,
that is, 2d+2i− 3, the function f m(a) requires the number of
liquid crystals of the MSD adder to be 2d + 2

⌈
log2 n

⌉
− 3.

Therefore, the total number of liquid crystals required when
calculating f m(a) is up to

C = d × n
∑dlog2(bi+1)e

i=1

⌈
(bi + 1)/2j

⌉
+2d + 2

⌈
log2 n

⌉
− 3.

According to the same analysis method, it can be obtained
that the total number of liquid crystals required for f m(x) is

C = d × n
∑dlog2(m+1)e

i=1

⌈
(m+ 1)/2i

⌉
.

D. CLOCK CYCLE ANALYSIS OF HIGHER-ORDER
DERIVATIVE ON TOC
The higher-order derivative f m(x) is calculated by construct-
ing a multiplier, and the clock cycle is determined by the M
converter. The M converter requires one clock cycle. Since
each coefficient needs to construct

⌈
log2(m+ 1)

⌉
-layer mul-

tipliers, the coefficients are calculated in parallel, and the
total clock cycle is T=

⌈
log2(m+ 1)

⌉
. The number of cycles

required for the implementation of the higher-order derivative
function f m(x) is only related to the order m. When the
order m =1023, the required number of cycles is 10, which
effectively solves the problem of higher-order derivatives.

64504 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

The cycle required for the function f m(a) is determined by
theM converter of themultiplier and the one-stepMSD adder.
Since the multiplier needs to construct

⌈
log2(bi + 1)

⌉
- layers

in total, the required number of cycles is
⌈
log2(bi + 1)

⌉
; the

one-step MSD adder requires one clock cycle per layer, the⌈
log2 n

⌉
-layer adders require

⌈
log2 n

⌉
clock cycles, and

the total number of clock cycles is T =
⌈
log2(bi + 1)

⌉
+⌈

log2 n
⌉
[34]. The number of cycles required to calculate

f m(a) is determined by the orderm and the number of terms n.
For complex functions, the number of terms n = 128,
the power of the unknown number x is 1023, and each multi-
plier d = 16 bits [18], when the order of f m(a) is m = 1023,
the number of cycles required is 10+ 7 = 17. It has nothing
to do with a, so a is even large, and it will not affect the
calculation efficiency.

E. RECONFIGURABLE ANALYSIS OF TOC
The higher-order derivative algorithm is mainly based on
the reconfigurability of the TOC. The higher-order derivative
operation is realized by reconstructingmultipliers and adders.
How the constructed number is used for the allocation of
data bits of the processor is the key. We hope that during
the implementation of the higher-order derivative algorithm,
the resources of the system can be used as efficiently as
possible. From section IV-D, we know that the total period
of the multiplier and adder reconstructed by the improved
higher-order derivative algorithm is r =

⌈
log2(bi + 1)

⌉
+⌈

log2 n
⌉
, and Ny calculations can be completed between the

two reconstructions. The total number of data bits is n, and
the effective number of data bits is m′. The effective use ratio
B of the data bits is

B = m′ × Ny/((Ny+ r)× n) (13)

Among them,m′×Ny is the calculation amount completed
by the optical processor after this reconstruction [43]. It can
be seen from formula (13) that when Ny is much larger than r ,
the utilization rate will not be restricted, which indicates
the higher-order derivative algorithms are more suitable for
tasks with more complex functions and a large amount of
calculations.

When Ny is much larger than r, the utilization rate is deter-
mined by the value of m′ / n. The TOC has many data bits,
however, in actual higher-order derivative operations, it is
rarely possible to perform direct operations by reconstructing
multipliers and adders, so at this time m′ is very important.
It can connect the calculations of different users to make
the maximum use of the number of data bits, which also
guarantees the reconstruction of multipliers and adders for
higher-order derivative algorithms.

V. EXPERIMENT
Aiming at the above-mentioned higher-order derivative algo-
rithm of the TOC, this section will design experiments to
verify its feasibility.

FIGURE 3. Experimental equipment of TOC.

A. EXPERIMENTAL EQUIPMENT
In this paper, the experimental equipment is shown in
Figure 3. The processor used is the double-rotator-structure
ternary optical processor (DRSTOP), the operation unit of
DRSTOP is composed of three functional modules: encoder,
operator and decoder. The encoder includes two liquid crystal
devices (LCD) and a vertical polarizer. The decoder is com-
posed of a beam splitter, a polarizer and a photoelectric con-
verter [14]. It is responsible for the acquisition and analysis
of the LCD output signal. The results of the calculation are
obtained by analyzing the image information on the DCS.
More detailed information on the experimental equipment of
TOC can be found in the literature [2], [3].

