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ABSTRACT Unmanned aerial vehicles (UAVs) also known as drones are increasingly populating our
skies. This represents a relevant issue both for the legislator and the researcher. While the regulation plans
often assume precautionary approaches, stating restrictive conditions of use for the sake of public safety,
the applied research is exploring novel strategies to develop autonomous vehicles endowed with trusty
operating mechanisms. The challenge is to let drones overflying even populated areas while keeping a
steady control of the situation on the ground, thus enabling the possibility of safe landing with no harm
for people. This can be done employing on-board cameras and embedded GPUs which allow for the
execution in real-time of computer vision applications. In this paper, we introduce a crowd detection method
for drone safe landing. The pivotal points of our proposal are related to the computational limitations
imposed by the currently available hardware resources of UAVs. In this sense, our method is based on the
light-weight scheme of a fully-convolutional neural network which conjugates nimble computations and
effectiveness. We propose a two-loss model where a classification task (oriented to distinguish between
crowded/non-crowded scenes) is supported by a regression task (aimed at better focusing the agglomeration
tendency of the persons). This latter job is realized by resorting to the construction of a spatial graph for each
analysed image and to the evaluation of the corresponding clustering coefficient. As a further element, our
model is endowed with the capability to produce class activation heatmaps which contribute to the semantic
enrichment of the flight maps. We tested our model on a large dataset of aerial images and we observed how
it compares favorably with other approaches proposed in literature.

INDEX TERMS Deep learning, computer vision, crowd detection, unmanned aerial vehicles, safe landing.

I. INTRODUCTION
The last few years have been witnessing a widespread avail-
ability of Remotely Piloted Aircrafts (RPAs), also known as
Unmanned Aerial Vehicles (UAVs) or drones. Their versa-
tility and their reduced cost contributed to a boost in their
commercial popularity and facilitated their application in
several scenarios [1], [2]. At the same time, drones being
maneuvered by an increasing number of non-professional
operators call for suitable regulations. For example, in Italy
RPAs are commonly forbidden from overflying ‘‘gathering
of persons during parades, sports events or different forms of
entertainment or [. . .] areas where there is an unusual concen-
tration of people’’,1 as can be read in the Italian Regulation

The associate editor coordinating the review of this manuscript and

approving it for publication was Haiquan Zhao .
1https://www.enac.gov.it/sites/default/files/allegati/2018-Lug/

Regulation_RPAS_Issue_2_Rev_4_eng.pdf

issued in 2018 by ENAC, which is the national aviation
authority of Italy. It is straightforward that this basic form of
public safety implies the identification of ‘‘restricted areas’’,
where the aircraft flight is prohibited, in accordance with
certain specified conditions. However, this kind of determi-
nation cannot be welcomed as a conclusive resolution. In fact,
unpredictable occurrences and states of emergency may lead
to hazardous operations, including the possibility to attempt
a landing in areas where crowds of people are gathered.
In addition, it may be useful to release the vehicles from strict
prohibitions in their flight plans, while continuing to keep
track of the situation of the ground below. In other words,
automatic mechanisms would be useful to endow drones with
the capability to distinguish between ‘‘safe’’ and ‘‘risky’’
routes, so that their flight-plans can be properly adjusted even
while overflying populated zones (such as, urban areas) [3].
Such an equipment would be worthwhile for RPAs, but
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would prove to bring even more benefits when applied to
another category of vehicles, i.e. autonomous UAVs. Those
aircrafts must be able to automatically follow a flight plan
and possibly to adapt it (identification of ‘‘safe’’ way-points
on geo-referenced maps may be a principle of operation) and
are currently regarded as a kind of advanced drones [4].

In order to provide the drone with a real-time,
decision-making tool, an on-board intelligent system is
required. Several commercially available drones are equipped
with relatively cheap cameras and GPUs. The latter are
powerful enough to address the problem of crowd detection
from drones by using computer vision algorithms. In par-
ticular, Convolutional Neural Networks (CNNs) have been
successfully applied in the realm of object recognition [5] and
recently proved their effectiveness in a wide range of image
classification tasks (see, for example, [6]–[9]). Nevertheless,
the treatment of images shot by drones is somewhat more
complex: additional difficulties (such as scale and view-
point modifications) translate this kind of task into a real
challenge [10].

