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ABSTRACT An intelligent control method using recurrent wavelet fuzzy neural network (RWFNN) is
proposed to improve the low-voltage ride through (LVRT) performance of a two-stage photovoltaic (PV)
power plant under grid faults for the weak grid conditions. The PV power plant comprises an interleaved
DC/DC converter and a three-level neutral-point clamped (NPC) smart inverter, in which the output active
and reactive powers of the inverter can be predetermined in accordance with grid codes of the utilities.
Moreover, for the purpose of improving the control performance of the PV power plant to handle the
grid faults for the weak grid conditions, a new RWFNN with online training is proposed to replace the
traditional proportional-integral (PI) controller for the active and reactive powers control of the smart inverter.
Furthermore, the proposed controllers are implemented by two floating-point digital signal processors
(DSPs). From the simulation and experimental results, excellent control performance for the tracking of
active and reactive powers under grid faults for the weak grid conditions can be achieved by using the
proposed intelligent control method.

INDEX TERMS PV power plant, interleaved DC/DC converter, short-circuit ratio, weak grid, wavelet fuzzy
neural network, three-level neutral-point clamped inverter.

I. INTRODUCTION
As the penetration level of inverter-based distributed gener-
ators (DGs) including renewable energy resources (RERs)
increases, the stability margin of the distribution system
may be detrimentally affected. As the DGs are commonly
interfaced with the distribution system via power electronic
inverters, it is important to take the impact of the control
of grid-connected inverter into consideration for the stability
analysis of the distribution system integrated with multiple
inverter-based DGs. Moreover, the DGs have influences on
energy efficiency, voltage profile, reliability and power qual-
ity of distribution systems. The size and location of DGs
should be carefully selected in order to take advantage of
the DGs and limit their negative impacts on system opera-
tions [1], [2]. Furthermore, the major challenge for the high
penetration of RERs is its intermittent nature, which will lead
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to unanticipated fast power variation rate of the power system
thereby pushing the operating points of the power system
closer to their stability limits [3]. In addition, reverse power
flow caused by the DGs can result in abnormal voltages.
When the amount of installed DGs increases, voltage regula-
tion becomes a significant problem, especially in distribution
systems where photovoltaic (PV) power plants are widely
spread. Additionally, to integrate the DGs with the power
networks effectively, the low-voltage ride through (LVRT)
requirements have been recently recommended for the instal-
lation of large amount of DGs. On the basis of the grid codes,
the grid-connected inverters should withstand and remain
connected during certain grid faults. Many researches have
been proposed in the past decade for the DGs to establish
the ability to ride through the grid faults [4]–[7]. To ful-
fill LVRT requirements under voltage dips, three different
control schemes using linear quadratic regulator and sym-
metrical components have been proposed in [4]. In [5], a
two-stage three-phase PV system with three operation mode
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was proposed to improve the performance of LVRT and
guarantee the power flow balancing between inverter and
MPPT during grid faults. In [6], several reference current
generation methods, which were developed based on the
positive–negative sequence control strategy, were reported
to provide the LVRT requirements for the grid-connected
inverter based DGs. A Karush–Kuhn–Tucker condition for
finding optimal solutions to calculate the inverter’s active and
reactive current references is proposed in [7]. The proposed
methodology takes the X/R ratio at the point of common
coupling (PCC) into consideration which allows the inverter
to adjust its reference currents to ensure the LVRT [7].

With the increased penetration level of DGs, multiple
transformers and long transmission and distribution lines
are used to connect the DGs with the public grid owing to
the scattered locations of the DGs. Moreover, a public grid
with high grid impedance exhibits the characteristics of a
weak grid [8]. Recently, short-circuit-ratio (SCR), which can
indicate the amount of power that can be accepted by the
power system without affecting the power quality at the point
of common coupling (PCC), has been used to analyze the
strength of the power system at the interconnected points of
DGs [9]. In many distribution systems with DGs connected,
SCR is less than 10. Furthermore, low SCR values impose
serious problems in terms of voltage stability and power
quality requirements [10], [11]. Therefore, the development
of advanced controller is required to solve the stability prob-
lem [11]. In addition, it was found that the voltage instability
phenomenon is quite related with the control loops of the
inverter such as AC terminal control loop and phase-locked
loop (PLL) [12].

It is well known that a combination of neural net-
works (NNs) and fuzzy logic possesses the advantages of
artificial learning in modeling the systems and the benefits of
fuzzy reasoning in handling uncertain information. The com-
bined fuzzy neural networks (FNNs) have been demonstrated
being effective in different control applications [13], [14].
Moreover, the wavelet transform has been widely used for
analyzing the complicated time-varying signals due to its var-
ied window function for the time domain [15], [16]. Recently,
the wavelet functions have been proposed to integrate into
FNN to construct the wavelet fuzzy neural network (WFNN)
for enhancing the adaptive and learning ability in complex
engineering issues [17], [18]. Furthermore, owing to the spe-
cific structure of a recurrent network with the internal feed-
back loop to capture system dynamics, the recurrent fuzzy
neural network (RFNN) has better dynamic ability than the
feed-forward form [19]–[21]. In addition, some researches
have combined the recurrent structure with WFNN, i.e., the
recurrent wavelet fuzzy neural network (RWFNN), and also
has been successfully represented its applicability in various
fields [22], [23]. A new RWFNN with online training will be
developed in this study.