The core optical element of TOC is mainly composed
of LCD and polarizer. The LCD has 576 pixels arranged
in a 24 × 24 array. Each pixel can be individually con-
trolled. The parallel LCA has two interfaces CN1 and CN2,
and each interface controls two NT7701 chips, as shown in
Figure 4 (a) [16]. In the experiment, the TOC is coded accord-
ing to the light intensity. When the light intensity reaches
the set threshold (bright), the H or V light state is output,
and the set threshold (dark) is not reached, the W light state
is output. In this study, two adjacent pixels in each row
represent one data bit of the optical processor, so there are
576/2 = 288 pixels, and the optical processor bits also
become 288, as shown in Figure 4 (b). According to the num-
ber of bits of the optical processor, each data bit corresponds
to two LCDs, which are called left LCD and right LCD,
respectively. If the left LCU is on, the output value is V state;
if the right LCU is on, the output value is H state; if the left
and right LCUs are not lit, the output is W state; if the left and
right LCUs are on, the output value is illegal [17].

B. EXPERIMNETAL SIMULATION
The experiment consists of two parts: EC simulation and TOC
processing. The task of the EC is to adjust and encode the
user’s input data, and the software simulates the experimental
operation process. The TOC is composed of the device that

VOLUME 8, 2020 64505



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

FIGURE 4. LCD module.

can rotate the polarization direction of the light. It can assem-
ble multiple basic arithmetic modules together. It is the core
of the experiment and is responsible for the specific operation
of the numerical value [13].

1) EXPERIMENTAL PROCESS OF EC
The application-oriented TOC is still under construction,
so the experiments of higher-order derivative algorithms need
to be completed in conjunction with EC, and the experi-
mental process is shown in Figure 5 (a). The steps are as
follows:

1) firstly, the EC is required to process the function input
by the user, and using the software to find the higher-
order derivative formula of the input function;

2) Use the SZG file (as shown in Figure 6), which is
the window between the TOC and the EC, input the
order of the higher-order derivative and generate the
result file;

3) Preprocess the result file and input it to the TOC for
calculation;

4) Determine the number of functions. If there are mul-
tiple functions to be processed, return to step (1) and
continue to execute the above experimental process;

5) Until the number of functions to be processed is 0,
the experiment ends.

FIGURE 5. The left picture is figure 5(a), which shows the experimental
flow chart of the EC, and the right picture is figure 5(b), which is the
experimental flow chart of the TOC.

FIGURE 6. SZG file.

2) EXPERIMENTA PROCESS OF TOC
Due to the limitation of the number of liquid crystal layers,
the realization of multi-digit multiplication is not easy. The
MM of the MSD multiplier of the TOC [1] and the one-step
MSD adder were used to verify the higher-order derivative
algorithm and its implementation. The experimental flow
chart is shown in Figure 5 (b). The detailed experimental
process is as follows:

64506 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

TABLE 3. Construction of the f 1 layer computation channel.

1) Define raw data and input functions. Read a set of raw
data from the SZG file, and during the experiment,
randomly generate multiple functions for higher-order
differentiation;

2) Define variables. Define the relevant variables of the
randomly generated function. Define the number of
terms of the function as n, the order of the higher-
order derivative m, and the number of times required
to construct the multiplier is t. This step is the internal
communication process of the monitoring software
of the TOC, which is implemented by the moni-
toring software itself, but does not interfere in the
implementation;

3) Determine t according to the m, and perform recon-
struction on TOC according to the reconstruction
scheme of the multiplier.

4) Call the underlying control module and perform cal-
culations through the reconstructed MSD multiplier of
the MM;

5) Construct the MSD Adder () function to simulate a
one-step MSD adder. This function calls the truth table
of one-stepMSD addition in turn to operate on each ele-
ment of the operand, accumulates the values obtained
by the MM, and obtains the result of the first recon-
struction of the multiplier;

6) Loop iteration. Judging t, if the number of executions
is less than t, return to step (4), otherwise continue to
the next step;

7) The calculation process of the single coefficient ends;
8) Loop iteration. Judge the number of coefficients

required. If it is less than n, return to step (3) to continue
execution, otherwise the calculation ends.

