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ABSTRACT Task-based functional magnetic resonance imaging (tfMRI) is a widely used neuroimaging
technique in exploring brain networks and functions associated with cognitive behaviors. Traditionally, the
general linear model (GLM) is the most popular method in tfMRI data analysis due to its simpleness and
robustness. This model-driven method adopts a canonical hemodynamic response function (HRF) and its
various derivatives to construct regressors in the design matrix and estimate changes in the tfMRI data.
However, a possible limitation of current model-driven methods is that the HRF is fixed and non-adaptive
which may overlook other diverse and concurrent brain networks. In order to overcome these limitations,
we proposed a novel hybrid framework, supervised brain network learning based on deep recurrent neural
networks (SUDRNN)), to reconstruct the diverse and concurrent functional brain networks. Specifically, this
hybrid framework first takes advantage of the great capacity of deep recurrent neural networks (DRNN)
in modeling sequential data to learn the diverse regressors from real tfMRI data. After that, it utilizes the
effective supervised dictionary learning (SDL) method to reconstruct both the task-related functional brain
networks and other latent brain networks simultaneously. Extensive experiment results on different tftMRI
datasets from Human connectome project (HCP) demonstrated the superiority of the proposed framework.

INDEX TERMS Task fMRI, brain networks, recurrent neural network, supervised dictionary learning.

I. INTRODUCTION

Functional magnetic resonance imaging (fMRI) is one of the
most popular noninvasive neuroimaging techniques in the
study of neuroscience, experimental psychology, and brain
disorders [1]-[3]. Specifically, a large amount of these studies
adopted task-based fMRI (tfMRI) paradigm, in which partici-
pants are required to perform predefined tasks during the scan
sessions [1], [2]. With the help of tfMRI paradigm, the reg-
ularity and variability of brain functions have been greatly
improved [4]-[6]. After decades of active research, there has

The associate editor coordinating the review of this manuscript and

approving it for publication was Jiachen Yang

VOLUME 8, 2020

been accumulating evidence [5], [7] suggesting that the brain
function is realized by multiple diverse and concurrent func-
tional brain networks and these networks are spatially dis-
tributed across brain regions [8]. Meanwhile, there have been
consistent effort in developing brain network reconstruction
and modeling techniques including the general linear model
(GLM)[9], [10], principal component analysis (PCA) [11],
independent component analysis(ICA) [12], [13], sparse rep-
resentation based methods(SR) [14]-[18]. Among all of these
methods, GLM [9], [10] is the most popular methodology
in tfMRI data analysis. The basic idea of this model-driven
method is utilizing the hemodynamic response function
(HRF) [19]-[21] and the experimental paradigm to construct
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regressors and make inferences about brain activity patterns.
The HRF function describes the haemodynamic response
of the instantaneous burst of activation in the fMRI blood
oxygen level-dependent (BOLD) signal [19], [20]. However,
the HRF is fixed and non-adaptive [22] in the standard
model-driven method. Actually, the haemodynamic response
across different brain areas exhibits considerable variability
in different aspects [23]-[25], such as time-to-peak, response
delay, and amplitude. Thus the fixed HRF, a one-size-fits-
all strategy, cannot fully adapt to the different brain area
response variations, which may result in inaccurate detection
performance [23], [25]. Besides, model-driven methods focus
on the major task-evoked brain activity patterns and largely
ignores other spontaneous brain activities [26].

To overcome these draw backs, data-driven methods
have been proposed, including principal component analy-
sis (PCA) [11], independent component analysis(ICA) [12],
[13], sparse representation based methods(SR)[18], [27],
[28]. These methods do not make any assumptions about the
shape of HRF and have been very popular in resting state
fMRI analysis. The basic idea of this group methods is that
they consider the fMRI time series measured at each voxel as
amixture of brain activity patterns [12], [13], [18]. Therefore,
these methods can be characterized as factor models [16]
with different specific constrains. For example, the sparsity
constraint has derived sparse representation and dictionary
learning based methods [18], [27], [28], and the independence
constraint has derived ICA based methods [12], [13]. Deep
learning based methods [6], [29] have also been proposed
for fMRI analysis. Power et al. [6] proposed a restricted
Boltzmann machine framework to investigate the complex
structures in fMRI data. In [29], a deep convolutional autoen-
coder (DCAE) model was proposed to identify the accurate
brain activities in fMRI data. Although these methods greatly
helped us improved the understanding of brain networks,
possible limitations still existed. There is no correspondence
between different components/ dictionaries since they are
learned in a purely data-driven way which made it difficult
to make comparisons between different subjects and groups.

