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ABSTRACT Wind power prediction is of great importance in enhancing wind energy penetration. This paper
proposes a novel wind power prediction method which combining three-level decomposition with optimized
prediction method. In the decomposition part, the Wavelet Packet Decomposition (WPD) is introduced
as the first level decomposition, then the obtained sub-series are further decomposed by Variable Mode
Decomposition (VMD). At last, Singular Spectrum Analysis (SSA) is carried out for each Intrinsic Mode
Function (IMF), and the dominant component and residual components are separated as the input of the
prediction. In the prediction part, Kernel Extreme Learning Machine (KELM) is adopted to complete the
multi-steps wind power prediction. In this paper, an Improved Grey Wolf Optimization (IGWO) algorithm
with redesign of the hierarchy and architecture is proposed, which especially suitable for optimizing wind
power prediction. Finally, ten different models are compared, and the results show that the proposed method
in this paper can extract the trend information of wind power greatly and has achieved excellent accuracy in
short-term wind power prediction.

INDEX TERMS Wind power prediction, three-level decomposition, improved grey wolf algorithm,
multi-step prediction, kernel extreme learning machine.

NOMENCLATURE
ABC Artificial bee colony algorithm
ARMA Auto-Regressive and Moving Average

model
ARIMA Autoregressive Integrated Moving Average

model
BSA Backtracking Search Algorithm
EMD Empirical Mode Decomposition
EEMD Ensemble EMD
ELM Extreme Learning Machine
FNN Fuzzy-Neural Network
GWO-SCA Grey Wolf Optimized Sine Cosine

Algorithm
GPR Gaussian Process Regression
GMDH Group Method Data Handling
IMF Intrinsic Mode Function
IGWO Improved Grey Wolf Optimization
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KELM Kernel Extreme Learning Machine
LSSVM Least Square Support Vector Machine
LSTM Long Short-Term Memory
NWP Numerical Weather Prediction
NN Neural Networks
PSR Phase Space Reconstruction
SSA Singular Spectrum Analysis
GWO Grey Wolf Optimization
SVM Support Vector Machine
TDCNN Two-Dimensional Convolution Neural

Network
VMD Variable Mode Decomposition
WPD Wavelet Packet Decomposition

I. INTRODUCTION
High intermittency and large capacity of wind power set up
a new challenge for the power system. Storage system and
wind power prediction are two ways to fix the randomness
of the wind power and reduce the impact to the grid [1].
Due to its high cost of storage system, the construction is
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relatively slow. The wind power prediction can significantly
alleviate this problem with a small investment. To improve
the penetration rate of wind power while reducing the reserve
capacity, the more accurate wind power prediction is needed.
The purpose of wind power prediction varies according to the
length of prediction time. Short-term wind power prediction
which lasts from minutes to hours mainly contributes to the
optimization of capacity of spinning reserve. Medium-term
wind power prediction ranging from one day to several days
is mainly used for wind farm maintenance and scheduling
plan. The existing wind power prediction methods can be
divided into three main types: Physical models [2], Statistical
models [3] and Hybrid models [4]. Physical models mainly
focused on using mathematical model to describe the ter-
rain and obtain more accurate Numerical Weather Predic-
tion (NWP). In the medium-term and long-term prediction,
the physical model has incomparable advantages on accuracy.
But when it comes to short-term wind power prediction,
large calculation consumption makes the physical model not
competent for high-precision prediction. And the statistical
model such as Auto-Regressive and Moving Average model
(ARMA) [5], Autoregressive Integrated Moving Average
model (ARIMA) [6], Support Vector Machine (SVM) [7],
Least Square Support VectorMachine (LSSVM) [8], Extreme
Learning Machine (ELM) [9]–[11] are adopted because of its
fast calculation speed and high accuracy. The hybrid model
not only uses the statistical model but also integrates the
physical model, especially using NWP. So, the hybrid model
is also unsuitable for short-term wind power prediction.