C. EXPERIMENTAL TESTS AND RESULTS
This experiment performed higher-order derivative opera-
tions on randomly generated polynomial functions. Because
this experiment is aimed at more complex functions and the
experimental process is more complicated, it is impossible
to test the experimental routines in an exhaustive manner.
We first show in detail the test of the special function in
section IV-A. The number of terms of the known function is
n = 4, when m = 3, construct the multiplier with a single
coefficient c2, and get t = 3, and the data entered are as
follows:

a2 = 201810 = 1000, 00u0, 01u0MSD,

b2 = 201710 = 1000, 00u0, 001uMSD,

b2 − 1 = 201610 = 1000, 00u0, 0000MSD,

b2 − 2 = 201510 = 1000, 00u0, 000uMSD,

they are all 12 bits. Since the MM of the MSD multiplier
is 4 bits and four sets of operation data need to be set at
the same time, the first layer needs to construct 3∗3∗2 =
18 multipliers for calculation, and the calculation amount
of each multiplier is 4 × 4 = 16, and the width of the
composite operation channel is 18∗16 = 288. Therefore,
18 sub-computation channels with a width of 16 are required,
respectively CC1, CC2, CC3, CC4, CC5, CC6, CC7, CC8,
CC9, CC10, CC11, CC12, CC13, CC14, CC15, CC16, CC17,
CC18, the results of the channel construction are shown in
Table 3 [18], [21], [22].

Since the reconstructed MSD multiplier is implemented
in full parallel, the results of the corresponding 18 MSD
multipliers can be output simultaneously. The optical state
table corresponding to the outputs are shown in Table 4,

VOLUME 8, 2020 64507



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

FIGURE 7. The LCD display of the first layer, there are three figures corresponding to the output of the W-ROU, H-ROU, and
V-ROU. The following figures have the same meaning as this.

FIGURE 8. The outputs of the software of the first layer. The left picture shows result of a2b2, the right picture shows result
of (b2 − 1)(b2 − 2).

TABLE 4. Performance comparison of adders.

in this experiment, X, Y, and Z correspond to W, V, and H,
respectively [19].

Two-pixel bits can realize one data bit, when decoding by
the TOC decoder, it is necessary to assign the output result to
different row operator unit (ROU) according to the input state
of a. When the input of a is W state, the corresponding output

will be assigned to the W row operator units (W-ROUs).
When the input of a is H state, the corresponding output will
be assigned to the H row operator units (H-ROUs). When
the input of a is V state, the corresponding output will be
assigned to the V row operator units (V-ROUs) [23]–[25],
each row corresponds to the output of one multiplier, and
the 19-24 line LCDs have no output and shows no-light state,
the experimental results are shown in Figure 7 [35].

For the output results, a zero-compensation operation is
performed. Then use the obtained result file as input and send
it to the simulated one-step adder to get the results of a2b2 and
(b2 − 1)(b2 − 2) in the first layer f 1. The results are shown
in Figure 8.

The two products obtained in the first layer f 1 are sent to
the multiplier as the input of the second layer f 2. Accord-
ing to the same calculation process described above, the
36 multipliers required for the reconstruction of the number
of bits, and the results are displayed on the LCD as shown
in Figures 9 and 10.

The one-step adder is simulated in the software, and finally
the result of the single coefficient is shown in Figure 11.

According to the calculation method of the single coeffi-
cient c2, the results of calculating c1, c3, and c4 are shown
in Table 5. The experimental results are compared with
the theoretical results, and the calculated values are the
same.

64508 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

FIGURE 9. LCD display of the ROU of 1-24 MSD multipliers in the second layer.

FIGURE 10. LCD display of the ROU of 25-36 MSD multipliers in the second layer.

FIGURE 11. Output results of the second layer.

For the experiment of the improved higher-order derivative
algorithm, it is also necessary to construct the adder according
to the number of terms of the function, and use the result
obtained by the reconstructed multiplier as the input of the
adder. The experimental example is shown in Table 6.

In order to ensure the rigor of the functional verification
of the higher-order derivative algorithm, according to the
above experimental test method, we performed 216 special
functions and 10,000 random functions with different orders
of higher-order derivative operations. And we obtained 10
216 simulated experimental results that are basically con-
sistent with theoretical values, but due to space limitations,
we cannot show them one by one. This experiment can verify

TABLE 5. Experimental results.

the correctness and feasibility of the operation of the higher-
order derivative algorithm for polynomial functions by con-
structing multipliers and adders on the TOC.