Since current grid-connected PV power plant lacking the
capability of stabilizing output voltage and power under grid
faults for the weak grid conditions, an intelligent control

method using RWFNN is proposed to improve the LVRT
performance of a PV power plant in this study. The operating
principles of the PV power plant and the smart inverter will
be described in Section II. The characteristics of LVRT for
the weak grid conditions will be discussed in Section III.
The network structure and online learning algorithms of the
proposed RWFNNwill be described in Section IV. Moreover,
the simulation and experimental results of the intelligent
controlled PV power plant using RWFNN will be presented
in Sections V and VI. Finally, the conclusions can be found
in Section VII.

II. PV POWER PLANT
A2 kW3-phase 220Vrms PV power plant with two-stage cir-
cuit architecture is developed in this study as shown in Fig. 1.
An interleaved DC/DC converter is considered as the first
stage and is responsible to transfer the power energy from
the PV panel terminal to the DC bus. The second stage is a
three-level neutral-point clamped (NPC) smart inverter and
is responsible to dispatch the power from the DC bus to the
three-phase grid system. In Fig. 1(a), V ∗dc and Vdc are the DC
bus voltage command and DC bus voltage; V ∗cona,b,c is the
pulse width modulation (PWM) signal; Vd1 and Vd2 are the
half high voltage and half low voltage of the DC bus voltage;
iao, ibo and ico are the three-phase currents of the DC/AC
inverter; θi is the synchronous angle obtained from the dou-
ble second-order generalized integrator (DSOGI) phase-lock
loop (PLL); V ∗a , V

∗
b and V ∗c are the three-phase voltage

commands of the DC/AC inverter for the sinusoidal PWM
(SPWM); V ∗d , V

∗
q and V ∗0 are the dq0-axis SPWM voltage

commands of the DC/AC inverter; i∗do, i
∗
qo, i
∗

0o and ido, iqo, i0o
are the dq0-axis current commands and dq0-axis currents of
the DC/AC inverter. Moreover, in Fig. 1(b), Vpcc_a, Vpcc_b and
Vpcc_c are the three-phase voltages of the PCC; V+pcc_a, V

+

pcc_b
andV+pcc_c are the positive sequence of three-phase voltages of
the PCC; Vag, Vbg and Vcg are the three-phase voltages of the
grid; P∗ and Q∗ are the active and reactive power commands
from LVRT requirements; P and Q are the active and reactive
powers; Zgrid is the grid impedance of a weak grid.

For the interleaved DC-DC converter, average current con-
trol method is adopted where the difference of the DC bus
voltage command V ∗dc and DC bus voltage Vdc is regulated by
a proportional-integral (PI) to obtain the current command
i∗bat of the DC/DC converter. Then, the current command
i∗bat is divided by three for the three arms of the DC/DC
converter, and the differences between the current commands
and the sensed phase currents ibata, ibatb, ibatc are regulated
via individual PI controller to generate the control signal
commands V ∗cona, V

∗
conb, V

∗
conc for the PWM. For the three-

level NPC smart inverter, it is controlled by the dq0-axis
current control. The d-axis current control is responsible for
the reactive power control by using the reactive power current
command i∗do. The q-axis current control is responsible for
the active power control by using the active power current
command i∗qo. First, P

∗ and Q∗ are determined according
to the LVRT requirements of the utilities. Then the control
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FIGURE 1. Block diagrams of PV system. (a) Interleaved DC/DC converter and three-level NPC inverter, (b) Power calculation for LVRT and weak grid
connected.

loop of P regulates the control output i∗qo, which is the active
current command, through a PI or the proposed RWFNN
controller; the control loop of Q regulates the control output
i∗do, which is the reactive current command, also through a
PI or the proposed RWFNN controller. Moreover, the 0-axis
current control is responsible for the balance of the upper
half DC bus voltage Vd1 and the lower half DC bus voltage
Vd2 by using a PI controller to generate the 0-axis current
command i∗0o.

III. CHARACTERISTICS OF LVRT FOR WEAK GRID
CONDITIONS
Most grid codes require that the DGs connected to the
medium- or high-voltage networks should have the LVRT
capability under grid faults. Nowadays, many LVRT stan-
dards exist and generally vary across jurisdictions. These

requirements are also applied to low-voltage grid owing to
the high penetration of the PV power plant in low-voltage
grid [24]. Besides keeping connected, some grid codes also
prescribe that the DGs should support the grid by supplying
reactive power during a grid fault to support and restore
the voltage of grid. For instance, the German E.ON LVRT
requirements [25] require the DGs to support voltage with
additional reactive current during voltage dip where the volt-
age control must take place within 20 ms (one cycle in
Europe) after fault occurrence by providing additional reac-
tive current. The amount of the additional reactive current
is 2 % of the rated current for each percent of the voltage
dip [25]. Moreover, the maximum amount of the additional
reactive current can reach 100 % of rated current if the depth
of the voltage dip is greater than 50%. Therefore, the required
percentage of compensation reactive current I∗r is a function
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of the voltage dip Vdip can be expressed as:

I∗r =


0%, Vdip ≤ 0.1
200Vdip%, 0.1 < Vdip ≤ 0.5
100%, Vdip > 0.5

(1)

Under the condition of unbalance three-phase voltage, the
positive sequence of three-phase voltage at the PCC can be
calculated as follows:V+pcc_aV+pcc_b

V+pcc_c

 = 1
3

 1 a a2

a2 1 a
a a2 1

Vpcc_aVpcc_b
Vpcc_c


=
√
2
∣∣∣V+p ∣∣∣

 sin θi
sin (θi − 2π/3)
sin (θi + 2π/3)