In the field of statistical models, there are two ways to pre-
dict wind power. One is predicting wind power from the wind
turbine power data directly [12], or fitting the power curve
with wind speed, the main influencing factor, can be used for
indirect prediction [13], [14]. Regardless of input data type,
the original time series is not suitable for prediction. The sig-
nal decomposition methods are employed to find the change
law in obtained sub-series. WPD divides the time-frequency
plane more carefully, and its resolution to the high-frequency
part of the signal is higher than that of the wavelet decom-
position [15]. However, the number of decomposition layers
and the type of wavelet basis function influence the decom-
position effect, the Empirical Mode Decomposition (EMD)
method [16] overcomes this shortcoming and decomposes the
input signal into several different IMF components. These
IMF components reflect the characteristics of different fre-
quency bands in the original signal. In order to overcome the
mode aliasing in EMD algorithm, Improved EMD, Ensemble
EMD (EEMD) and VMD methods [17]–[19] are proposed.
In [20], VMD method is used to decompose the wind power
time series. By extracting the feature of IMFs, wonderful
prediction accuracy is achieved. In [21], the author using
WPD as the first decomposition method, after that EEMD
method is used for each sub-series. Numerical experiment
has proofed that single decompose is not quite enough for
accurate wind power prediction, and the two-level decom-
position of contrast has good effect. But with the increasing

numbers of the integrated decomposition methods, the sub-
series numbers explosive growth which brings irreconcilable
contradiction for short-term wind power prediction.

After decomposing the wind power data, the efficiency
and accuracy of the predict method determine the precise
of the wind power prediction. Machine learning method has
been widely applied in wind power prediction for its splendid
performance in fitting nonlinear time series. SVM, Gaus-
sian Process Regression (GPR) and Neural Networks (NN)
are representative methods in prediction and classifica-
tion [22]–[24]. With the emergence of artificial intelligence,
a large number of combined methods have emerged. The tra-
ditional machine learning has drawbacks like local minima,
overtraining and high computation cost especially in chaotic
time series like wind power time series. Because of these
shortcomings, traditional methods are complicated in han-
dling the non-stationary wind power time series for its lack
of adaptation to the changing environment. Combined meth-
ods can solve this problem with appropriate combinations.
To remedy the chaotic behaviour of wind power time series,
Liu et al. [21] adopted two-level decomposition into wind
power time series, the WPD-EMD method shows enormous
superiority upon the conventional single-level decomposition
method. Fu et al. [25] employed Phase Space Reconstruc-
tion (PSR) and SSA to eliminate the influence of the chaotic
sequence and looking for the real law ofwind speed sequence.
Safari et al. [26] usedmaximumLyapunov exponent to decide
whether to further decompose the IMF components with
SSA. Since ELM comes out, the computing ability and sat-
isfactory calculation results make this method being applied
to solve many problems. But it also has disadvantages such
as unstable, many works have been carried out to solve this
problem. In [27], the Improved Extreme Learning machine
method was proposed to satisfy the need for short-term wind
power prediction. In [28], an optimized EM-ELM algorithm
was adopted to solve the problem of parameter selection.
In [29] KELM combined kernel function and ELM greatly
improves the learning speed of the forward neural network
and avoided suck into local maximal optimal at the same time.

Since the predict method always has several input param-
eters, the enumeration method can hardly find the best
solution through parameter combinations. Many excellent
works focused on the optimization of the prediction param-
eters. Li et al. [23] used dynamic adaptive learning factor
and differential evolution strategy to improve the traditional
dragonfly algorithm. The improved dragonfly algorithm
showed its advantages in improving the prediction accuracy.
Fu et al. [30] used a hybrid GreyWolf Optimized Sine Cosine
Algorithm (GWO-SCA) to optimize the input parameters of
ELM, the combinedmethod showed superior advantages than
the compared method in wind speed forecasting. Tian [31]
adopted Improved GWO algorithm to improve the perfor-
mance of LSSVM. This method performs well in dynamic
liquid level forecasting of beam pump. Abedinia et al. [32]
using improved PSO algorithm to optimize the weight of
Two-Dimensional Convolution Neural Network (TDCNN)
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and by using combinatory approach this work obtained good
results. Amjady and Abedinia [33] adopted Kriging Interpo-
lation Method into wind power prediction. By using evolu-
tionary algorithm to optimize the basic setting of proposed
method enhanced good effect. Naik et al. [34] using vaporiza-
tion and precipitation basedwater cycle algorithm to optimize
the combined prediction model. Many other algorithms like
Backtracking Search Algorithm (BSA) [35], GreyWolf Opti-
mization (GWO) algorithm [36], Particle Swarm Optimiza-
tion (PSO) [37] Artificial bee colony algorithm (ABC) [36]
have been used in wind power or wind speed prediction. Due
to the limitation of calculation time, there is less research
working on three-level decomposition and parameter opti-
mization in wind power prediction.