VI. ALGORITHM ANALYSIS
A. EFFICIENCY ANALYSIS
On the TOC platform, the algorithm uses theMMof theMSD
multiplier (see section V-B) to multiply the data. Compared
with the ordinary MSD multiplier, the required operating
cycle of the optical processor is shown in Table 7.

In the higher-order derivative algorithm, the multiplier is
first constructed to perform operations. The period of themul-
tiplier determines the efficiency of the higher-order derivative
algorithm. It can be clearly seen from Table 7 that when the
MSD multiplier with the MM is used to perform multiple

VOLUME 8, 2020 64509



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

TABLE 6. Input and output results of the reconstructed adder.

TABLE 7. Comparison of operating cycles required for algorithm
implementation.

data bit operations, the period is greatly reduced, especially
when calculating complex functions. As the number of data
bits increases, the operation efficiency becomes higher.

In the improved higher-order derivative algorithm, it is
also necessary to construct an adder for operation, so the
calculation efficiency of the adder also affects the efficiency
of the higher-order derivative algorithm. This paper uses
the one-step adder. Compared to the general MSD addition,
the 3 photoelectric conversions and 3 data feedback steps are
reduced to one step, so that thousands of additions can be
completed in one step in parallel. As can be seen from IV-D,
the number of liquid crystals required for the one-step MSD
adder during the calculation process is 2d + 2

⌈
log2 n

⌉
− 3.

For a general MSD adding device, there are five transforms of
T,W, T’, W’, and T, and the number of bits is pi, pi+1, pi+1,

pi+2, and the number of liquid crystals required is 5pi+4, that
is 10d + 10

⌈
log2 n

⌉
− 11. The one-step MSD adder requires

one clock cycle per layer, the
⌈
log2 n

⌉
-layer adders require⌈

log2 n
⌉
clock cycles, and the general MSD adder requires

three clock cycles per layer. The comparison result of the
calculation efficiency of the adder is shown in Table 8 [32].

TABLE 8. Performance comparison of adders.

It can be seen from Table 8 that the efficiency of the
higher-order derivative algorithm in addition operation is
much lower than the operation of the general MSD adder in
terms of resource consumption, and the calculation cycle is
relatively short, especially when the function becomes more
complex, and the number of items and the number of data bits
of the function increase gradually, the operation efficiency
becomes more obvious.

B. COMPARISON OF COMPUTATIONAL
EFFICIENCY WITH THE EC
Compare with the same type of EC to implement higher-
order differentiation. The EC’s shift-add multiplier needs to
complete d binary additions when multiplying d-bit data, but
each addition will cause a carry delay, and the delay time

64510 VOLUME 8, 2020



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

is the function of te, so the time required to complete an
addition is the time function te of the data bit d and each bit
delay. In the serial carry adder, the total delay time for one
addition is d× te, and the total time for completing d times is
Te ≈ d2 × te [31].

In this study, when the TOC performs d-bit multiplication,
the MSD addition is up to 2d times, and the time required for
each MSD addition is not affected by the number of bits d ,
which is only related to the optical device. If the delay time of
the optical instrument is t0, even without using the pipeline,
the three-valued logic transformation is at most 6d and the
total time is at most T0 ≈ 6d × t0 [12].
Assume the number of data bits d = 100, the computing

time of the EC is Te ≈ 10000te, and the time on TOC is
T0 ≈ 600t0, and the delay time t0 of the optical device
is much smaller than the delay time te of the EC. When
t0 = 1ns and te = 0.1ns, the relationship between the time of
the higher-order derivative operationwith errors and the value
performed by the operation is shown in the Figure 12, where
T0 represents the operation time of TOC and Te represents the
operation time of the EC.

FIGURE 12. The relationship between the number of bits for processing
higher-order derivative operations and the running time. The blue line
represents T0 and the red line represents Te. The following figures have
the same meaning as this.

FIGURE 13. Comparison of the efficiency of ECs and TOCs in processing
higher-order derivatives.

As can be seen from Figure 12, with the increase of the
number of execution bits, higher-order derivatives are real-
ized on TOC, and the time complexity increases linearly,
while the computing speed of EC increases by two orders of
magnitude compared with TOC. After comparison, it is found
that the time complexity of the EC in the operation is O(n2),
and the time complexity of the TOC is O(n). Comparing the
higher-order derivative of TOC and EC with different digits
in Figure 13, it can be seen that the TOC has a great advantage
in processing multiple data bits.