When we turn to consider the specific problem related
to crowd detection in images captured from UAVs, the lit-
erature panorama is scarce. On the one hand, the computa-
tional burden implied by the neural paradigm is remarkable
when potentialities of drones are taken into account. On the
other hand, there are not so many datasets involving images
purposely captured to perform crowd detection. For those
reasons, the state-of-the-art of computer vision approaches
devoted to such kind of problems is not so populated. Among
the few examples proposed in literature, the work by Tzelepi
and Tefas [11], [12] is based on a Fully-Convolutional Net-
work (FCN) to be implanted on drones. The FCN has been
adopted as an undemanding tool which is able to analyse
images and discriminate between those including people
gatherings and those which don’t. Also, it is employed to
provide estimated heatmaps to semantically enrich the flight
maps. To validate their proposal, the authors used their own
annotated dataset, i.e. the Crowd-Drone dataset. This means
that the proposed approach has not been tested on datasets of
images which could stand as better test-beds both in terms of
dimension and heterogeneity of depicted scenarios. On top of
that, the work presented in [11], [12] confines the problem to
a binary discrimination (scenes with people/scenes without
people), leaving room for the unaccomplished analysis of
more ambiguous cases.

All things considered, we feel that the employment of deep
learning techniques for automatic detection of crowds still
deserves further investigation. In this sense, the research we
present in this paper stands as a contribution to the state-
of-the-art on crowd detection from drones. Moving from
the above observations, we founded our work on a num-
ber of key-points. Concerning the data, we considered the
VisDrone dataset [10] including a great amount of aerial
images taken from drones. Those shots pertain to a broader
set of scenarios, which is manifold under any aspect: depicted
scenes, included elements, object and people density, lighting

conditions, size scales, and so on. Concerning the method,
we propose a new light-weight FCN architecture and we
train and evaluate different models developed by the proposed
architecture. In a preliminary investigation, we experimented
a couple of light-weight models: a classic cross-entropy loss
model and amulti-outputmodel. The latter implements a joint
loss combining the cross-entropy to a regression loss, based
on the people count [13]. In contrast to traditional approaches,
where multi-output models are meant to provide different
outputs from the same input, in our case the regression task is
used to ‘‘assist’’ the classification task in order to learn more
meaningful features.

However, this preliminary investigation was bounded to
a simple characterization of ‘‘crowdedness’’, based only on
people count. The present paper, besides reporting that kind
of results, significantly extends our previous work by intro-
ducing a more refined characterization of ‘‘crowdedness’’,
based on the spatial clustering tendency of the crowd. More
precisely, from each input image we extract the spatial graph
having people as vertexes and we derive a clustering coef-
ficient aimed at evaluating the clustering tendency of the
crowd. The rationale behind this approach is injecting addi-
tional information about what a crowd is, so that the model
can learn a better mapping between images and crowded
scenes. We show that this approach outperforms our previ-
ous models. Moreover, when applied to the same data, our
light-weight models are collectively able to provide better
results than the FCN architecture proposed in [12]. In addi-
tion, they also outperform MobileNet, which is a popular
pre-trained FCN [14].

The rest of the paper is organized as follows. Section II
discusses related works. Section III presents the proposed
method. Section IV describes the data used for the present
study and provides experimental results. Section V concludes
the work.

II. RELATED WORK
To the best of our knowledge, there are not so many proposals
in literature concerning the task of crowd detection from
drones. In the following we expose the contributions coming
from a number of works which are differently related to our
study.

To a broader extent, camera devices installed on UAVs
may be exploited to drive the vehicles toward safe landing.
Some approaches can be reported which address the prob-
lem to spot a marker on the ground, intended to supply
guidance for drone landing. To this end, Lin et al. [15] and
Polvara et al. [16] proposed a classification method based on
classic hand-crafted features. Conversely, Nguyen et al. [4]
used features automatically learned by a light CNN imple-
mentation (namely, lightDenseYOLO) to direct the vehicle
toward the marker.

Some other approaches aim at identifying ‘‘safe’’ areas
for possible landing. This is the case, for instance, of the
work byMarcu et al. [17] where an embeddable CNN is used
to estimate depth from in-flight images and segment them
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into ‘‘safe-landing’’ and ‘‘obstacle’’ regions. Mukadam et al.
in [18] follow a more conventional approach and make use
of SVM algorithms to identify suitable landing areas by
analyzing color features extracted from satellite images.

When the crowd detection task is more specifically consid-
ered, the number of contributions in literature is even lesser.
We already mentioned the pioneering works by Tzelepi and
Tefas: in [11] they employed an FCN as a light-weight model
to distinguish between crowded and non-crowded scenes cap-
tured from drones. The FCNmodel derives from a pre-trained
CNN where the fully-connected layer has been discarded
and a final convolutional layer has been added before con-
ducting the retraining of all the convolutional layers. Also,
they proposed a novel two-loss-training procedure, which
aims at enhancing the separability of crowd and non-crowd
classes. It is worthwhile to observe that the authors remedy
the scarcity of suitable data by constructing their own dataset.
It has been built retrieving videos from Youtube: some of
them are related to keywords describing crowded events
(e.g., parades, festivals, marathons, protests, political rallies);
others non-crowded videos have been gathered by searching
for unspecified drone videos. The adopted model was able
to produce both relevant results in terms of classification
accuracy and heatmaps for crowded areas. The latter allow
for semantic annotation of the flight-maps, leading to the
definition of no-fly zones. In [12] the authors engaged in
the enhancement of their previous work by introducing a
regularization scheme (drawing inspiration from the Graph
Embedding framework), which produced a slight improve-
ment of the obtained results.