From the above discussion, the main purpose of this
paper is to apply the decomposition method and optimization
method synthetically in order to eliminate the randomness
of wind power time series and hence improve the accuracy
of short-term wind power prediction. The innovations of this
study are explained as: (a) three-level decomposition algo-
rithm is presented based on WPD VMD and SSA; (b) by
redesigned the framework of GWO algorithm, previous best
solution can be inherited, and the new hierarchy enhanced
the algorithm the global optimization; (c) we combined the
three-level decomposition with IGWO optimized KELM to
obtain stable prediction accuracy. This paper is organized as
follows: In section II, we present the structure of proposed
method. Section III introduces the detailed three-level decom-
position method. The improved grey wolf optimized KELM
is introduced in section IV. The section V uses real wind
power time series to verify the effectiveness of the proposed
method. Section VI concludes this paper.

II. PROPOSED COMBINATION STRUCTURE
In this section, we give a brief introduction to the structure
of proposed nonlinear combination model. By adopting the
decomposition method, we can get several components that
contain the basic law of wind power change. A suitable com-
bination of decomposition methods can provide lower global
optimum for optimization. IGWO-KELM method provides
an efficient way to extend the trend of the sub-components.
By combining the decomposition method and the predict
method, we propose the WPD-VMD-SSA-IGWO-KELM
model. To be specific, we use three-level decomposition to
extract the detail information of the wind power series. Then
the obtained dominant component and residual component
of each IMF will be used to predict the future wind power.
Redesign the hierarchy and inherit the previous optimization
results, so that the IGWO can obtain the global optimal
parameters. In this study, the multi-step short-term wind
power prediction is required to be implemented every 10min-
utes and the prediction length is 4 hours which contained
24wind power data points. The training data set is established
with 10-day wind power data. The parameters to be opti-
mized in the prediction include the lag length of training set,

FIGURE 1. The structure of the proposed model.

the parameters of RBF kernel function and the regularization
coefficient.

As shown in figure 1, the detailed structure of proposed
model can be described as:

Step 1: Collect 10 days wind power data and clear invalid
points;

Step 2: Decompose the wind power time series with the
WPD method, and obtained 4 sub-series;

Step 3: Use VMD as the secondary decomposition method.
Further decomposed the four sub-series into 10 IMFs com-
ponents respectively. Total of 40 sub-series are obtained after
this step;

Step 4: Input the obtained IMFs to the SSA algorithm
and extract the dominant component and residual component
respectively. Add up to 80 sub-series are formed up as the
input of prediction;

Step 5: Each sublayer is divided into train input, train
output and test input according to the lag length. Use KELM
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FIGURE 2. Schematic diagram of wavelet packet decomposition.

with initial parameters to predict the corresponding 24 data
points. Sum up the prediction result of all the sub-series, and
calculate the fitness under initial parameters;

Step 6: Use IGWO algorithm to optimize the parameters.
The final Alpha position is used as the parameters of the
real-time prediction.Move the training set back 24 data points
as a new training set of KELM;

Step 7: Move test set back 24 data points. And use
the optimized parameter to predict the wind power in next
24 time-points.

III. THREE-LEVEL DECOMPOSITION METHOD
More decomposed sub-series mean larger chances to find
the trend of wind power change. We propose the three-level
decomposition structure which consists of three different sig-
nal processing methods that good at the nonstationary signal
decomposition. The proposed three-level method not only
overcome the insufficient decomposition of WD, but also
eliminate the remaining chaotic components in the VMD.
This section will provide a brief introduction to WPD, VMD
and SSA.

A. WPD
WPD method is a significant improvement from Wavelet
Decomposition (WD), which only consists of the appropri-
ate coefficients. WPD is superior to WD in that it divides
the frequency band into several levels. And WPD further
decomposes the high-frequency part which is not subdivided
in the multi-resolution analysis and can adaptively select
the corresponding frequency band according to the charac-
teristics of the analysis signal. According to [38], we are
using ‘db4’ wavelet to decompose the original signal into
two levels.

As shown in figure 2, theWPD is obtained by decomposing
the high-frequency part of WD, and the original signal is
mapped into 2j wavelet packet subspaces, by completing the
map process a binary tree is obtained. The wavelet transform
can be described as:

WT (a, τ ) =
1
√
a

∫
+∞

−∞

f (t) · ψ∗(
t − τ
a

)dt (1)

where ∗ is the complex conjugate, a is the scale coeffi-
cient and τ is the translation coefficient. ψ is the mother
wavelet function. By using WPD, four sub-series are shown
in figure 3.

FIGURE 3. Decomposition result of WPD.

B. VMD
Empirical mode decomposition is well-known for its excel-
lent performance in decomposing nonlinear and nonstation-
ary signals. Several IMFs separated from different base fre-
quencies can be extracted from the time series. But when
features of time series become close to each other will cause
model mixing phenomenon. For the purpose of solving this
loophole of EMD, VMD is proposed by Dragomiretskiy and
Zosso [18].