C. AIGORITHM COMPARISON
The higher-order derivative proposed in this paper is based
on the TOC platform, which has the characteristics of numer-
ous data bits and great potential for parallel computing.
This algorithm takes advantage of the reconfigurability of
the optical processor and operates by reconstructing multi-
pliers and adders. The differences between this algorithm
and the traditional higher-order derivative method are as
follows:

1) For higher-order derivatives in actual complex oper-
ations, although the accuracy has been improved,
the cost of the calculation has not changed at all
[39], [45]. This algorithm uses the redundant num-
ber system of TOC [5]. There is no carry delay in
the calculation process, which improves the efficiency
and also improves the calculation accuracy. In addi-
tion, the algorithm can allocate data bits according to
the user’s calculation requirements. By replicating the
COU, the time of reconstruction is avoided, and the cost
of calculation is saved.

2) The performance of the algorithm is different due to
different basic platforms. The higher-order derivative
algorithm in this paper uses the MSD multiplier of
the MM and one-step MSD adder to operate on the
data. As the number of data bits increases, the period
is greatly shortened and the operation is more efficient
(see section 6.1). Compared with the general higher-
order derivative algorithm [46], the time complexity
is O(n). The advantages of this algorithm are more
obvious when calculating complex functions.

3) It is undeniable that this algorithm increases the
resource consumption to a certain extent when recon-
structing the multiplier and adder. However, through
the detailed analysis of the required hardware resources
(see section IV), it can be seen that the algorithm
proposed in this paper greatly shortens the clock cycle,
and also controls the amount of required hardware
resources within the acceptable range of the TOC plat-
form. It greatly improves the calculation efficiency,
which is difficult to achieve compared to the general
higher-order derivative method [47].

VII. CONCLUSION
The reconstruction scheme of the multipliers and adders pro-
posed on the TOC can well solve the problem of low compu-
tational efficiency of complex operations such as higher-order
derivation in ECs, and the experiment proves that the scheme
is feasible [36]. The advantages of TOC’s numerous data
digits, reconfigurable processors, and parallel computing are
fully utilized. It provides a new method for solving complex
computing problems and is more practical. Since this paper
deals with higher-order derivatives, the premise requires that
the function has a derivative formula. The function is complex
and the amount of calculation is large, and the algorithm is
only applicable to polynomials, not any arbitrary function,
so there are certain limitations. This is also the problem that

VOLUME 8, 2020 64511



K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

TOC needs to consider and solve in the research of complex
operations in the next stage.

ACKNOWLEDGMENT
The authors would like to express their sincere gratefulness
to the TOC Team, School of Computer Engineering and Sci-
ence, Shanghai University, for providing the optical platform
and giving many inspired ideas to the paper.

REFERENCES
[1] S. Kai, C. Gong, J. Qingqing, Y. Liping, and Z. Yi, ‘‘Design of MSD mul-

tiplier for ternary optical computer processor based on minimummodule,’’
Opt. Commun., vol. 448, pp. 33–42, Oct. 2019.

[2] J. B. Jiang, X. L. Chen, and S. O. Yang, ‘‘Hardware implementation
of converting ternary optical computer MSD into standard binary data,’’
J. Nanjing Univ. Sci. Technol., vol. 40, no. 3, pp. 278–284, Jun. 2016.

[3] C. Ye, S. Kong, Y. Fu, and J. Peng, ‘‘Optical computer based application
platform for MSD multiplication,’’ Opt. Commun., vol. 458, Mar. 2020,
Art. no. 124814, doi: 10.1016/j.optcom.2019.124814.

[4] M. Kumm, O. Gustafsson, M. Garrido, and P. Zipf, ‘‘Optimal single
constant multiplication using ternary adders,’’ IEEE Trans. Circuits Syst.
II, Exp. Briefs, vol. 65, no. 7, pp. 928–932, Jul. 2018.

[5] A. P. He, G. B. Feng, and J. L. Zhang, ‘‘An asynchronous based booth
multiplication,’’ IET Circuits Dev. Syst., vol. 13, no. 1, pp. 73–78, 2018.

[6] W. Jin, Z. H. Wang, and Y. J. Liu, ‘‘Ternary optical computer,’’ J. Nature,
vol. 41, no. 03, pp. 207–218, Mar. 2019.