 (2)

where a = ej2π/3;
∣∣∣V+p ∣∣∣ is the rms value of the positive

sequence of three-phase voltage at the PCC as follows:∣∣∣V+p ∣∣∣ = √1
3

(
V+2pcc_a + V

+2
pcc_b + V

+2
pcc_c

)
(3)

In accordance with the LVRT requirements, the amount of the
required percentages of the rated current of the compensation
reactive current I∗r during a grid fault depends on the ratio
of the voltage reduction at the PCC during the voltage dip.
Since there is no LVRT requirement to specify the voltage
reduction ratio clearly under the condition of unbalance three-
phase voltage, a formula is proposed to evaluate the voltage
dip Vdip at the PCC as follows [26]:

Vdip = 1−

∣∣∣V+p ∣∣∣
Vbase

pu (4)

where Vbase is the base value of the nominal phase voltage,
which equals 127 V in this study. The maximum apparent
power can be expressed using the rms value of the upper
current limit Imax multiplying by the rms values of the three-
phase voltages during a grid fault as:

|S| =
( ∣∣Vpcc_a∣∣rms + ∣∣Vpcc_b∣∣rms + ∣∣Vpcc_c∣∣rms) Imax (5)

Thus, the reactive power reference valueQ∗ and active power
reference value P∗ can be depicted as follows:

Q∗ = |S| I∗r (6)

P∗ = |S|
√
1− I∗r (7)

The SCR is defined as follows [12]:

SCR =
Sac
SN
=

V 2
g

ZgridSN
(8)

where Sac is the short-circuit capacity of the AC system; SN
is the rated power of the PV power generation; Vg is the
line voltage of the grid. Generally, a weak grid in the HVDC
system is defined as having SCR < 3 in the IEEE standard
1204-1997. In the standard for distributed energy resources
with public grid systems, the grid-connected inverter is
required to be operated stably under SCR > 20; a similar

standard in China follows SCR > 10 [8]. However, in many
distribution network connected DGs, SCR is less than 10.
For a case in Taiwan power company with overhead line
3A477XPW (N-1A300), the Zgrid is 0.1249+j0.3142�/km;
SN is 6 MW; Vg is 11.4 kV. The SCR is calculated in the
following for a 21.35 km overhead line connecting between
the PCC and the grid.

SCR =
V 2
g

SN × Zgrid

=
11.4kV × 11.4kV

6MW × (|0.1249+ j0.3142| × 21.35km)�

=
11.4kV × 11.4kV
6MW × 7.219�

= 3 (9)

To emulate the above case using the developed PV power
plant by simulation, the simulated Zgrid should be 1.9565+
j7.8258 � to result in the same SCR, which is verified as
follows:

SCR =
V 2
g

SN × Zgrid
=

220× 220
2kW × (|1.9565+ j7.8258|)�

= 3

(10)

Such low SCR value impose serious problems in terms of
power stability and quality requirements [10]. In addition,
to match the LVRT requirements, the abrupt step commands
of active and reactive power will cause oscillation even insta-
bility in the output active and reactive powers of the smart
inverter owing to the moving of system eigenvalues to the
imaginary axis even right half-plane [6]. Therefore, advanced
controller is required to take the place of the conventional
PI controller for the control of active and reactive powers to
improve the stability of the grid-connected PV power plants
especially for the LVRT under grid faults.

IV. RWFNN
Though the traditional PI control has the advantage of simple
structure and is easily to be implemented, it is not robust
in coping with the system uncertainties such as modeling
errors, parameter variations and external disturbances in prac-
tical applications. Thus, the parameters of the PI controllers
obtained by trial and error are not always suitable for dif-
ferent operating conditions. On the other hand, the proposed
RWFNN controller is essentially developed based on WFNN
and RFNN. Hence, the RWFNN owns the merits of WFNN
to converge quickly and to handle uncertain information
and the ability of RFNN to achieve the superior dynamic
modeling behavior. Therefore, due to the online learning and
powerful adaptive ability of the proposed RWFNN controller,
the RWFNN is proposed to replace the traditional PI con-
troller in the grid-connected PV power plant to improve the
active and reactive power control under grid faults for the
weak grid conditions.

A. NETWORK STRUCTURE
The network structure of the proposed RWFNN controller is
represented in Fig. 2. Besides the input and output layer, there
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FIGURE 2. Network structure of RWFNN.

are three hidden layer in RWFNN including the membership
layer, wavelet layer and rule layer. The signal propagation and
the functions of each layer of RWFNN are depicted in the
following:

1) LAYER 1 (INPUT LAYER)
There are two input signals in this layer. One is the tracking
error e of active power or reactive power, and the other is its
derivative ė. For every node i in this layer, its input and output
are expressed as

net1i (N ) = x1i (11)

y1i (N ) = f 1i (net
1
i (N )) = net1i (N ), i = 1, 2; (12)

where x1i is the input of ith node in this layer, and define
x11 as e while x12 as ė; net1i (N ) expresses network inputs
where superscript indicates the layer number and subscript
indicates the node number; N is the number of the sampling
iteration; y1i (N ) is the output of ith node; f 1i (·) is a unity
function.