First, Hilbert transformation is used to obtain the associ-
ated analytic signal, shifting the frequency spectrum by mix-
ing with estimated center frequency, so that the variational
problem can be described as:

min
{uk },{ωk }

{∑
k

∥∥∥∥∂t [(δ(t)+ j
m
) · uk (t)]e−jωk t

∥∥∥∥2
2

}
s.t.

∑
k

uk = f k = 1, 2, . . .K (2)

where {uk} = {u1, u2, . . . uk} is set of IMFs, and {ωk} =
{ω1, ω2, . . . ωk} is set of the corresponding center frequency
of IMFs. k is the assumed number of decomposed IMFs.

For the sake of solving this problem without constrained,
the quadratic penalty term and Lagrangian multipliers are
applied:

L ({uk} , {ωk} , λ)

= α
∑
k

∥∥∥∥∂t [(δ(t)+ j
m
) · uk (t)]e−jωk t

∥∥∥∥2
2

+

∥∥∥∥∥f (t)−∑
k

uk (t)

∥∥∥∥∥
2

2

+

〈
λ(t), f (t)−

∑
k

uk (t)

〉
(3)

So, finding the saddle point of the (3) will solve the original
minimization problem:

un+1k (ω) =
f̂ (ω)−

∑
i6=k ûi(ω)+

λ̂(ω)
2

1+ 2α(ω − ωk )2
(4)

ωn+1k =

∫
∞

0 ω |̂uk (ω)|2 dω∫
∞

0 |̂uk (ω)|
2 dω

(5)
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And the dual ascent for all ω ≥ 0

λ̂n+1 = λ̂n + τ (̂f (ω)−
∑
k

un+1k (ω)) (6)

Repeating (4)-(6) until reaching the iteration limit or conver-
gence error less than:∑

k

∥∥∥̂un+1k − ûnk
∥∥∥2
2
/
∥∥̂unk∥∥22 < ε (7)

Decomposing the sublayer S (2, 0) into 10 IMFs, the result is
shown in figure 4.

FIGURE 4. Decomposition of VMD.

C. SSA
The wind power time series comprise of many kinds of intrin-
sic components. The over decomposition of VMD will also
cause period oscillations. SSAmethod is particularly suitable
for dealing nonlinear part of the wind power time series. The
technological process of SSA can be regarded as three parts:

First, in order to find the trend of the input component, time
series need to be mapped into multi-dimension space.

X =


x1 x2 . . . xp
x2 x3 . . . xp+1
. . . . . . . . . . . .

xl xl+1 . . . xp+l−1

 (8)

In (8), l is the ensemble dimension, and the matrix X repre-
sents l-dimensional space.

Then the singular value decomposition (SVD) method
is used to calculate the eigenvalues and corresponding
eigenvalue matrix. In this part, the i-th triple eigenvalues
(σi,Ui,Vi) are obtained by decomposing the matrix XXT

with SVD. So the matrix X can be expressed as:

X = X1 + X2 + . . .+ XlXi = σiUiV T
i (9)

In (9) σi is the singular value of the i-th eigenvalue vector, and
Ui,Vi is the corresponding vector of the singular value.

The second part of SSA is grouping, several subsets can be
obtained in this procedure. For the trend of the time series,
we can separate the dominant singular values to gathering a
trend subset:

Xt = Xt1 + Xt2 + . . .+ XtrXtr = σiUiV T
i (10)

At last, diagonal averaging can convert the subsets extracted
above to time series. The refactored time series can be
described as:

ym =


1
m

∑m

i=1
x∗i,m−i+1 1 ≤ m < l

1
l

∑l

i=1
x∗i,m−i+1 l ≤ m ≤ p

1
N − m+ 1

∑T−p

i=m−p+1
x∗i,m−i+1 p < m < N

(11)

As shown in figure 5, the largest eigenvalue corresponding
eigenvalue matrix can be used for extracting the main trend
of the time series, and the smallest one corresponding to the
non-information time series which can be removed from the
next procedure. Two components named dominant compo-
nent and residual component respectively can be obtained
in SSA.

FIGURE 5. Decomposition result of IMF1 with SSA.