Within the context of crowd analysis, a closely related issue
is attracting growing interest due to its reverberation on a
number of practical applications, that is the problem of crowd
counting and crowd density estimation. In [19] a CNN is
proposed to perform cross-scene crowd counting. The model
is trained by a switchable learning process with two learning
objectives (crowd density maps and crowd counts) which can
assist each other to obtain better local optima. Since each
scene has its unique properties (view angles, scales, density,
etc.), the authors bridged the distribution gap between the
training and test scenes through a nonparametric fine-tuning
scheme which adapts the pre-trained CNN model to unseen
target scenes.

Another example of deep CNN applied to the crowd count-
ing problem can be found in [20] where CrowdNet is intro-
duced. CrowdNet is a deep learning framework to be applied
for crowd density estimation in scenarios characterized by
high density of people (a few thousands of persons). The
images involved in this kind of scenes pose a variety of
challenges ranging from severe occlusion of single persons
to the non-uniform scaling of the crowd. CrowdNet faces
those problems by using a combination of deep and shallow
convolutional neural networks operating at different semantic
levels during the image analysis. The authors had to deal also
with the limited amount of training data available: extensive

data augmentation has been performed by sampling patches
from the multi-scale image representation.

In [21], Sindagi et al. presented an end-to-end cascaded
CNN that jointly learns the crowd density map and a
high-level global prior which is conceived to aid the predic-
tion of density maps from images with large variations in
scale and appearance. The high-level prior consists in a crowd
count classification, where crowds are categorized in several
groups depending on the people count.

The aforementioned works propose methods which can
be mostly regarded as too expensive when we consider the
real-time requirement and the computational limits of the
applications deployed on UAVs.Moreover, all of the previous
proposals do not take into account the analysis of images
shot from drones. Actually, scenes of that kind have been
considered to tackle the crowd counting problem in [22],
where features are extracted from images to compute a den-
sity map (by means of kernel density estimation). However,
also in that work the presence of a crowd into the image is
implicitly assumed. By contrast, in our research activity we
are interested in determining the existence of a crowd for the
sake of drone safe landing.

III. PROPOSED METHOD
In order to perform crowd detection in video frames acquired
from drones, we propose a detection model based on a
light-weight FCN. To construct such a model, i.e. to learn a
mapping from each input image to the presence or absence of
a crowd, a dataset of labeled images including examples of
crowds is needed. Specifically, a proper characterization of
the concept of ‘‘crowdedness’’ is necessary. Unfortunately,
a precise definition of ‘‘crowdedness’’ does not exist. The
Italian regulation, as mentioned in the introductory section,
rests on an ambiguous definition of crowd intended as an
‘‘unusual concentration of people’’.

In a preliminary version of our work [13], we proposed a
simple concept of crowdedness based on people counting.
In particular, we labeled an image as containing a crowd
only if it contained at least 10 persons in the captured scene.
Although simple, this concept led to an effective crowd detec-
tor. However, such a characterization does not capture how
the individuals in the scene are effectively aggregated. In this
work, we inject additional information based on the clustering
tendency of the crowd. This may help the FCN learn a better
model for crowd detection.

A. LIGHT-WEIGHT NETWORK MODELS
Drones are characterized by limited capabilities in terms
of computational power: this calls for the definition of
light-weight models to be installed on UAVs for tackling the
crowd detection task. When deep learning architectures are
considered, we observe that the fully connected (FC) layers
bring about some handicaps. In fact, an FC layer, which is
typically set up on top of the last convolutional/pooling layer,
requires the injection of a fixed-size input. Also, that is the
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FIGURE 1. The general scheme of the proposed FCN architecture.

layer where the spatial information integratedwith the images
are thrown away. Most importantly for our scopes, the FC
layer absorbs much of the computational effort. By contrast,
resorting to FCNs may result beneficial for reducing the
computational costs, managing input of any size and pre-
serving spatial information. Those features are appreciated in
computer vision tasks; for instance, some well-known object
detectors, such as R-FCN [23], are fully-convolutional.