2) LAYER 2 (MEMBERSHIP LAYER)
In layer 2, the outputs of layer 1 are regarded as the inputs of
this layer. Moreover, the membership function of this layer
adopts the Gaussian function. The relationship between the
input and output of each node is described below:

net2j (N ) = −
(x2i − m

2
j )

2

(σ 2
j )

2
(13)

y2j (N ) = f 2j (net
2
j (N )) = exp(net2j (N )), j = 1, 2, . . . , 6

(14)

where x2i (N ) = y1i (N ) is the input; m2
j is the mean value of

Gaussian function of jth node; σ 2
j is the standard deviation of

Gaussian function of jth node; y2j (N ) is the output of jth node;
f 2j (·) is an exponential function.

3) LAYER 3 (WAVELET LAYER)
The signal propagations of wavelet layer are depicted in the
following:

φ3ik (x) =
1√∣∣σ 3
ik

∣∣
[
1−

(x1i (N )− m3
ik )

2

(σ 3
ik )

2

]

× exp

[
−(x1i (N )− m3

ik )
2

2(σ 3
ik )

2

]
,

k = 1, 2, . . . , 9 (15)

ψ3
k (N ) =

∑
w3
ikφ

3
ik (x) (16)

where φ3ik is the input of ith node from layer 1 to wavelet
function of kth node; w3

ik is the connective weight; ψ
3
k is the

output of kth node in the wavelet layer; σ 3
ik and m3

ik express
the dilation variables and translation variables of the wavelet
function, respectively.

4) LAYER 4 (RULE LAYER)
This layer is composed of rule layer and recurrent layer. Each
node l in this layer is denoted by

∏
, which multiplies the

input signals and outputs the result of product. Moreover,
the nodes of rule layer multiply the output signals from
wavelet layer and recurrent layer, and output the result of
product for dynamic mapping. They are summarized in the
following:

y4jl(N ) =
∏

w4
jly

2
j , l = 1, 2, . . . , 9 (17)

net4l (N ) = y4jlψ
3
kw

4
r y

4
l (N − 1) (18)

y4l (N ) = f 4l
(
net4l (N )

)
= net4l (N ) (19)

where y4l (N ) is the output of lth node in this layer; w4
jl is the

connecting weight between layer 2 and layer 4; w4
r is the

recurrent weight; y4l (N − 1) stands for the previous output
of lth node from this layer; f 4l (·) is a unity function. The
recurrent technique is adopted to incorporate a feedback loop
in each node for dynamic mapping and higher sensitivity of
previously obtained data.

5) LAYER 5 (OUTPUT LAYER)
The outputs of layer 4 are regarded as the inputs of this layer.
Moreover, the inputs are summed up as final output of this
network. It can be obtained as follows:

net5o (N ) =
9∑
l

w5
lox

5
l (N ), o = 1 (20)

y5o(N ) = f 5o (net
5
o (N )) = net5o (N ) (21)

where x5l (N ) = y4l (N ) is the output from rule layer; w5
lo rep-

resents the connective weight; y5o(N ) depicts the final output
of RWFNN, which means i∗do = y5o(N ) or i∗qo = y5o(N ) is the
control effort produced by RWFNN; f 5o (·)is a unity function.
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B. ONLINE LEARNING ALGORITHM OF RWFNN
The detailed derivation of the online learning algorithms
based on the back propagation learning rule. The objective
of the back propagation algorithm is to minimize the energy
function E , which is defined in the following:

E(N ) =
1
2
(Q∗ − Q)2 =

1
2
e2 (22)

where Q∗ and Q are defined as the expected output and the
present output of the reactive power. If it is used to control
the active power, then Q∗ and Q will be replaced by P∗ and
P, respectively. The learning algorithm is represented in the
following paragraphs.

1) LAYER 5 (OUTPUT LAYER)
In layer 5, the gradient error of E in (22) with respect to the
output of this layer is calculated as

δ5o = −
∂E

∂y5o(N )
= −

∂E
∂Q

∂Q
∂y5o(N )

(23)

1w5
lo = −ηlo

∂E

∂w5
lo

= −ηlo
∂E

∂y5o(N )
∂y5o(N )

∂w5
lo

= ηloδ
5
ox

5
l (24)

where the factor ηlo is the learning rate. The connective
weight w5

lo is updated in the following:

w5
lo(N + 1) = w5

lo(N )+1w5
lo (25)

2) LAYER 4 (RULE LAYER)
In layer 4, error terms need to be computed and propagated:

δ4l = −
∂E

∂y4l (N )
= −

[
∂E

∂y5o(N )

]
∂y5o(N )

∂y4l
= δ5ow

5
lo (26)

δ4jl = −
∂E

∂y4jl(N )
= −

[
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

]
∂y4l (N )

∂y4jl(N )

= δ4l φ
3
kw

4
r y

4
l (N − 1) (27)

1w4
r = −ηr

∂E
∂w4

r
= −ηr

[
∂E

∂y5o(N )
∂y5o(N )

∂y4l (N )

]
∂y4l (N )

∂w4
r (N )

= ηrδ
4
l ψ

3
k y

4
jly

4
l (N − 1) (28)

where the factor ηr is the learning rate. The recurrent weight
w4
r is updated in the following:

w4
r (N + 1) = w4

r (N )+1w4
r (29)

3) LAYER 2 (MEMBERSHIP LAYER)
In layer 2, error term need to be propagated and computed:

δ2j =−
∂E

∂net2j
=−

[
∂E

∂y4jl(N )

]
∂y4jl(N )

∂y2j (N )

∂y2j (N )