IV. IMPROVED GREY WOLF OPTIMIZIED KELM
In this section, we propose the IGWO-KELM algorithm.
By optimized with IGWO algorithm, KELM can easily
enhance its performance.
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A. KERNEL EXTREME LEARNING MACHINE
ELM is typically a single-layer-feedforward neural network.
By using only one hidden layer, the ELM has fast con-
vergence and satisfactory generalization performance. But
because of the random initialization, the ELM algorithm
behaves unstable in prediction accuracy. To solve this prob-
lem Huang et al. [29] create KELM by the inspiration of
the SVM. Compared with the traditional ELM, the KELM
has less adjustable parameters and faster convergence speed.
With the advantages of stable, the optimization of input
parameters can be easily extended to next data point. Fast
computing speed enables a large number of decomposition
layers to be completed within a time limit.

The output function of ELM for generalized single hidden
layer feedforward neural network is:

f (x) = h (x) β = Hβ (12)

In (12) x is input, β is the output weight coefficient, H is the
input mapping matrix between input and hidden layers. The
output weight coefficient matrix can be obtained by:

β = HT
(

I
C
+ HHT

)−1
T (13)

where:

T =

 t
T
1
...

tTn

 =
 t11 · · · t1m
...

...
...

tn1 · · · tnm

 (14)

The output of ELM can be concluded as:

f (x) = h (x)HT
(
I
C
+ HHT

)−1
T (15)

In KELM, almost all the nonlinear piecewise continuous
functions can be used as the function between input and
hidden layers. So, the KELM can be obtained by:

f (x) =

K (x, x1)· · ·

K (x, xn)

HT
(
I
C
+�KELM

)−1
T

�KELM = HHT
: �KELMi,j=h (xi) · h

(
xj
)
=K

(
xi, xj

)
(16)

In (16), �KELM is the kernel matrix which can be obtained
by radial basis function, linear kernel function or polynomial
kernel function.

B. IMPROVED GREY WOLF OPTIMIZATION
Optimization algorithm can make the prediction method bet-
ter by adjusting the parameters. In this section, the framework
of GWO is redesigned and IGWO algorithm is proposed. The
traditional GWO using four groups of wolves searching for
their goal to optimize the problem. As shown in the figure 6,
the dominant wolf at the top position is Alpha. It has priority
over determine the time and place of hunting. The next level is
Beta who plays the assistant of the leader. The third part of the
wolves are Delta, who are the roles of reconnaissance, sentry,
and nurse. At the bottom of the society are Omega wolves.

FIGURE 6. The hierarchy of the GWO algorithm.

FIGURE 7. Fitness surface of different input parameters.

Although the traditional method almost suitable for all the
condition, the wolf group easy to fall into local optimum
cause of the Alpha Beta and Delta only has one wolf.

As shown in figure 7, the fitness surface of time t is shown
in (a), and the next time scale is shown in (b). It is obvious that
the best solution can be most likely founded near the previous
best solution. So, it is of significance that the optimization
algorithm inherits optimization results.

Inspired by Cai et al. [39], to avoid falling into local opti-
mum, the hierarchy of the grey wolf algorithm is redesigned.
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TABLE 1. Result of testing composition functions.

In the new hierarchy, the Beta wolves have more popula-
tion and the Delta wolves become themain part of the wolves.
The Omega wolves are no longer being the useless part of the
wolf group, they will search randomly in case the first three
kinds of wolf fall into local optimum.

Based on the new hierarchy above, the Improved Grey
Wolf Optimization (IGWO) is proposed. Beta wolves now
become several wolves searching around the alpha wolf,
the movement of Beta wolves can be described as:

Beta = Alpha+ r∗D (17)

In (17) Beta is the position matrix of Beta wolves, and the
Alpha is the Alpha wolf‘s position. r is the random value from
[−1 1]. D is the distance matrix between the Alpha wolf and
the best Delta wolf:

Dj = |Alpha− Deltabest | (18)

In the new hierarchy, if Beta wolves have a better solution
than Alpha wolf, then the leader position will be given to the
Beta wolf who has the best score. The Delta wolves will take
the responsibility of searching the area close to Alpha wolf,
which can be formulated as:

Delta = Alpha− r1

(
2−

2t
Tmax

)
|C · Alpha− Delta| (19)

In (19), the Delta is the position matrix of Delta wolf, C is
the oscillation factor between [0 2], r1 is the random values
between [0 1], t is the iteration and Tmax is the maximum
iteration. The complete procedure of the IGWO algorithm
proposed in this paper is shown in figure 8. In order to eval-
uate the effectiveness of proposed IGWO algorithm, seven
benchmark functions were used for evaluation.