Moving from the above considerations, the architecture we
set up to carry on our experiments is modelled on the scheme
illustrated in Fig. 1. As for input, we consider 128 × 128
images assuming that three channels are involved and the
values are normalized in [0, 1]. Each image goes through a
configuration preserving the initial information, composed
by a convolutional layer with 32 filters (values of kernel
size and stride are 5 × 5 and 1, respectively) and then a
common rectified linear unit (ReLU) non-linearity. A max
pooling layer is employed to down-sample the ReLU out-
put (spatial dimensions are divided by a factor of 2). The
addition of pooling layers is a common practice to obtain
down-sampling, which is useful to reduce the computational
cost, while achieving invariance to small translations. This
technique consists in partitioning the input feature map into a
set of non-overlapping regions, then applying a pooling oper-
ation; in the case ofmax pooling, themaximum value for each
sub-region is pooled. A few filters are initially considered due
to the comparatively reduced number of low level features in
the images. Such features can be variously combined giving
rise to a greater number of high-level features. Therefore,
the following two convolutional layers are characterized by
64 filters (kernel size 3 × 3): the increased computational
burden is mitigated by the feature map reduction previously
operated by the pooling layer. Both the convolutional layers
are followed by a ReLU activation, and a dropout layer (with
dropout rate of 0.5) is introduced to reduce overfitting prior
to the final output layer. The proposed architecture represents
a light-weight model suitable to be implanted in a UAV.
However, it is still complex enough to avoid data underfitting.

The scheme depicted in Fig. 1 has been implemented in a
number of versions. Firstly, we were interested in discrimi-
nating images on the basis of presence or absence of crowd.
This kind of binary classification calls for a single output

layer with a sigmoid activation function involved. Being N
the samples cardinality, yi the actual class label and hθ (xi) the
predicted class label, the network is asked to minimize the
cross-entropy loss function:

H(θ ) =
N∑
i=1

yci log(h
c
θ (xi))+ (1− yci ) log(1− h

c
θ (xi)),

where the superscript c indicates the classification task, θ col-
lectively indicates the weight parameters of the network and
xi is a single training sample. Class distinction is performed
on the basis of people count which is a kind of ill-defined
information. For that reason, a variant of the previous imple-
mentation has been considered to set up a network predicting
both the class label (referred to the whole image) and the
count of persons (referred to the depicted crowd). To this
aim, we conceived a regression task as an auxiliary output to
support the classification task. In this sense, the loss function
to be considered is the mean absolute error involving the
actual and estimated people count:

L(θ ) =
1
N

N∑
i=1

∣∣yri − hrθ (xi)∣∣ ,
where the superscript r indicates the regression task. There-
fore, this specific version of the FCN is asked to minimize
a joint loss function composed by the cross-entropy and the
mean absolute error loss:

J (θ ) = H(θ )+ L(θ).

In this way, although the main task is still the classification
one, the network can learn features from the data that may be
useful across tasks. The features learned for the regression on
the people count may then improve the discriminating ability
of the features learned for the classification task.

These implementations represent the preliminary stage of
our research [13]. As a further improvement, we propose a
different two-loss variant. In this case, L(θ ) is intended to
estimate the clustering tendency of the crowd, in place of
crowd cardinality, as described in the following subsection.
By doing so, we plan to enhance the prediction accuracy.

It is worth noting that the last convolutional layer of the
FCN model can be exploited to derive heatmaps of class
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FIGURE 2. Spatial graphs superimposed to sample images: the clustering coefficients evaluated for the left and right images are equal to 0.72 and 0.86,
respectively.

activation over the input images. In turn, the heatmaps may
prove their usefulness to semantically enrich the flight maps.
To derive the heatmaps, we resort to the class activation
map (Grad-CAM) method illustrated in [24]. Given an input
image, this technique extracts the output feature maps of the
last convolutional layer and weights every channel by the
gradient of the class with respect to that channel. Formally, let
Ak ∈ Ru×v be the k-th featuremap from the last convolutional
layer, being u and v its height and width. The information
in these feature maps can be used to localize the ‘‘most
active’’ regions in the original image with respect to the
final prediction hcθ . A summary of the overall feature maps,
i.e. a class activation map LCAM , can be obtained as a linear
combination, followed by a ReLU:

LCAM = ReLU

(∑
k

αckA
k

)
.

Since some feature maps could be more important than others
to make the final decision, as in [24] we propose to use the
averaging pooling of the gradient of hcθ with respect to the
k-th feature map as a weight for the feature map:

αck =
1
uv

u∑
i=1

v∑
j=1

∂hcθ
∂Aki,j

.

In practice,
∂hcθ
∂Aki,j

measures the effect of the (i, j)-th pixel in

the k-th feature map on the prediction hcθ for the given class.
Upsampling the Grad-CAM to the size of the input image
enables the identification of the regions that are most relevant
for the final prediction. In this way, a heatmap is obtained,
indicating how intensely the input image activates the class.