Recently, recurrent neural networks (RNN) have achieved
more and more attention in fMRI data analysis [30]-[32].
An important characteristic of the RNN model is that they
make their predictions based on not only the information
available at a given time, but also the information that was
available in the past from multi-layers which is quite similar
with human brain. Giiglii et al. proposed a recurrent neural
network (RNN) based encoding response model [31], and
demonstrated the superiority of the proposed RNN model
in estimating temporal dependencies under natural stimulus
fMRI data. In [32], a RNN based brain state recognition
model is proposed to effectively separate different brain
state. In [33], we proposed a deep recurrent neural network
(DRNN) model to identify group-wise task-related functional
brain networks and brain response patterns in tfMRI data.
Although this group-wise activation detection framework is
limited in characterizing individual specific brain networks,
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the identified brain response patterns are diverse and mean-
ingful [33]. These response patterns naturally account for the
temporal dependencies of input stimulus and reflect the pos-
sible variations of brain response to input stimulus. However,
whether these meaningful response patterns could be served
as regressors in model-driven method has never been studied.
To improve the brain network detection performance, a few
supervised dictionary learning based methods [26], [28], [34]
are proposed. In [26], [34], supervised dictionary learning
methods were proposed to detect task evoked brain net-
works and spontaneous brain networks simultaneously. How-
ever, these regressors are still simply borrowed from GLM
method or generated solely from theory assumptions lacking
flexibility and adaptability [26], [34]. Motivated by these
impressive works in recurrent neural networks and super-
vised dictionary learning studies, we proposed a novel hybrid
framework, supervised brain network learning based on deep
recurrent neural networks (SUDRNN), to reconstruct the
diverse and concurrent functional brain networks from tfMRI
data. The basic idea of SUDRNN framework is combing
the superior ability of RNN to characterize brain response
patterns and the ability of supervised learning in brain net-
work reconstruction which largely overcomes limitations in
either model-driven or data-driven brain network models.
Specifically, we utilized our recently developed deep recur-
rent neural network model [33] to learn adaptable regressors
from real tfMRI data and employed supervised dictionary
learning method to identify both task-related and spontaneous
brain networks simultaneously. It should be noticed that,
although preliminary work [33] demonstrates its ability in
data-drivenly estimating group-wise task-related functional
brain networks and brain response patterns, DRNN-derived
response patterns has never been adopted as regressors for
model-driven method. An important characteristic of these
DRNN-derived regressors is that they are learned from real
tfMRI data and well adapt to the specific brain response
variations. After adaptable regressors are obtained, a super-
vised dictionary learning method (SDL) [26] is employed to
reconstruct the spatial distributions corresponding to these
regressors and other spontaneous brain network components
under tfMRI conditions. Experiments on independent tfMRI
datasets have shown that meaningful data-driven regressors
can be effectively and robustly derived by with the SUDRNN
model and the corresponding spatial maps of these regres-
sors are consistent and meaningful across different subjects.
Extensive experiment result demonstrated the superiority of
proposed SUDRNN framework in identifying diverse and
concurrent functional brain networks from tfMRI data.

Il. MATERIALS AND METHODS

A. OVERVIEW

Fig 1 is the flowchart of the proposed SUDRNN framework.
Firstly, a deep recurrent neural network (DRNN) is adopted
to derive brain response regressors. The DRNN consists of
an input layer, two RNN layers, a fully connected layer and
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FIGURE 1. lllustration of the proposed SUDRNN framework. (a) Stimulus
matrix. (b) Deep recurrent neural network layers. (c) TIMRI signal matrix.
(d) Output of the top RNN layer represents the deep recurrent neural
network derived regressors. (e) Supervised dictionary learning and sparse
representation for identifying spatial maps of functional brain networks.
Blue part of the dictionary represents the constrained regressors and
green part represents data-driven dictionary items.