The comparative model includes GA, FOA [40], IPSO,
GWO [41] and proposed IGWO. For fair comparison, the
population number is set to 30 and max iteration is 1000. The
benchmark functions including:

f1 (x) =
n∑
i=1

x2i (20)

f2 (x) =
n∑
i=1

|xi| +
n∏
i=1

|xi| (21)

f3 (x) =
n∑
i=1

 i∑
j=1

xj

2

(22)

f4 (x) = max
i
{|xi| , 1 ≤ i ≤ n} (23)

FIGURE 8. The procedure of IGWO method.

f5 (x) =
n−1∑
i=1

[
100

(
xi+1 − x2i

)2
+ (xi − 1)2

]
(24)

f6 (x) =
n∑
i=1

(|xi + 0.5|)2 (25)

f7 (x) =
n∑
i=1

ix4 + random [0, 1] (26)

The table 1 listed the detail results of comparison under
different benchmark functions. The dimension of benchmark
function set to 10. Maximum iteration times restricted to
1000. The population of all the contrast models is set to 30.
All of the benchmark functions have an optimized solution
which is zero. So, the result of contrast model close to zero
means better optimization result. The result shows proposed
IGWO algorithm is the best in most benchmark functions.
The mutation of GA is set to 0.1. Cross possibility is 0.4. The
parameters of other models are the same as the citation.

V. CASE STUDIED
A. DATASET
The La Haute Borne wind farm is located in the northwest of
France. The dataset has open-sourced on the internet and can
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FIGURE 9. Computation time and NRMSE of different train set length.

be download from the website. The single machine capac-
ity is 2050 kW, and there are two wind power generators.
In this study we used the 2017 dataset, the time scale of the
dataset is 10min. The dataset is divided into four subsets by
seasons. In each set, we selected 1484 points for wind power
prediction. The prediction is taking place by means of rolling
calculation. Experiment was taken by using Spring set to
measure the accuracy and time consumption with the length
of input dataset. As shown in figure 9, with the increase of
the length of the input dataset the accuracy improved signif-
icantly. When further increase the value of the train set, the
accuracy is not improved as it supposed to be. Unfortunately,
the overlong training set will cause the calculation to exceed
the prediction time limit. Comprehensive consideration of the
complexity and the accuracy, we choose ten days data as the
input dataset.

B. EXPERIMENTAL DESCRIPTION
The proposed combined method was implemented by
MATLAB. The computer used in this study has i7-7700 CPU
(3.6GHz) and 16GB RAM, and parallel computing was
used in the prediction process. There are many indi-
cators to describe the performance of the prediction,
such as R-Square(R2), Index of agreement(IA), Relative
RMSE(RRMSE), Diebold Mariano TEST, Normalized Root
Mean Square Error (NRMSE), Normalized Mean Abso-
lute Error (NMAE), Mean Absolute Percentage Error
(MAPE) [42]–[45]:

ER−square = 1−

N∑
i=1

wi
(
Pi − Y i

)2
N∑
i=1

wi
(
Yi − Y i

)2 (27)

ENRMSE =
1
P

√√√√ 1
N

N∑
i=1

(Pi − Yi)2 × 100% (28)

EMAPE =
1
N

N∑
i=1

∣∣∣∣Pi − YiPi

∣∣∣∣× 100% (29)

ENMAE =
1
N

N∑
i=1

∣∣∣∣Pi − YiP

∣∣∣∣× 100% (30)

EIA = 1−

N∑
i=1
(Pi − Yi)2

N∑
i=1

(∣∣Pi − Y ∣∣+ ∣∣Yi + Y ∣∣)2 (31)

The time complexity of proposed method consists of five
parts: WPD, VMD, SSA, KELM, IGWO. The length of the
input time series is L. So, the time complexity of WPD is
O(M ∗ L ∗ logL), M is the decomposition level of WPD. The
time complexity of VMD is O(K ∗ s ∗ L^3), s is the iteration
times when reach specified precision and K is the decom-
position level. The time complexity of SSA is O(L^3). The
time complexity of KELM is O(L^3). The time complexity
of IGWO is O(g ∗ N ∗ O(L^3)), N is the population number,
g is the maximum iteration times. The time complexity of
the proposed method can be reduced to O(L^3) by ignore the
constants and lower order term. It can be observed that the
proposed method doesn‘t increase the magnitude of time
complexity. The space complexity of the method is O(L).
It can be concluded that the time complexity of proposed
combined method has not increase too much.

In order to show the superiority of the method proposed
in this paper, two groups of different methods are set up
for comparison. In order to verify the effectiveness of pro-
pose three-level decomposition method, model 1 to model 5
using different decomposition level. Model 1 is the proposed
method. The decomposition level of WPD is set to 2. In order
to keep the fitness surface stable, we choose the compro-
mise scheme by select 10 as the VMD decompose level.
With the proposed three-level decomposition method, fixed
decomposition level of VMD will accelerate the prediction
process when there are more layers in optimal scheme, and
the effect of over decomposition can be reduced when the
optimal number of decomposition layers is less than the fixed
number of decomposition layers. Model 3 and model 5 use
WPD and VMD respectively, and model 4 use the original
wind power time series directly.