∂net2j (N )
=

∑
jl

δ4jly
4
jl

(30)
By means of the chain rule, the mean value and standard

deviation of the Gaussian function can be computed by the
following equations:

1m2
j = −ηm

∂E

∂m2
j

= −ηm

[
∂E

∂net2j (N )

]
∂net2j (N )

∂m2
j (N )

= ηmδ
2
j

2(x2i − m
2
j )

(σ 2
j )

2
(31)

1σ 2
j = −ησ

∂E

∂σ 2
j

= −ησ

[
∂E

∂net2j (N )

]
∂net2j (N )

∂σ 2
j (N )

= ησ δ
2
j

2(x2i − m
2
j )

2

(σ 2
j )

3
(32)

where the factors ηm and ησ are the learning rates. The m2
j

and σ 2
j are updated according to the following equations:

m2
j (N + 1) = m2

j (N )+1m2
j (33)

σ 2
j (N + 1) = σ 2

j (N )+1σ 2
j (34)

Due to the uncertainties of the system, the exact calcula-
tion of the sensitivity of the system ∂Q/∂y5o(N ) cannot be
determined exactly. Therefore, for the purpose of solving this
problem, the delta adaptation law is adopted to increase the
online learning speed of the network parameters [20]:

δ5o
∼= e+ ė (35)

C. CONVERGENCE ANALYSIS OF RWFNN
In order to make the RWFNN function effectively, a Lya-
punov function is used to prove the convergence of the track-
ing errors [27]. The specific learning rate coefficients for
the training of the network parameters are obtained from the
following convergence analysis to guarantee the convergence
of reactive power control.

The energy function shown in (22) is regarded as a discrete-
type Lyapunov function. Hence, the variation of the Lya-
punov function is described as:

1E(N ) = E(N + 1)− E(N ) (36)

Linearized model [28] of the Lyapunov function is obtained
via (24), (28), (31) and (32) in the following:

E(N + 1)

= E(N )+1E(N )

≈ E(N )+
1∑

o=1

9∑
l=1

[
∂E(N )

∂w5
lo

1w5
lo

]
+

9∑
r=1

[
∂E(N )
∂w4

r
1w4

r

]

+

6∑
j=1

[
∂E(N )

∂m2
j

1m2
j +

∂E(N )

∂σ 2
j

1σ 2
j

]

=
1
4
E(N )− ηlo

1∑
o=1

9∑
l=1

[
∂E(N )

∂w5
lo

]2

+
1
4
E(N )− ηr

9∑
r=1

[
∂E(N )
∂w4

r (N )

]2

+
1
4
E(N )− ηm

6∑
j=1

[
∂E(N )

∂m2
j (N )

]2

+
1
4
E(N )− ησ

6∑
j=1

[
∂E(N )

∂σ 2
j (N )

]2
(37)

where1w5
lo,1w

4
r ,1m

2
j and1σ

2
j express the variations of the

connective weights, the means and the standard deviations.
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If the learning rate coefficients of the RWFNN are designed
as:

ηlo =
E(N )

4

[
1∑

o=1

9∑
l=1

[
∂E(N )
∂w5

lo(N )

]2
+ ε

] (38)

ηr =
E(N )

4

[
9∑

r=1

[
∂E(N )
∂w4

r (N )

]2
+ ε

] (39)

ηm =
E(N )

4

[
6∑
j=1

[
∂E(N )
∂m2

j (N )

]2
+ ε

] (40)

ησ =
E(N )

4

[
6∑
j=1

[
∂E(N )
∂σ 2j (N )

]2
+ ε

] (41)

where ε is a positive constant. Equation (37) can be rewritten
in the following:

E(N + 1)≈
E(N )ε

4

[
1∑

o=1

9∑
l=1

[
∂E(N )
∂w5

lo(N )

]2
+ ε

]
+

E(N )ε

4

[
9∑

r=1

[
∂E(N )
∂w4

r (N )

]2
+ ε

]
+

E(N )ε

4

[
6∑
j=1

[
∂E(N )
∂m2

j (N )

]2
+ ε

]
+

E(N )ε

4

[
6∑
j=1

[
∂E(N )
∂σ 2j (N )

]2
+ ε

]
<

E(N )
4
+
E(N )
4
+
E(N )
4
+
E(N )
4
=E(N ) (42)

Finally, the convergence of the proposed RWFNN controller
is guaranteed according to (22) and (42). Thus, the conver-
gence the reactive power control of the PV power plant can
be pledged.

V. DESIGN AND SIMULATION
Regarding the design of the RWFNN, there are 2, 6, 27,
18 and 1 neurons in the input, membership, wavelet, rule and
output layers of the adopted RWFNNs. In general, if more
neurons of the membership, wavelet and rule layers are
adopted, better control performance can be obtained. How-
ever, increase the numbers of neurons will increase the exe-
cution time. Thus, 6, 27 and 18 neurons are adopted at the
membership, wavelet and rule layers by empirical rules to
achieve fast responses of the PV system and to reduce the
execution time. Moreover, considering the performance of
power tracking, the proportional and integral gains of the PI
controllers for the tracking of active and reactive powers are