B. CHARACTERIZATION OF CROWDEDNESS
To better characterize the concept of crowd in an image,
we propose a graph-based approach.We assume the availabil-
ity of an annotated image dataset with information on where
people are in each scene. Usual bounding boxes conceived
for pedestrian detection can be used for the purpose. Given an
annotated dataset, for each image I we calculate the precise

pixel location of the individuals by computing the middle
point of the corresponding annotated bounding boxes. Then,
we build a graph G, whose nodes are the middle points of
all the individuals in the scenes. Edges are established by
the classic Euclidean distance between nodes: if the distance
between two middle points is smaller than a given thresh-
old δ, then the corresponding node pair is considered to be
connected. Since calculating effective geographical distances
between points is impractical, we rely on pixel distances to
compute the graph edges. In this way, a so-called spatial
network can be obtained [25].
Given the graph G associated to an image I , we propose

to use the clustering coefficient [26] to derive a character-
ization of crowdedness in terms of aggregation tendency.
The clustering coefficient can provide meaningful insights
in several real-world complex networks; for example, it has
been successfully applied for analyzing brain networks for
neurodegenerative disease investigation [27].

The clustering coefficient for a graph G is computed as:

C =
1
M

∑
v∈G

cv,

whereM is the number of nodes in G and cv is the clustering
coefficient of a node v. The coefficient cv of node v is defined
as the fraction of possible triangles existing through that node:

cv =
2T (v)

kv(kv − 1)
,

where T (v) is the number of triangles through v and kv is the
degree of v, i.e. the number of edges that are incident to v.
A triangle is simply a triplet of nodes connected together.
Clearly, for images with no people, we have C = 0. Figure 2
shows spatial graphs superimposed to sample images.

It is worth noting that, due to the intrinsic nature of the
information it captures, the clustering coefficient C can be
somewhat high even when few people are in the scene. That
is so since C , according to its formulation, is independent of
the actual size of the graph. This may have a twofold effect.
On one hand, it may be beneficial to the FCN model to learn
the concept of aggregation independently of the people count.
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On the other hand, it may impose a bias toward the prediction
of crowd even when a crowd is not present in the scene.
Nevertheless, it should be remarked that the proposed FCN
is mainly trained to discriminate between crowd/no-crowd
based on the people count (similarly to what we did in our
preliminary investigation [13]), while the prediction of C
represents an auxiliary output. In other words,C is used as the
target to be predicted in place of the crowd cardinality when
computing the joint lossJ . In this way, the classification task
is also helpful to mitigate the chance of misinterpretation in
those cases where the value of C is high but the number of
people is low.

IV. EXPERIMENT
Our experimental session is oriented to prove the effective-
ness of the proposed FCN architecture when applied to the
analysis of complex real-world data. For the sake of compar-
ison, we considered two baselines:
a) An implementation of the model proposed in [12] we

purposely realized;
b) The popular MobileNet model [14] pre-trained on

ImageNet [28].
Concerning the model a), it is characterized by a scheme

which is larger than our own. In fact, it includes six convolu-
tional layers, with a parametric ReLU as activation function
which follows each layer but the last one. The output of
the last convolutional layer is fed to an output layer with a
softmax activation. The first and fifth convolutional layers are
followed bymax pooling layers to reduce their input size. The
first pooling layer is followed by a response-normalization
layer to improve generalization. Finally, a dropout layer, with
dropout rate of 0.5, follows the fifth convolutional layer to
reduce overfitting. In our implementation of the model pro-
posed in [12] the main difference concerns the use of a classic
`2 regularization term, applied to every convolutional layer
to further mitigate overfitting. Actually, this regularization
technique has been applied also in [12] and its performance
was only slightly lower than the one ultimately proposed by
the authors.

Concerning the model b), it is characterized by a light
architecture so that it can be adopted for computer vision
applications in mobile and embedded computer scenarios.
The MobileNet model is based on depthwise separable con-
volutions which are a form of factorized convolutions apply-
ing a single filter to each color channel. This factorization has
the effect of reducing computation and model size. To per-
form transfer learning on the dataset employed in our exper-
iment, we relied on the common practice to remove the top
level classifier (quite specific for the original classification
problem) and to stack a custom layer to be trained for our
task.

The experiments have been conducted on the complex
VisDrone dataset. Section IV-A provides a description of this
data together with some details about the re-arrangement we
operated to fit the dataset for our purposes. A report of the
obtained results is given in Sec. IV-C, including the crowd

heatmaps representing the qualitative outcomes provided by
the proposed method.