an output layer (Fig la-c). During the training stage, task
paradigm information is gathered into a stimulus matrix (n
stimuli with ¢ time series, Fig 1a) and propagated through the
model. The whole brain tftMRI signals are aggregated into a
big signal matrix (m voxels’ signals with ¢ time series, Fig 1c)
to optimize the reconstructed whole brain signals. After
model convergence, we replaced the stimulus matrix with
a testing one that is keeping one selected vector unchanged
and setting the others to zeros, and propagated it through
the trained model. Then the output of each unit in the top
RNN layer represents a typical brain response pattern (e.g.,
as shown in Fig 1d) which could serve as a regressor in the fol-
lowing analysis. In the standard GLM model, the regressors
are constructed by a convolution operation of the task design
stimulus with the hypothesized hemodynamic response func-
tion (HRF). While in the proposed model, the regressors (e.g.,
as shown in Fig. 1d) are derived from the output of the top
RNN layer through the model that was trained on whole
brain tfMRI signals that represents the real data-driven brain
activities. The DRNN-derived regressors naturally accounts
for the possible brain response variations and may help reveal
more diverse and concurrent functional brain networks.
After obtained the diverse and flexible regressors,
we adopted a supervised dictionary learning method [26] to
simultaneously reconstruct the task-related and spontaneous
functional brain networks. We choose supervised dictionary
learning method rather than GLM method for several rea-
sons. First, dictionary learning and sparse representation
methods usually learn an over-completed dictionary from
real datasets and then sparsely selected the most related
dictionaries to reconstruct the signals [18], [26]. In such a
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way, the corresponding coefficient matrix corresponding to
the dictionaries has better sensitivity. Besides, the sparse
representation is more suitable to the biological findings
[35], [36]. What’s more, a supervised dictionary learning
fashion make it possible to simultaneously identify the task-
related and spontaneous brain networks. In the following
sections, we will briefly introduce the data acquisition and
pre-processing and the basic theories of deep recurrent neural
networks and supervised brain network learning based on
deep recurrent neural network.

B. DATA ACQUISITION AND PRE-PROCESSING

To advance the understanding of brain structures and func-
tions based on fMRI data, great effort have been devoted
in acquiring and processing fMRI data with high spatial-
temporal resolution and across different subjects. One of
such successful effort is the Human Connectome Project
(HCP) [37]-[39]. The HCP project offers seven independent
tfMRI datasets (e.g. motor, working memory, emotion, gam-
bling, language, relational, and social) [37]. Emotion, rela-
tional, and social tfMRI datasets are adopted as test beds in
this study. Briefly, in motor task, subjects are instructed to tap
their tap their left or right fingers, squeeze their left or right
toes, or move their tongue with visual cue. Participants are
required to match emotional faces or different shapes in
emotion task. In relational task, subjects are asked to tell the
difference between objects. In social task, participants were
first presented with a short video and then make a decision
about whether the objects had a social interaction or not. More
detailed task design information is available in [37].

The detailed acquisition parameters of these HCP tfMRI
data are as follows: 220 mm FOV, in-plane FOV: 208 x
180 mm, flip angle = 52, BW = 2290 Hz/Px, 2 x 2 X 2 mm
spatial resolution, 90 x 104 matrix, 72 slices, TR = 0.72s, TE
= 33.1ms. The preprocessing of the tfMRI datasets includes
skull removal, motion correction, slice time correction, spa-
tial smoothing, and global drift removal (high-pass filtering)
[40]. All these preprocessing steps were implemented in FSL
FEAT [41]. More detailed data acquisition protocol and pre-
processing procedures are detailed in literatures [40]. All of
these individual fMRI datasets are first registered [42] to the
MNI common space for further study. For comparison reason,
the GLM activation detection results are also performed using
FSL FEAT [41].

C. DEEP RECURRENT NEURAL NETWORK AND
DATA-DRIVEN REGRESSORS

Recurrent neural network (RNN) is a category of neural
network that has feedback loops or memory cell which help
better recognize temporal patterns in data. RNNs have gained
great success in speech recognition [43], machine translation
[44] and language modeling [45] works. RNNs can make
their predictions based on not only the information available
at current time points, but also the information at previous
time points [46], [47] which quite coincide the characteristic
of brain response activities. Actually, brain response proce-
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dure is a complex and hierarchical process across multiple
time scales [48]. Therefore, we proposed to utilize DRNN
model automatically learn the task-based regressors from real
tfMRI data. Specifically, RNNs are stacked layer by layer
to construct DRNN model and the stacked RNNs automat-
ically creates different time scales and temporal hierarchy as
demonstrated in previous studies [46].