obtained by trial and error, and the proportional gain is 0.5 and
the integral gain is 45. Furthermore, to compare the perfor-
mance of the proposed RWFNN controller, an FNN controller
proposed in [29] is also considered in the simulation. In this
study, two test cases for low SCR value, which is 3, are
configured as follows: In Case 1, inverter output power is set
at 1.7 kW and three-phase voltages of the grid are set at 1 pu;
then the voltage dip is set to be 0.3 pu at 1.0 sec owing to
grid fault. In Case 2, inverter output power is set at 1.7 kW
and three-phase voltages of the grid are set at 1 pu; then the
voltage dip is set to be 0.5 pu at 1.0 sec owing to grid fault.
In addition, according to the LVRT requirements, the grid-
connected inverters should withstand and remain connected
during certain grid faults. Therefore, in order to comply with
the LVRT requirements, usually the DC/DC converter has
to stop tracking the maximum power point (MPP) of PV
panel to maintain the active power balance between the PV
panel and grid-connected three-phase smart inverter. There-
fore, during the grid fault, the PV power plant is not operated
at the MPP owing to the active power control [27]. Addi-
tionally, for the interleaved DC/DC converter, the values of
input capacitor, three filter inductors and output capacitor are
1175 µF, 0.52 mH and 1175 µF respectively. For the NPC
smart inverter, the values of capacitors of DC bus, and the
values of inductors and capacitors of three output filters are
3760 µF, 1.6 mH and 10 µF respectively.

The simulation results of Case 1 are shown in Fig. 3,
where Vpcc_q is the q-axis voltage of the positive sequence

of three-phase voltage at the PCC and equal to
√
2
∣∣∣V+p ∣∣∣.

Initially the three-phase voltages of the PCC Vpcc_a, Vpcc_b
and Vpcc_c are 1.067 pu and Vpcc_q is 191.665 V. The output
active power and reactive power of the PV power plant
are 1.7 kW and 0 kVAR respectively. Then the grid fault
occurs at 1.0 sec with voltage dip 0.3 pu, the resulted three-
phase voltages of the PCC become 0.829 pu and Vpcc_q is
148.913V owing to the grid impedance Zgrid ; Vdip at the PCC
is 0.171 pu. In accordance with the LVRT requirements, the
output active power and reactive powers of the PV power
plant become 1.324 kW and 0.482 kVAR respectively. The
tracking responses of the active and reactive powers using
the PI controllers are shown in Fig. 3(a) where unstable
responses with both active and reactive powers oscillat-
ing are obtained due to weak grid. Moreover, the tracking
responses of the active and reactive powers using the FNN
controllers are provided in Fig. 3(b) where the unstable
responses with both active and reactive powers oscillating are
improved by the FNN. Furthermore, the tracking responses
of active and reactive powers using the proposed RWFNN
controllers are shown in Fig. 3(c) where much smooth
tracking responses are achieved for both the active
and reactive powers with decaying oscillating phenom-
ena. According to the simulation results by using the
PI, FNN and RWFNN controllers which are shown
in Figs. 3(a), 3(b) and 3(c), the peak-to-peak values of the
Vpcc_q using the PI, FNN and RWFNN controllers in the
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FIGURE 3. Simulation results of Case 1. (a) Tracking of active and reactive
power using PI controllers, (b) Tracking of active and reactive power using
FNN controllers, (c) Tracking of active and reactive power using RWFNN
controllers.

time interval 1.5 s to 1.6 s are 13.93 V, 3.78 V and 3.17 V
respectively. The active power oscillatory responses using the
PI, FNN and RWFNN controllers in the time interval 1.5 s to
1.6 s are 83.45 W, 65.25 W and 26.06 W respectively. The
reactive power oscillatory responses using the PI, FNN and
RWFNN controllers in the time interval 1.5 s to 1.6 s are
243.93 VAR, 77 VAR and 65.16 VAR respectively.

The simulation results of Case 2 are shown in Fig. 4.
Initially the three-phase voltages of the PCC Vpcc_a, Vpcc_b
and Vpcc_c are also 1.067 pu and the output active power and
reactive powers of the PV power plant are 1.7 kW and 0 kVAR
respectively. Then the grid fault occurs at 1.0 sec with voltage
dip 0.5 pu, the resulted three-phase voltages of the PCC
become 0.662 pu and Vpcc_q is 118.874V owing to the grid

FIGURE 4. Simulation results of Case 2. (a) Tracking of active and reactive
power using PI controllers, (b) Tracking of active and reactive power using
FNN controllers, (c) Tracking of active and reactive power using RWFNN
controllers.

impedance Zgrid ; Vdip at the PCC is 0.338 pu. According to
the LVRT requirements, the output active power and reac-
tive powers of the PV power plant become 0.829 kW and
0.761 kVAR respectively. The tracking responses of active and
reactive powers using the PI controllers are shown in Fig. 4(a)
where much more unstable responses with both active and
reactive powers oscillating due to weak grid are obtained.
Moreover, the tracking responses of active and reactive pow-
ers using the FNN controllers are shown in Fig. 4(b) where the
unstable responses with both active and reactive powers oscil-
lating are improved by the FNN. Furthermore, the tracking
responses of the active and reactive powers using the RWFNN
controllers are shown in Fig. 4(c) where much smooth track-
ing responses are also achieved for both the active and
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TABLE 1. Comparison of peak-to-peak values of oscillatory responses of
PV power plant using PI, FNN and RWFNN in time interval 1.5 s to 1.6 s of
simulation.

reactive powers with reduced oscillations. According to the
simulation results by using the PI, FNN and RWFNN con-
trollers which are shown in Figs. 4(a), 4(b) and 4(c), the peak-
to-peak values of the Vpcc_q using the PI, FNN and RWFNN
controllers in the time interval 1.5 s to 1.6 s are 42.79 V,
11.04 V and 6.7 V respectively. The active power oscillatory
responses using the PI, FNN and RWFNN controllers in the
time interval 1.5 s to 1.6 s are 182.39W, 93.33W and 71.83W
respectively. The reactive power oscillatory responses using
the PI, FNN and proposed RWFNN controllers in the time
interval 1.5 s to 1.6 s are 632.38 VAR, 230.51 VAR and
123.42 VAR respectively.