A. DATASET PREPARATION
There is a scarce availability of datasets for crowd detec-
tion from drones. For our experimental purposes we resorted
to VisDrone [10], a dataset compiled by the AISKYEYE
team at Lab of Machine Learning and Data Mining (Tianjin
University, China) which has been employed for the annual
VisDrone Challenge since 2018. As a basic illustration of
VisDrone, we report the presentation provided by the very
same team on the landing page of their Website2 (retrieved
March 30, 2020):

We [. . . ] present a large-scale benchmarkwith care-
fully annotated ground-truth for various impor-
tant computer vision tasks, named VisDrone,
to make vision meet drones. [. . . ] The benchmark
dataset consists of 288 video clips formed by
261,908 frames and 10,209 static images, captured
by various drone-mounted cameras [. . . ] Note that,
the dataset was collected using various drone plat-
forms [. . . ], in different scenarios, and under vari-
ous weather and lighting conditions. These frames
are manually annotated with more than 2.6 million
bounding boxes of targets of frequent interests,
such as pedestrians, cars, bicycles, and tricycles.

VisDrone is the largest dataset of aerial images from drones
ever published; some images from the dataset are depicted
in Fig. 3 for the sake of illustration.

The manually annotated ground truth is put at user’s dis-
posal for the training and validation sets, while it has been
deliberately made unavailable for the test sets (to avoid fitting
of algorithms during the challenges).

As anticipated by its authors, VisDrone has been proposed
to be employed in a number of different tasks, including
object recognition and object tracking. Our work deals with
crowd detection, therefore we are interested in some partic-
ular categories of (human) items annotated into the images,
i.e. pedestrians and persons. In particular, we resolved to set
a threshold of at least 10 persons to imply the presence of a
crowd inside an image. By doing so, we focused our attention
on a subset of VisDrone where all the included images are
properly labelled as ‘‘crowd’’ or ‘‘non-crowd’’. Such a subset
represents the crowd dataset collecting the images we used
in our experimental session. The crowd dataset is described
in Table 1: it can be noted how the involved training and test
sets are well-balanced in the number of instances belonging
to different classes.

In addition, we derived the clustering coefficient associated
to each image of the crowd dataset. To build the graph,
we used a pixel threshold δ which is independent of the
proportions of the particular input image and that simply
corresponds to 1/10 of the image width. This threshold was
chosen after several preliminary trials on sample images,

2http://aiskyeye.com
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FIGURE 3. Sample images from the VisDrone dataset.

TABLE 1. Description of the crowd dataset.

as it represented a good trade-off between a higher value,
which would have resulted in complete graphs, and a lower
value, whichwould have resulted in disconnected graphs. The
choice of a single general threshold has been also supported
by a factual observation concerning VisDrone: even though
the involved scenes are very different, all of them have been
shot approximately from the same altitude (∼ 15-30m). The
obtained graphs were composed by clusters separated enough
to allow a drone to land between them even in the riskiest
situations.

B. IMPLEMENTATION DETAILS
In our experiments we used TensorFlow and the Keras API.3

As for hardware equipment, the training was run offline on
an Intel Core i5, running a Windows 10 Operating System
on a 8GB RAM, with the NVIDIA GeForce MX110 (2GB
of dedicated memory). Instead, the tests were performed on
two computational platforms commonly mounted on drones
for several applications. The first one was a Raspberry Pi 3,
running Raspbian 4.19 Operating System on 1GB RAM,
featuring a Quad Core 1.2GHz CPU. The second was an
NVIDIA Jetson TX2, running Ubuntu 18.04 Operating Sys-
tem on 8GB RAM. The Jetson TX2 implements a Pascal
GPU architecture with 256 cores. This allowed a feasible

3The proposed crowd detector is available at https://github.com/gvessio/
uav-crowd-detection.

estimation of the real-time capacity of our models either on a
single-board CPU and an embedded GPU.

Training has been performed by applying stochastic gradi-
ent descent on the basis of randomly sampled mini-batches
of 64 images: they have been resized to 128 × 128 (thus
contributing to a reduced computational cost) and normalized
in [0, 1]. Learning rate was set at 0.01.
Our models have been tested against different FCN

architectures proposed in literature, namely the pre-trained
MobileNet [14] and the FCN introduced by Tzelepi and
Tefas [12]. Concerning the latter, we realized an implemen-
tation for it that we tested setting the same ensemble of
parameters mentioned in the original paper. Again, images
have been resized to 128 × 128 (batch size set to 64);
the values of learning rate and momentum have been set
to 10−5 and 0.9, respectively. When we turned to consider
the MobileNet model, larger images (224 × 224) have been
considered in input, in line with the higher capacity of that
network. Also, MobileNet accepts by default input expressed
in the range [−1, 1], therefore each input channel has been
re-scaled accordingly. As for the remaining parameters, learn-
ing rate has been set to 10−5 (to prevent the previously
learned weights from being destroyed) and the parameter α is
initialized to 0.5 (thus proportionally decreasing the number
of filters in each layer, for the sake of the model lightness).
We did not performfine tuning of theMobileNetmodel, as we
noticed that this was detrimental to prediction accuracy.