We define a DRNN with L layers and n; neurons per layer.
Suppose the input sequence is denoted as (x(l) X2 x(’))
where each data point is a real-valued vector and the target
sequence is denoted as (y1),y@, ..., y®) and the hidden
state of i’ layer is denoted as h?). In order to simplify
notations of the indices of nodes and sequence steps, we use
superscripts for time steps and subscripts for layer index. The
predicted output of DRNN model is as follows:

$' =o(Vh: +b)) 60

where §' is the output of the top hidden layer and V is the
weight matrix between the hidden layer and output. b; is the
bias parameters containing the offset of each node.

Among different RNN architectures, the long short-term
memory (LSTM) [49] is one of the most popular memory
units of RNNs, which has excellent performance in capturing
long temporal dependencies. The hidden states in the LSTM
unit can be defined as:

h' = o' ®tanh(c") )
ol =ocU,h'™ ' +Wox' +b,) 3)

where o is the output gate activities, ¢’ is the cell state, and
© denotes elementwise multiplication. Previous time point’s
information is stored in the cell state ¢’ and the output gate
controls what information will be retrieved from the cell state.
The cell state of an LSTM unit can be further defined as:

=0 (UK 4+ Wi 4y ) )
i =ocUh ™" +Wix' +b)) &)

= tanh (Uch[_l + ch[ +b.) (6)

¢ =fle +i'd (7)

where f' represents the forget gate activities, i’ represents the
input gate activities. Forget gate controls what old informa-
tion will be thrown away from ¢’. Input gate controls the new
information will be kept in the cell states. ¢’ is an auxiliary
variable decides what new candidate values could be added
to the state. Besides, Uy, U;, U, and Wy, W;, W, are the
corresponding weights between different layers and by, b;, b,
are the corresponding biases. These parameters determined
the behavior of the gates and shared over time.

We also employed the Gated Recurrent Units (GRU) [50]
for further study. Different with LSTM, GRU unit combines
input gates with forget gates and merges cell states with
hidden states. The GRU unit hidden states are defined as
follows:

W=(1-)oh '+ 0k (8)
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Z =cWUh""+Wx' +b,) )
F=ocWU,h " +W,x" +b,) (10)

i = tanh (U, (rf ¥ hf—l) FWx by (1D)

where z' represents update gate activities, r' represents
reset gate activities and i’ is an auxiliary variable. Sim-
ilar with the parameters in LSTM units, U, U,, U;, and
W., W,., W, represent the corresponding weights between
layers and b, b,, by, represent the biases and all these param-
eters together determined the behavior of the gates.

During the training stage, the task paradigm information is
separated in different time points and added into the model
iteratively. At the top hidden layer, the output is connected
to the whole brain signals through a fully connected layer.
Thus, the DRNN model forms a dynamic simulation model
of brain activities. After model convergence, we replaced the
stimulus matrix with a testing one that is keeping one selected
vector unchanged and setting the others to zeros, and propa-
gated it through the trained model. The output of in the top
RNN layer represents the possible regressors corresponding
different stimulus information. In this way, we can obtain a
group of regressors R learned from real tftMRI data.

D. SUPERVISED BRAIN NETWORK LEARNING BASED ON
DRNN

After learned the meaningful and adaptive regressors from
real tfMRI data, we employed the supervised dictionary
learning method [26] to identify the diverse and concurrent
functional brain networks in tfMRI data, thus forming a
supervised brain network learning based on deep recurrent
neural networks (SUDRNN) framework. The basic idea of
SUDRNN is to learn a hybrid dictionary through changing the
dictionary learning procedure and then simultaneously recon-
struct the task related brain networks and intrinsic brain net-
works utilizing the hybrid dictionary. Specifically, the learned
regressors from DRNN model is fixed as a constant part of the
dictionary and the other part is automatically learned from the
tfMRI data. Importantly, the SDL method can utilize the most
suitable dictionary item/ regressors to reconstruct the ttMRI
data which improved the sensitivity.