[7] P. Junjie, F. Youyi, Z. Xiaofeng, K. Shuai, andW. Xinyu, ‘‘Implementation
of DFT application on ternary optical computer,’’Opt. Commun., vol. 410,
pp. 424–430, Mar. 2018.

[8] Y. Jin, H. Wang, S. Ouyang, Y. Zhou, Y. Shen, J. Peng, and X. Liu, ‘‘Prin-
ciples, structures, and implementation of reconfigurable ternary optical
processors,’’ Sci. China Inf. Sci., vol. 54, no. 11, pp. 2236–2246, Nov. 2011.

[9] Y. Jin, ‘‘Ternary optical computer principle,’’ Sci. China F, vol. 46, no. 2,
pp. 145–150, Apr. 2003.

[10] S. Zhang, J. Peng, Y. Shen, and X. Wang, ‘‘Programming model and
implementation mechanism for ternary optical computer,’’ Opt. Commun.,
vol. 428, pp. 26–34, Dec. 2018.

[11] Y.-T. Fang, Y.-C. Zhang, and J. Xia, ‘‘Reversible unidirectional reflection
and absorption of PT-symmetry structure under electro-optical modula-
tion,’’ Opt. Commun., vol. 416, pp. 25–31, Jun. 2018.

[12] S. Li, J. Jiang, Z. Wang, and H. Zhang, ‘‘Basic theory and key technology
of programming platform of ternary optical computer,’’ Optik, vol. 178,
pp. 327–336, Feb. 2019.

[13] J. Chase and D. Niyato, ‘‘Joint optimization of resource provisioning
in cloud computing,’’ IEEE Trans. Services Comput., vol. 10, no. 3,
pp. 396–409, May 2017.

[14] X. C. Wang, S. Zhang, M. Zhang, J. Zhao, and X. Niu, ‘‘Performance
analysis of a ternary optical computer based on M/M/1 queueing system,’’
in Proc. Int. Conf. Algorithms Archit. Parallel Process., vol. 10393. Cham,
Switzerland: Springer, 2017, pp. 331–344.

[15] S. Kai and Y. Liping, ‘‘Control mechanism of double-rotator-structure
ternary optical computer,’’ Opt. Commun., vol. 387, pp. 338–349,
Mar. 2017.

[16] Q. Xu, X. Wang, and C. Xu, ‘‘Design and implementation of the modified
signed digit multiplication routine on a ternary optical computer,’’ Appl.
Opt., vol. 56, no. 16, pp. 4661–4669, Jun. 2017.

[17] H. Gao, Y. Jin, and K. Song, ‘‘Extension of C language in ternary opti-
cal computer,’’ Shanghai Univ., Nat. Sci., vol. 19, no. 3, pp. 280–285,
Jun. 2013.

[18] W. Li, S. Ouyang, Y. Jin, Y. Han, and Q. Xu, ‘‘Structured data computer—
Application characteristics of a ternary optical computer,’’ Scientia Sinica
Informationis, vol. 46, no. 3, pp. 311–324, Mar. 2016.

[19] P. Aneela, B. Raheela, and D. M. Tayab, ‘‘Analysis of booth multiplier
based conventional and short word length FIR filter,’’ Mehran Univ. Res.
J. Eng. Technol., vol. 37, no. 3, pp. 595–602, 2018.

[20] S. Kai and Y. LiPing, ‘‘The symmetric MSD encoder for one-step adder
of ternary optical computer,’’ Opt. Commun., vol. 372, pp. 221–228,
Aug. 2016.

[21] M. Martinelli, P. Martelli, and A. Fasiello, ‘‘A universal compensator for
polarization changes induced by non-reciprocal circular birefringence on
a retracing beam,’’ Opt. Commun., vol. 366, pp. 119–121, May 2016.

[22] H. Zhang, J. Zhou, and S. Zhang, ‘‘Design and implementation of positive
and negative discriminator of MSD data for ternary optical processor,’’
J. Comput. Res. Develop., vol. 54, no. 6, pp. 1391–1404, Jun. 2017.

[23] Y. Zhao, C.-X. Shi, K.-C. Kwon, Y.-L. Piao, M.-L. Piao, and N. Kim,
‘‘Fast calculation method of computer-generated hologram using a depth
camera with point cloud gridding,’’ Opt. Commun., vol. 411, pp. 166–169,
Mar. 2018.

[24] M. V. Dolgopolik, ‘‘Existence of augmented Lagrange multipliers: Reduc-
tion to exact penalty functions and localization principle,’’Math. Program.,
vol. 166, nos. 1–2, pp. 297–326, Nov. 2017.