In order to verify the superiority of the proposed prediction
method, different prediction models are set as control group.
Model 6 is using the same decomposition method and BPNN
which the input weight is optimized by genetic algorithm. The
mutation of GA is set to 0.1, cross possibility is 0.4. Model 7
using PSO optimized LSSVM to predict the wind power. wc1
and c2 in PSO is set to 0.4 1 and 1 respectively. Since the
three-level decomposition method has too many sub-series
that PSO-LSSVM can’t finish the prediction in 10 min. So,
the two-level decomposition method is used in model 7.
Model 8 using WPD as the input of Group Method Data
Handling(GMDH) neural networks. The maximum number
of neurons in a Layer is 60 and have 6 layers total. Model 9
adopted the traditional ARIMA method as the prediction
method. Akaike Information Criterion and Bayesian Infor-
mation Criterion are used to verify the order of AR and MA.
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TABLE 2. Short name for the comparative model.

TABLE 3. Statistic indices of datasets.

Ten decomposition layers decomposed by VMD are set as the
input of ARIMA. Model 10 using Long Short-Term Mem-
ory (LTSM) to predict the wind power time series directly.

The population number of IGWO and PSO algorithm is
set to 20. The maximum iteration times is limited by the
calculation time. The prediction step is set to 24, which is
4 hours at 10 min interval.

The fitness function is used in this paper to reflect the
accuracy of the prediction in optimization. A smaller value
means better solution for wind power prediction. The fitness
of the IGWO is described as:

Fitness =
1
n

n∑
i=1

(
Pi − Ppre,i

)2 (32)

In traditional analysis, the researchers always put algorithms
with different time complexity into comparison. But with
the increase of time complexity, the timeliness of sending
predict results to the power companies cannot be guaranteed.
And the low time consumption method has always been put
into disadvantages positions by getting results early. In this
study, we put the comparison of different methods into the
same time zone which is ten minutes. When the deadline
for calculation is up, the final optimization result will be
outputted immediately.

Four datasets with different characteristic is illustrated in
table 3. The statistical information of four datasets from four
seasons are illustrated in Table 2. The basic statistic indices
including mean values, maximum values, minimum values
and standard deviation of the main influence factor are shown
by wind speed in Table 2. Train dataset is established by
using ten days wind power time series. After one prediction
finished, the training set and test set moved forward one data
point for the next rolling prediction.

TABLE 4. Prediction performance of different models in the spring set.

As shown in Table, the average wind speed of the Spring
set is 5.4483 m/s, the maximum wind speed is 12.19 m/s, the
lowest wind speed is 0.37 m/s, and the standard deviation is
2.218 m/s.

Input the above wind power data into the proposed pre-
diction method and the comparative prediction method. Cal-
culate the average value of each index after ten cycles of
calculation. The prediction results are shown in Table 4.

By using C language in MATLAB, the proposed three-
level decomposition method only takes 6.2746 seconds to
obtain 80 sub-series. The prediction process costs 2.8231 sec-
onds on average to finish prediction of 80 sub-series. Under
the advantage of fast calculation, the IGWO algorithm can
finish over 200 times calculation in the proposed method.
Model 2 and model 3 have less calculation time than the
proposed method, but the fast calculation is not equal to high
accuracy. Since all of the indicators are averaged from rolling
calculation, in some specific time span the other models may
get better scores than model 1. Model 6 using genetic algo-
rithm to overcome the shortcomings of BP neural network
falling into local optimum. As for BPNN optimized by GA,
the more layer means higher accuracy and longer calculation
time. The train and the test time cost 494.45 seconds, so there
is not enough time for optimization. Model 7 used LSSVM
optimized by PSO to predict the future wind power curve.
Because of a single calculation of the predict procedure cost
53.2 seconds, the PSO algorithm can only finish 11 times
calculation, which is far from enough calculation times to
reach the global best position.

As shown in Table 4, the best score of each index
is shown in bold. From the index values in Table 4,
the proposed method outperforms in all of the six meth-
ods. For instance, the NRMSE of the proposed method is
0.5071%, which is the best score upon the list. It shows
35.3%, 88.1%, 90.0%, 70.5% improvement than model 2 to
model 5 respectively. The proposed three-level decomposi-
tion method shows great improvement than other decompo-
sition level method. Model 2 behave best in the comparison
models except the proposed model. Compared with model 6
and model 7 the proposed method is improved by 14.3% and
42.3% respectively. As for NMAE and MAPE, the proposed
method improved by 9.1% and 19.2% respectively than the
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FIGURE 10. Wind speed of Spring set.