Given a tfMRI signal matrix SeR’*" and the learned
regressor group R, SUDRNN aims to represent each signal
in § with a sparse linear combination of atoms in an over-
completed, and hybrid dictionary basis D, ie., = D X «;
and § = D x A. Specifically, ¢ rerpresents the number of
fMRI time points and n represents the tfMRI signals from
n voxels, and A = (a1, a, ....q,) is the coefficient matrix.
Specifically,

D = [De, D;]eR™% DeR>¥ke peR™M (12)

where Dy is the learned regressor group R from DRNN model
and D; is the random generated dictionary atoms. During
dictionary learning procedure, D will be fixed and D; will
automatically update to fit to the data. k. is the fixed atom
number in D, and &; is the learned dictionary atom number
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in Dy, respectively. In SUDRNN, the empirical cost function
could be modeled as the averaging loss of regression of n
signals.

1
€ (si, [De, Dy]) = Sllsi = [De, Dileill; + Alleill;  (13)

£ (s;, [D¢, Dy]) represents the reconstruction error in sparse
representation of the signals. s; represents the signal vector
and o; represents the reconstruction weight vector. The reg-
ularization parameter A defines the regression residual and
sparsity level.

To prevent D from arbitrary value, the following constrains
C is introduced in (15) and the whole problem can be sum-
marized in (16).

c2 {DeR’st.t Vi=1,.. k.d'd < 1} (14)

min SIS~ De. DIAIR+ AL, (15)
DeC.AcRkxn 2
To solve this problem, we modified the codes in the online
dictionary learning package [51] and form the SUDRNN
framework in this paper. The proposed SUDRNN framework
is summarized as Alg.1.

Algorithm 1 SUDRNN Framework

Input: S = (s1, 52, . . ., 5, )€R"", number of iteration T.
Stage 1: Learned the adaptive regressor group R using
DRNN model.
Stage 2: Generate the initial dictionary Dy =
[D¢, Dyl eR! <k (D, is the DRNN derived regressors
R, D is randomly generated matrix.
Stage 3:
forz=1toT
i=2%n (T > n)
Draw s; from S
Sparse coding using Least-angle Regression:

A o1 2

a, £ argmin 5 ||s; — De_pe| |5 +4 el

ozeRM
Update D(;) but keep the extended regressor group D,

constant:
D, £ argmin } |[s, — Da, |3 +X ||zl |y
D,eC
D—1y=D¢, Diz-1)))
end for
until convergence
Return D and A.

E. IDENTIFICATION OF FUNCTIONAL BRAIN NETWORKS

After dictionary learning and sparse representation, each col-
umn in dictionary D represents a typical brain activity pat-
terns and the corresponding row vector in coefficient matrix
A represents the spatial distribution of the dictionary item.
With the help of preserved index information, each row vec-
tor in coefficient matrix A could be mapped back into the
volume space as shown in Fig.le. Since the dictionary D
could be separated as constant part D, and learned part Dy,
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A naturally divided into task related brain networks A, cor-
responding to fixed DRNN derived regressors D, and data-
driven networks A; corresponding to D;. As for fixed DRNN
derived regressors Dy, it is straightforward to map all the task
related brain networks from A . for each subject in each tftMRI
data.

These data-driven networks A; are learned in an unsuper-
vised way and it is hard to direct interpret these networks
from A;. To solve this problem, a spatial matching method
is employed to compare the similarity between the well-
established intrinsic connectivity network (ICN) templates
[52] in the literature and the row vectors in A; to detect mean-
ingful intrinsic connectivity networks. The spatial similarity
is calculated as:

IXNT|

RX,T) = T

(16)
T is the ICN template and X is the row vector in A;.

IIl. RESULTS

A. DRNN MODEL IMPLEMENTATION

In order to test the proposed SUDRNN framework,
we adopted the well-established tfMRI datasets of HCP
900 subjects release as a test bed. To be specific, there are
822 subjects after removing a few poor quality or incom-
plete subjects. To further verify the stability of the model,
the motor tfMRI dataset of HCP 900 Subjects Release was
randomly divided into two subsets, each containing 411 valid
individuals for model implementation test. Then the same
DRNN model was trained independently in each dataset.
In our implementation, the DRNN model consists of an input
layer, two RNN layer, an output layer and a fully connected
layer. Each RNN layer includes 30 LSTM units. The LSTM
cells were initialized by the default Xavier uniform initializer
[53] in TensorFlow. All the cell initial state, the weight and
bias of the fully connected layer were initialized to zeros.
The learning rate was set to 0.004, and the decay factor
is 0.25 every five epochs. The mean square error (MSE)
between the whole brain signals and its reconstruction was
adopted as the loss function and the Adam optimizer [54]
with its default parameters (82 = 0.999, e= 10—8,1 = 0.9)
was applied for optimizing the parameters. The DRNN model
was trained on dual NVIDIA GTX 1080Ti GPU cards for
20 epochs.