[25] S. Mazahir, O. Hasan, R. Hafiz, and M. Shafique, ‘‘Probabilistic error
analysis of approximate recursive multipliers,’’ IEEE Trans. Comput.,
vol. 66, no. 11, pp. 1982–1990, Nov. 2017.

[26] M. D. Jiménez-Gamero and J. C. Pardo-Fernández, ‘‘Empirical character-
istic function tests for GARCH innovation distribution using multipliers,’’
J. Stat. Comput. Simul., vol. 87, no. 10, pp. 2069–2093, Jul. 2017.

[27] J. Wang, ‘‘Critical factors for personal cloud storage adoption in China,’’
J. Data Inf. Sci., vol. 1, no. 2, pp. 60–74, May 2016.

[28] R. Rumipamba-Zambrano, J. Perelló, J. M. Gené, and S. Spadaro, ‘‘On the
scalability of dynamic flex-Grid/SDM optical core networks,’’ Comput.
Netw., vol. 142, pp. 208–222, Sep. 2018.

[29] C.-C. Liu, Y.-T. Chang, C.-C. Yang, and J.-F. Huang, ‘‘Packets buffering
enhancement with hybrid coding labels for virtual optical memory,’’ Pro-
cedia Comput. Sci., vol. 130, pp. 336–343, Jun. 2018.

[30] D. D. Zhdanov, V. A. Galaktionov, A. G. Voloboy, A. D. Zhdanov,
A. A. Garbul’, I. S. Potemin, and V. G. Sokolov, ‘‘Photorealistic render-
ing of images formed by augmented reality optical systems,’’ Program.
Comput. Softw., vol. 44, no. 4, pp. 213–224, Jul. 2018.

[31] J. Lian, S. Hou, X. Sui, F. Xu, and Y. Zheng, ‘‘Deblurring retinal
optical coherence tomography via a convolutional neural network with
anisotropic and double convolution layer,’’ IET Comput. Vis., vol. 12, no. 6,
pp. 900–907, Sep. 2018.

[32] S. Venkatachalam and S.-B. Ko, ‘‘Design of power and area efficient
approximate multipliers,’’ IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 25, no. 5, pp. 1782–1786, May 2017.

[33] M. Osta, A. Ibrahim, L. Seminara, H. Chible, and M. Valle, ‘‘Low power
approximate multipliers for energy efficient data processing,’’ J. Low
Power Electron., vol. 14, no. 1, pp. 110–117, Mar. 2018.

[34] A. Kumar, S. Kumar, and S. K. Raghuwanshi, ‘‘Implementation of full-
adder and full-subtractor based on electro-optic effect in Mach–Zehnder
interferometers,’’ Opt. Commun., vol. 324, pp. 93–107, Aug. 2014.

[35] S. Kai and Y. LiPing, ‘‘Reconfigurable ternary optical processor based on
row operation unit,’’ Opt. Commun., vol. 350, pp. 6–12, Sep. 2015.

[36] S. Kai, O. Shan, and J. Yi, ‘‘Using row operation unit to realize reconfig-
urable ternary optical processor,’’ in Proc. IEEE 12th Int. Conf. Comput.
Inf. Technol., Oct. 2012, pp. 999–1003.

[37] J. Li, J. Li, X. Chen, C. Jia, and W. Lou, ‘‘Identity-based encryption with
outsourced revocation in cloud computing,’’ IEEE Trans. Comput., vol. 64,
no. 2, pp. 425–437, Feb. 2015.

[38] A. Mansour, R. Mesleh, and M. Abaza, ‘‘New challenges in wireless &
free space optical communications,’’Opt. Lasers Eng., vol. 89, pp. 95–108,
Feb. 2017.

[39] H. M. Oubei, E. Zedini, R. T. ElAfandy, A. Kammoun, M. Abdallah,
T. K. Ng, M. Hamdi, M.-S. Alouini, and B. S. Ooi, ‘‘Simple statistical
channel model for weak temperature-induced turbulence in underwater
wireless optical communication systems,’’ Opt. Lett., vol. 42, no. 13,
pp. 2455–2458, Jul. 2017.

[40] S. Li, ‘‘The initial SZG file generation software for ternary optical com-
puter,’’ J. Shanghai Univ. Natural Sci., vol. 24, no. 02, pp. 181–191,
Apr. 2018.