FIGURE 11. Prediction result of all six methods in Spring set.

second-place score. It can be concluded that the proposed
method successfully eliminated the predict error, and the
prediction accuracy is guaranteed to the greatest extent.

Figure 11 shows the result of the first prediction of the
rolling calculation in the Spring set. The proposed method
sticks tightly with the real wind power curve. Same trend as
the former analysis, the proposed model outperforms all the
contrast models.

The summer set has a higher average wind speed
of 5.9774 m/s and a lower amplitude of variation 1.6347 m/s.
The maximum and minimum values of wind speed are
11.98 m/s and 0.16 m/s respectively. As shown in figure 12,
the summer set is relatively balanced. There is no obvious
high-power zone and low power zone like spring set. With
several wind power climbing phenomena, the wind power
prediction may face huge difficulty in improving accuracy.

The performance under this dataset is shown in Table 5.
In the NRMSE index, the proposed method shows 9.7%,
86%, 83.4%, 51.1% improvement than model 2 to model5
respectively. 23.9% and 37.1% improvement respectively
than model 6 and 7. TheMAPE index increased significantly,

FIGURE 12. Wind speed in Summer set.

TABLE 5. Forecast performance of different models in the summer set.

FIGURE 13. Prediction result of all six methods in Summer set.

because of the prediction section belongs to low power area.
The proposed method shows 11.2% and 4.2% respectively
improvement than the second place in NMAE and MAPE.
The proposed method outperforms in all the index in summer
set.

In figure 14, the wind resource in the autumn dataset
is shown. The mean average wind speed in this dataset is
5.4195 m/s, which is at the same level as the spring set.
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FIGURE 14. Wind speed in Autumn set.

TABLE 6. Prediction performance of different models in the autumn set.

FIGURE 15. Prediction result of all six method in Autumn set.

The maximum wind speed stays low reaching 9.52 m/s, and
the variance is 1.8752 m/s. It can be seen that the autumn set
is a relatively stable and sustained breeze.

Among the ten individual combined models, the proposed
method performs best in 4-hours short term wind power
prediction. In the NRMSE index of the autumn set, the pro-
posed method shows 12.3%, 85.7%, 82.5%, 48.8% improve-
ment than model 2 to model5 respectively. The three-level

FIGURE 16. Wind speed in Winter set.

FIGURE 17. Prediction result of all six method in Winter set.

TABLE 7. Prediction performance of different models in the winter set.

decomposition method achieved the best result. In the index
of NMAE andMAPE the proposed method shows 10.3% and
9.3% improvement than the second-place score.

Wind speed changes greatly in the winter dataset, the Max-
imum value of wind speed up to 15.63 m/s. The average wind
speed is one level higher than the other three data sets up to
6.04 m/s. As shown in figure 16, the winter set experienced
the change from low power area to high power area.
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The proposed combined method still takes the first place
upon all the indexes. In the difficult situation, the traditional
method like model 8 or model 10 performs poorly. With
the advance of proposed three-level decomposition method,
the proposedmodel shows 1.9%, 89%, 69.2%, 9.3% improve-
ment than model 2 to model 5 respectively in NRMSE.

As shown in the comparison, the proposed three-level
decomposition method in this paper improved the prediction
accuracy in all the dataset. And the proposed combined pre-
diction structure achieved good result in all the prediction
models.

VI. CONCLUSION
A novel combination of three-level decomposition method
and optimized prediction method is proposed in this paper.
In the decomposition part, we introduced theWPD as the first
level decomposition, then the obtained sub-layer is decom-
posed by VMD. At last, SSA is carried out for each IMF, and
the dominant component and other components are separated
as the input of the prediction. In the stage of optimization
and prediction, we propose an IGWO optimized KELM algo-
rithm, which is especially suitable for wind power prediction.

In this paper, ten different combined methods are com-
pared. Four sets of wind power time series are selected from
La Haute Borne wind farm to evaluate the performance of the
proposed method. The results show that the method proposed
in this paper can extract the trend information of wind power
greatly and has better accuracy in short-term wind power
prediction. The proposed three-level decomposition method
can significantly increase the accuracy in short term wind
power prediction. Future work will be taken place in two
aspects: (a) the suitable length of the train set is variable when
wind power significantly changed, and (b) the error sequence
can be used to correcting the prediction.
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