Fig 2 shows the training loss on the motor tfMRI datasets
of HCP 900 subjects release and its split subsets. Clearly,
the DRNN model on both the whole HCP 900 datasets and
the split datasets will reach convergence at a small value
after a few epochs. Besides, the training loss on indepen-
dent split datasets were almost the same and the results are
quite similar which implied the SUDRNN model is robust
and reproducible. However, more training data (the whole
dataset) will slightly improve the convergence speed and
avoid overfitting better. Therefore, the following results are
obtained from the whole HCP 900 release datasets with
822 subjects.
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FIGURE 2. Training losses on the whole dataset of HCP 900 subjects
release (822 subjects), and two split subsets of HCP 900 subjects release
with half data (411 subjects).

Visual Cue Left Foot
Left Hand Right Foot
Right Hand Tongue
DRNN Response 1IRF Response Task Design

FIGURE 3. Parts of the DRNN-derived data-driven regressors in motor
tfMRI dataset. Yellow lines represent task design stimuli, red lines
represent DRNN-derived data-driven regressors, and blue lines represent
the response patterns by GLM method.

B. IDENTIFIED TYPICAL REGRESSORS AND FUNCTIONAL
BRAIN NETWORKS

After DRNN model training and testing procedure, diverse
and concurrent task regressors could be obtained from the
top RNN layer. In order to explore meaningful functional
brain activities, a few temporal responses which are similar to
the HRFs were selected for further study as DRNN-derived
data-driven regressors. Fig 3 illustrates part of the regressors
identified in the motor tfMRI dataset of HCP 900 subjects
release. From this figure, we can see that these regressors
are quite similar with the typical theoretical HRF response
regressors adopted in GLM model and typical HRF response
regressors could be easily identified in DRNN model.

After the DRNN-derived data-driven regressors were
obtained, we applied the supervised dictionary learning and
sparse coding method by fixing the pre-defined part of the
dictionary to learn the spatial maps of these regressors.
Fig 4 shows two examples of the learned spatial maps of these
regressors with dictionary size k= 400 and regularization
parameter & = 0.05. In this figure, the first row shows the
visual cue and left foot regressors from motor task which
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GLM

FIGURE 4. Examples of Iearned mdlwdual and group spatlal maps by the
DRNN-derived data-driven regressors. Regressors are the learned visual
cue and left foot regressor from motor tfMRI dataset.

—

Left
Foot
Left
Hand

SUDRNN

Right | ¢
Foot
Right
Hand

FIGURE 5. ldentified typical functional brain networks by SUDRNN and
GLM in HCP motor tfMRI dataset. The corresponding regressors are
illustrated in Fig 3.

are randomly selected as constrained regressors. The second
to the fifth rows illustrate the identified functional brain
networks in four randomly selected subjects in motor tfMRI
dataset. After that, the sixth row is the group activation map
of these regressors in motor tfMRI dataset. From these result,
we can see that with the help of these supervised regressors,
meaningful and consistent functional brain networks could be
well identified by SDL method. They are consistent across
different subjects especially in the peak activated areas (areas
highlighted in green box). For comparison, we also calculated
the group-wise GLM activation maps in the last row. The
group activation maps calculated by SUDRNN and GLM are
quite similar and the peak activated areas are well matched.
In Fig 5, we illustrated all the functional brain networks
identified by the proposed SUDRNN framework and GLM
method with these typical regressors. These identified func-
tional brain networks with these regressors in both methods
are similar and well matched which suggests the SUDRNN
method could identify the typical functional brain networks
as well as traditional GLM model.

C. DIVERSE BRAIN NETWORKS WITH DRNN-DERIVED
REGRESSORS

In our proposed SUDRNN framework, regressors are the
output of units in the top RNN layer of DRNN model and
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FIGURE 6. Visual cue related regressors with multiple times delay and
corresponding functional brain networks in HCP motor task.