[41] J. Peng, S. Kong, and C. Ye, ‘‘A carry-free multiplication implementation
method,’’ IEEE Access, vol. 7, pp. 85848–85854, 2019.

[42] Z. Ying, Z. Wang, Z. Zhao, S. Dhar, D. Z. Pan, R. Soref, and R. T. Chen,
‘‘Silicon microdisk-based full adders for optical computing,’’ Opt. Lett.,
vol. 43, no. 5, pp. 983–986, Mar. 2018.

[43] Y. Jin and K. Song, ‘‘Management of many data bits in ternary optical
computers,’’ Sci. Sinica Inf., vol. 43, pp. 361–373, Mar. 2013.

[44] M. Li, ‘‘Multi-digit MSD multiplication algorithm on ternary opti-
cal computer and operation analysis,’’ Technol. Univ., vol. 35, no. 12,
pp. 1020–1025, 2015.

[45] R. Mokhtari and F. Mostajeran, ‘‘A high order formula to approximate the
Caputo fractional derivative,’’Commun. Appl. Math. Comput., vol. 2, no. 1,
pp. 1–29, Mar. 2020. 10.1007/s42967-019-00023-y.

64512 VOLUME 8, 2020

http://dx.doi.org/10.1016/j.optcom.2019.124814


K. Song et al.: Algorithm on Higher-Order Derivative Based on Ternary Optical Computer

[46] W. Q. Luo, L. Y. Wang, and Y. S. Xia, ‘‘Implementation of algorithms
for solving high-order Boolean E partial derivatives of logic functions,’’
J. Zhejiang Univ., Sci. Ed., vol. 45, no. 4, pp. 420–426, 2018.

[47] M. Ramezani, R. Mokhtari, and G. Haase, ‘‘Some high order formulae
for approximating Caputo fractional derivatives,’’ Appl. Numer. Math.,
vol. 153, pp. 300–318, Jul. 2020.

KAI SONG received the B.S. and M.S. degrees in
computer application technology from East China
JiaotongUniversity, Nanchang, China, in 2002 and
2007, respectively, and the Ph.D. degree in com-
puter application technology from Shanghai Uni-
versity, Shanghai, China, in 2014.

Since 2014, he has been an Associate Profes-
sor with the School of Information Engineering,
East China Jiaotong University. His research inter-
ests include ternary optical computers, parallel
computing, and embedded systems.

QINGQING JIN received the B.S. degree in Inter-
net of Things engineering from Huainan Normal
University, China, in 2018. She is currently pur-
suing the M.S. degree in computer application
technology with East China Jiaotong University,
Nanchang, China.

Her research interests include ternary opti-
cal computers, embedded systems, and artificial
intelligence.

GONG CHEN received the B.S. degree in Internet
of Things engineering from East China Jiaotong
University, Nanchang, China, in 2017, where he
is currently pursuing the M.S. degree in computer
application technology.

His research interests include ternary optical
computers and embedded systems.

LIPING YAN received the B.S. and M.S. degrees
in computer application technology from East
China Jiaotong University, Nanchang, China,
in 2001 and 2007, respectively, and the Ph.D.
degree in computer application technology from
Wuhan University, Wuhan, China, in 2018.

Since 2013, she has been an Associate Pro-
fessor with the School of Software Engineering,
East China Jiaotong University. Her research inter-
ests include ternary optical computers, intelligent

transportation systems, and uncertainty artificial intelligence.

YI ZHANG received the B.S. degree in computer
networks engineering from Taiyuan University,
Taiyuan, China, in 2018. She is currently pursuing
the M.S. degree in computer technology with East
China Jiaotong University, Nanchang, China.

Her research interests include ternary opti-
cal computers, machine learning, and artificial
intelligence.

XIANCHAO WANG received the B.S. degree in
applied mathematics from Fuyang Normal Uni-
versity, Fuyang, China, in 1997, the M.S. degree
in computer application technology from North-
eastern University, Shenyang, China, in 2004, and
the Ph.D. degree in computer application technol-
ogy from Shanghai University, Shanghai, China,
in 2011.

He is currently a Professor with Fuyang Nor-
mal University. He has coauthored a book, about

30 conference publications, and journal articles. He holds nine patents. His
research interests include queuing modeling and theory, computer software,
optical computing, complex networks, and big data. He is both a member of
the ACM and a Senior Member of the China Computer Federation.

VOLUME 8, 2020 64513