In fact, during the training phase of the models involved
in the experimental session we observed that some irrele-
vant patterns happened to be learnt quite soon, due to the
complexity of the crowd dataset employed. In this sense,
overfitting represented a major issue in our tests, therefore
all the models have been trained for a few numbers of epochs
which demanded for a few hours of processing time. For the
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TABLE 2. Results. Input is expressed as the number of pixels along the horizontal and vertical dimensions. Accuracy, precision and recall are expressed in
percentages according to well-known formulas. Size is measured in MB and speed in fps.

same reason, we used early stopping with a patience of only
1 epoch, by monitoring the loss value on a validation set
randomly held out as a 10% fraction of the training set.

C. EXPERIMENTAL RESULTS
To evaluate the results of our experiments we relied upon the
following metrics:
• Percentage of prediction accuracy;
• Percentage of average precision;
• Percentage of average recall;
• Size of the resulting HDF5 file;
• Processing speed.

The first three measures are related to the capability of the
model to tackle the classification task (crowd/non-crowd).
Size and speed pertain to technical facets of the working
process of each model, and are evaluated in terms of MB
and frames per second, respectively. Such metrics have been
derived during the tests conducted over each model and are
reported in Table 2. The table includes the results of the
different versions of the proposed method (one loss function;
joint loss function involving the crowd cardinality; joint loss
function involving the clustering coefficient) as well as those
related to the baselines selected for comparison: the FCN
proposed in [12] and the pre-trained MobileNet.

The lower value of classification performance has been
exhibited by the first baseline which is also characterized by
the largest size. It may be argued that these values are corre-
lated, so that this model is hampered by too much capacity for
tackling the problem at hand. MobileNet was able to perform
better in terms of prediction performance. A couple of reasons
may be advanced to explain such a behaviour. On the one
hand, MobileNet is still a complex model notwithstanding
the halving of the filters which is applied at each layer
(indeed, its size is comparatively contained). On the other
hand, we should recall that a pre-training was performed for
this model on data coming from ImageNet which are quite
dissimilar from scenes shot from UAVs (especially concern-
ing shot perspectives which are totally different). It should
be noted also that the results reported in table for MobileNet
correspond to the pre-selected α value (i.e., 0.5): different
values have been tested aside providing worse results.

Among the models which pertain to the proposed FCN
architecture, the scheme embedding the one-loss function
was able to reach better accuracy, precision and recall than
baselines which have been outperformed also in terms of size
and speed. Actually, the one-loss model exhibits the smallest

FIGURE 4. Precision-recall curves. They summarize the trade-off between
precision and recall for the predictive models at different probability
thresholds. A high area under the curve represents both high recall and
high precision, where high precision indicates a low false positive rate,
while high recall indicates a low false negative rate.

size and the fastest speed overall: such values characterize it
as a qualified candidate to be mounted on drones. Concerning
the two-loss models, when the classifier is coupled with the
regressor on crowd cardinality, a further enhancement is reg-
istered in accuracy (86.80%), precision (86.79%) and recall
(86.77%). As expected, adding the regression task effectively
improved the prediction performance. Of course, this is paid
in terms of bigger size (∼ 2.0MB) of the model and a
slightly lower speed (2.61 and 12.75 fps, for the Raspberry
and NVIDIA platform, respectively). The best classification
results come from the two-loss model based on the estimation
of the clustering tendency of the crowd. In fact, it outper-
forms all the other models not only in terms of accuracy
(87.95%) but also in terms of precision (88.37%) and recall
(87.76%). At the same time, this model exhibits size and
speed which are almost equivalent to the alternative two-loss
variant (i.e., ∼ 2.0MB and 2.61 and 12.85 fps, respectively).
As expected, for all the models we employed, NVIDIA Jetson
TX2 outperformed Raspberry Pi 3 in terms of processing
speed.

A wider comparison of our results with the state-of-the-art
(other than the considered baselines) is not an easy task.
In fact, research in this field is still in its infancy; also, dif-
ferent researchers often work on different data. By referring
again to [12], we could argue that our best accuracy value
(87.95%) still does not match the best performance reported
in those tests (95.46%). However, the crowd dataset we have
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FIGURE 5. Illustrative examples of the heatmaps derived through the application of the proposed method. (For a better visualization, input images have
been re-scaled to the original proportions, while heatmaps have been upscaled to fit these proportions).

been working on is much larger than the one adopted in that
experimentation. Most of all, it is characterized by a greater
variance in its contents. This is the reason why the application
of our implementation of that baseline on the crowd dataset
failed to reply analogous results in terms of generalization.