The comparison of the peak-to-peak values of the oscil-
latory responses of the PV power plant using the PI, FNN
and RWFNN controllers in the time interval 1.5 s to 1.6 s of
the simulation are provided in Table 1. According to Table 1,
the peak-to-peak values of the oscillatory responses of the
PV power plant using the proposed RWFNN controllers are
much reduced at all test conditions. The percentages of the
oscillatory amplitudes to the steady-state values of Vpcc_q,
active power and reactive power responses have also been
indicated in Table 1.

VI. EXPERIMENTAL SET-UP AND EXPERIMENTATION
The photos of the PV power system, including two
DSP TMS320F28335 control boards, are shown in
Figs. 5(a) and 5(b). The interleaved DC/DC converter, three-
level NPC inverter and PV simulator are shown in Fig. 5(a).
In this study, the PV panel is emulated by using Chroma
62100H-600S. The open circuit voltage and short circuit cur-
rent of the emulated PV panel are set as 375.9 V and 6.518 A
respectively. Moreover, the voltage, current and power output
at theMPP of the PV panel are set as 324V, 6.173A and 2 kW.
The RL impedance, Y-Y transformer and grid emulator are
shown in Fig. 5(b). An emulated three-phase overhead line
is connected between the PCC and the grid. The emulated
grid impedances Zgrid are built in the RL impedance indicated
in Fig. 5(b) which are 1.9021+j8.4332�, 1.8854+ j8.2031�
and 1.9141+j7.9091� respectively for a weak grid with
SCR 3. Owing to the allowed error of the manufacture,
the real three-phase grid impedances are deviated from the
designed Zgrid which is 1.9565+ j7.8258�. The cut-off
frequency fc of the output filter is 1.258 kHz. Moreover,
the DC bus voltage commandV ∗dc is set at 450V. Furthermore,
the switching frequency of the interleaved DC/DC converter
and three-level NPC inverter are both set to be 16 kHz.

FIGURE 5. Photos of experimental set–up. (a) Interleaved DC/DC
converter, three-level NPC inverter and PV simulator, (b) RL Impedance,
Y-Y transformer and grid emulator.

In addition, the sampling frequency 1 kHz is adopted for
the control algorithms of both stages. The proportional gain
and the integral gain of the PI controller are also 0.5 and
45 respectively.

The experimental results of Case 1 are shown in Fig. 6.
Initially the three-phase voltages of the PCC Vpcc_a, Vpcc_b
and Vpcc_c are 1.097 pu and Vpcc_q is 197 V. The output active
power and reactive power of the PV power plant are 1.7 kW
and 0 kVAR respectively. Then the grid fault occurs at 1.0 sec
with voltage dip 0.3 pu, the resulted three-phase voltages
of the PCC become 0.863 pu and Vpcc_q is 155 V owing
to the grid impedance Zgrid ; Vdip at the PCC is 0.137 pu.
According to the LVRT requirements, the output active power
and reactive powers of the PV power plant become 1.411
kW and 0.402 kVAR respectively. The tracking responses of
active and reactive powers using the PI controllers are shown
in Fig. 6(a) where unstable responses with both active and
reactive powers oscillating are obtained due to weak grid.
Moreover, the upper half DC bus voltage Vd1 and the lower
half DC bus voltage Vd2 with the active and reactive powers
using the PI controllers are provided in Fig. 6(b). On the
other hand, the tracking responses of active and reactive
powers using the RWFNN controllers are shown in Fig. 6(c)
where much smooth tracking responses are achieved for both
the active and reactive powers. In the time interval 1.5 s to
1.6 s, the peak-to-peak values of the Vpcc_q, active power and
reactive power oscillatory responses have been reduced from
11.25 V to 5.75 V, 97.5W to 50W and 147.5 VAR to 45 VAR,
respectively, by using the proposed RWFNN. Furthermore,
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FIGURE 6. Experimental results of Case 1: (a) Tracking of active and
reactive power using PI controllers, (b) Upper half DC bus voltage Vd1
and lower half DC bus voltage Vd2 regulated by PI controllers, (c) Tracking
of active and reactive power using RWFNN controllers, (d) Upper half DC
bus voltage Vd1 and lower half DC bus voltage Vd2 regulated by RWFNN
controllers.

FIGURE 7. Experimental results of Case 2: (a) Tracking of active and
reactive power using PI controllers, (b) Upper half DC bus voltage Vd1
and lower half DC bus voltage Vd2 regulated by PI controllers, (c) Tracking
of active and reactive power using RWFNN controllers, (d) Upper half DC
bus voltage Vd1 and lower half DC bus voltage Vd2 regulated by RWFNN
controllers.
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FIGURE 8. Enlarged experimental results of Case 1 in interval 1 to 1.6 s.
(a) Tracking of active and reactive power using PI controllers, (b) Tracking
of active and reactive power using RWFNN controllers.

the upper half DC bus voltage Vd1 and the lower half DC
bus voltage Vd2 with the active and reactive powers using
the proposed RWFNN controllers are provided in Fig. 6(d).
Comparing to the Fig. 6(b), since the three-phase voltage
commands V ∗a , V

∗
b , V

∗
c are affected by the current commands

i∗do and i∗qo using PI or the proposed RWFNN controllers,
the upper half DC bus voltage Vd1 and the lower half DC bus
voltage Vd2 can be also improved by the proposed RWFNN
controllers at the moment of the grid fault.