Figure 4 illustrates the precision-recall curves evaluated
for each model while lowering the confidence threshold.
We observe how the leaning of the curves for our two-loss
models happens in the top-right corner of the figure. In par-
ticular, when the confidence threshold is lowered to a value
around 0.4, the two-loss model based on the estimation of
the clustering tendency shows a high recall value (98.75%),
while keeping a satisfactory performance in terms of preci-
sion (which is around 73%). This can be read as a further
confirmation of the feasibility of the proposed method in the
specific context of our research. In fact, security reasons dic-
tate the necessity to recognize as much people gatherings as
possible, even if some amount of precisionmust be sacrificed.
The proposed method proved its efficacy in detecting almost
every crowd, without suffering too much from false positive
cases.

Heatmaps are useful to visually enhance the analysis of
aerial images. Their contribution is also beneficial to bet-
ter appreciate the results of the experimental results, thanks
to the additional pieces of information provided to the
observer. That is highlighted in Fig. 5 where some sample
images are reported together with the heatmaps resulting
from the application of our two-loss method involving clus-
tering tendency. The figure shows the capability of the model
in detecting to some extent the presence of people inside the
scene, thus offering indication about safe and risky zones for
overflying. The work presented in [12] comes to definition of
crowd heatmaps too. However, in that study heatmaps have
been derived starting from the analysis of high resolution
images (1024 × 1024). This contributed to the definition
of notable results, but affected the computational burden.
Our approach, instead, produces heatmaps starting from the
analysis of re-sized images (128 × 128) and heatmaps are
provided together with the class prediction. Obtaining higher

quality heatmaps with the proposed method calls for further
research.

V. CONCLUSION
In this paper, we have proposed a novel human crowd detector
for aerial images shot by drones. Crowd detection is a crucial
task in several applications, particularly whenever drones
are brought (or obliged) to overfly zones which are possi-
bly occupied by people. Crowd detection may enable safety
mechanisms conceived to automatically adapt the flight plan
on a contingency basis and to discriminate between safe and
risky regions in case of emergency landing. Several commer-
cially available drones are equipped with on-board cameras
and GPUs, therefore computer vision algorithms may be
operated to tackle the problem of human crowd detection
from drones. However, that can be accomplished only provid-
ing (nearly) real-time responses in full compliance with the
computational requirements of the UAV’s hardware (which
sometimes is quite limiting). Moving from such premises,
we have proposed a very light-weight Fully-Convolutional
Network architecture, trained to distinguish between crowded
and non-crowded scenes. The general scheme we conceived
is useful to produce different network variants which have
been trained from scratch on the very challenging VisDrone
benchmark dataset, characterized by a large variety of aerial
scenes. In particular, we proposed a method based on the
minimization of a joint loss function which combines two
terms, respectively related to classification and regression.
The regression task aims at predicting the agglomeration
tendency of the crowd, based on the clustering coefficient
of the corresponding spatial graph. By doing so, it supports
the classification task during the analysis of the aerial images
and their final discrimination. The proposed model is able
to outperform the other variants of the FCN architecture.
One of them is based on a single loss function (conceived
for the binary discrimination); the other one is based on a
two-loss function where the regressor is aimed at predicting
the cardinality of the crowd. All the proposed models are
able to provide better predictions when compared to other

64542 VOLUME 8, 2020



G. Castellano et al.: Crowd Detection in Aerial Images Using Spatial Graphs and Fully-CNNs

approaches proposed in literature. Among them, we pro-
posed a comparison with a more complex method based on
the well-known MobileNet architecture. However, a deep
network pre-trained on ImageNet can be less tailored to
distinguish among aerial images, mainly because of their
different perspective against traditional photographic scenes.
In addition, we compared our method against an FCN pur-
posely designed for crowd detection. All in all, our approach
compares favorably with the state-of-the-art, providing an
effective, light-weight model.

Future developments of the present research may attempt
to further improve prediction accuracy. Promising ways
appears to be the application of data augmentation tech-
niques [29] or the generation of synthetic aerial data through
generative adversarial networks [30]. In addition, a real-world
case study is necessary to confirm the applicability of the
proposed system: a practical application is currently the topic
of future research. This may also serve to measure energy
consumption. Other future directions may concern the exten-
sion of the proposed method to application domains other
than drone safe landing. For example, human crowd detection
from drones can be used for crowd density estimation for the
purposes of video-surveillance [31], or to enable the inves-
tigation of human crowd behaviour [32]. Developing safe
UAV applications can increase the trust on this technology,
hopefully making some strict regulations more relaxed.
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