The experimental results of Case 2 are shown in Fig. 7. Ini-
tially the three-phase voltages of the PCC Vpcc_a, Vpcc_b and
Vpcc_c are also 1.097 pu and Vpcc_q is 197 V. The output active
power and reactive powers of the PV power plant are 1.7 kW
and 0 kVAR respectively. Then the grid fault occurs at 1.0 sec
with voltage dip 0.5 pu, the resulted three-phase voltages of
the PCC become 0.713 pu and Vpcc_q is 128 V owing to the
grid impedance Zgrid ; Vdip at the PCC is 0.287 pu. Accord-
ing to the LVRT requirements, the output active power and
reactive powers of the PV power plant become 0.993 kW and
0.696 kVAR respectively. The tracking responses of active and
reactive powers using the PI controllers are shown in Fig. 7(a)
where seriously unstable responses with both active and
reactive powers oscillating due to weak grid are obtained.
Moreover, the upper half DC bus voltage Vd1 and the lower
half DC bus voltage Vd2 with the active and reactive powers
using the PI controllers are provided in Fig. 7(b). On the other
hand, the tracking responses of active and reactive powers

FIGURE 9. Enlarged experimental results of Case 2 in interval 1 to 1.6 s.
(a) Tracking of active and reactive power using PI controllers, (b) Tracking
of active and reactive power using RWFNN controllers.

using the RWFNN controllers are shown in Fig. 7(c) where
much smooth tracking responses are also achieved for both
the active and reactive powers. In the time interval 1.5 s to
1.6 s, the peak-to-peak values of the Vpcc_q, active power and
reactive power oscillatory responses have been reduced from
14.5 V to 6.5 V, 135 W to 65 W and 285 VAR to 70 VAR,
respectively, by using the proposed RWFNN. Furthermore,
the upper half DC bus voltage Vd1 and the lower half DC
bus voltage Vd1 with the active and reactive powers using
the proposed RWFNN controllers are provided in Fig. 7(d).
Comparing to the Fig. 7(b), the upper half DC bus voltageVd1
and the lower half DC bus voltage Vd2 can be also improved
by the proposed RWFNN controllers at the moment of the
grid fault due to the powerful online learning and parallel
processing capabilities of the RWFNN.

To better understand the performance comparison between
PI and RWFNN, the responses in the time interval 1 to 1.6s
of the experimental results of Case 1 and 2 as shown
in Figs. 6(a), 6(c), 7(a) and 7(c) are enlarged in Figs. 8(a), 8(b),
9(a) and 9(b). According to the experimental results shown
in Figs. 8(a) and 9(a), since the conventional PI controller
is not robust in dealing with the system uncertainties such
as external disturbances and parameter variations, the track-
ing responses of the active and reactive power are poor.
On the other hand, the proposed RWFNN combines the
advantage of the RNN to achieve the dynamic modeling
behavior, the advantage of WNN to converge quickly with
high precision, and the advantage of FNN to handle uncertain
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TABLE 2. Comparison of peak-to-peak values of oscillatory responses of
PV power plant using PI and RWFNN in time interval 1.5 s to 1.6 s of
experimentation.

information. Therefore, the proposed RWFNN controller can
deal with all different operating conditions and achieve the
best transient and steady-state performance of the system.
Hence, the PV power plant using the proposed RWFNN
controllers can much improve the tracking responses of the
active and reactive power as shown in Figs. 8(b) and 9(b).
In addition, the comparison of the peak-to-peak values of
the oscillatory responses of the PV power plant using the
PI and RWFNN controllers in the time interval 1.5 s to
1.6 s are provided in Table 2. According to Table 2, the
peak-to-peak values of the oscillatory responses of the PV
power plant using the proposed RWFNN controllers are
much reduced at all test conditions. The percentages of the
oscillatory amplitudes to the steady-state values of Vpcc_q,
active power and reactive power responses have also been
indicated in Table 2.

VII. CONCLUSION
In this study, an intelligent control method using RWFNN
was successfully developed to improve the LVRT perfor-
mance of a two-stage PV power plant under grid faults for the
weak grid conditions. An emulated weak grid is connected
between the PCC of the PV power plant and the grid, and
the resulted SCR is only 3. Since low SCR values impose
serious problems in terms of voltage stability and power
quality especially under grid faults for the output active and
reactive powers tracking of a PV power plant, the RWFNN
controller was developed to replace the traditional PI con-
troller to improve the transient stability during grid faults
for the weak grid conditions. From both the simulation and
experimental results, much smooth tracking responses can be
achieved with reduced oscillations for the tracking of active
and reactive power commands, which are obtained according
to the LVRT requirements, by using the RWFNN controller
due to its powerful online learning and parallel processing
capabilities. Though only the E.ON standard is adopted in
this study to generate the active and reactive power com-
mands according to the LVRT requirements under various
grid faults, the proposed RWFNN controller can improve
the instability phenomena caused by the weak grid for any
adopted LVRT standard to generate the active and reactive
power commands.
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