FIGURE 7. Tongue related regressors with multiple times delay and
corresponding brain networks in HCP motor task.

the DRNN model is trained with the real tfMRI data and
stimulus task design paradigm. Thus, these regressors nat-
urally reflects the real diverse and concurrent brain activity
patterns under task condition. Specifically, benefited from
the excellent temporal pattern recognition ability of RNN
layers, SUDRNN could not only identify typical theoretical
HREF response regressors and brain networks as detailed in
above section but also multiple times delay regressors and
brain networks simultaneously. For instance, in motor tfMRI
dataset of HCP 900 subjects release, a few DRNN-Derived
regressors consists of multiple delay times. Fig 6 shows the
identified DRNN-derived visual cue related regressors with
different time delays in left column and the corresponding
spatial maps in right column. Similarly, the left column of
Fig 7 illustrates the identified DRNN-derived tongue related
regressors and the right column shows the corresponding spa-
tial maps. An interesting result could be observed. As shown
in of Fig 6 and Fig 7, part of the task design stimuli (such as
visual cue and tongue stimuli) may evoke different time delay
brain activity patterns. The corresponding brain networks of
these activity patterns keep relatively stable within a period
of time. However, the peak activated areas may decrease and
transform to adjacent areas as the time delay goes forward.
This observation is benefit from the data-driven regressors
reflect the complex real brain activity patterns and it’s hard
to find with previous model-driven methods.
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FIGURE 8. Social event related regressors with multiple times delay and
corresponding brain networks in HCP social task.
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FIGURE 9. Relational event related regressors with multiple times delay
and corresponding brain networks in HCP relational task.

To test the universality of this phenomenon, we further
test the proposed SUDRNN framework on other independent
HCP tfMRI datasets including the social, relational and emo-
tion tfMRI datasets. The learned data-driven regressors and
spatial maps from HCP social and relational tfMRI datasets
are illustrated in Fig 8, and Fig 9, respectively. As expected,
different time delay brain activity patterns are observed and
these regressors are also correlated with the theoretical HRF
response patterns. Similarly, the activated areas in these spa-
tial maps also vary and transform as time goes forward. These
results further demonstrated the proposed SUDRNN method
is robust and reproducible across different tftMRI datasets and
can reveal meaningful task-related functional brain networks
which could not be observed with previous methods. More
importantly, data-driven regressors from DRNN model pro-
vide us new insight to comprehensively understand the task-
related functional brain networks and the possible interac-
tions between them.

D. IDENTIFIED CONCURRENT SPONTANEOUS BRAIN
NETWORKS

With the help of the data-driven part dictionary Dy, the pro-
posed SUDRNN framework is able to simultaneously
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FIGURE 10. The |dent|f|ed RSN networks in adopted HCP 900 subjects
release tfMRI datasets.

identify the concurrent spontaneous brain networks or rest-
ing state networks (RSN) in tfMRI data. However, these
dictionary items are learned in an unsupervised way which
made it difficult to group-wisely interpret the brain activity
patterns from D;. To solve this problem, we adopted the well-
established RSN templates [52] to aid the analysis. Specif-
ically, we calculated the spatial overlap rate between the
corresponding spatial maps of these data-driven dictionary
items in D; and the well-established RSN templates in the
literature [52]. The spatial overlap rate is defined as the
percentage of the overlapping area between the data-driven
spatial maps and the RSN templates which characterized
in Eq. (16). We examined the all the data-driven dictionary
items in D; across all the involved HCP tfMRI datasets and
consistently identified these RSN networks in different HCP
tfMRI datasets. Fig 10 shows the identified nine consistent
RSN networks in adopted HCP 900 subjects release tfMRI
datasets and the RSN templates are put in the second row
for comparison. For better visualization result, only the most
informative slice overlaid on the MNI152 template image, is
shown as the spatial map of the specific RSN. It is easy to
see that the identified group-wise RSNs in different tftMRI
datasets are quite similar with RSN templates. We further
quantitatively measured the spatial overlap rate between the
identified RSNs in different tfMRI datasets and the RSN
template and the quantitative measurement result is shown
in TABLEI. As expected, the spatial overlap value is kept
at a high level across different tasks and RSNs. From these
result, we can see that the identified spontaneous brain net-
works (RSNs) is consistent and similar to the RSN templates
across different tasks from both spatial patterns and quantita-
tive measurements. Our results demonstrated that SUDRNN
framework is capable of detecting meaningful spontaneous
functional brain networks as well as task-related functional
brain networks at the same time.

E. PARAMETER TUNING OF PROPOSED SUDRNN
FRAMEWORK

The proposed SUDRNN framework could be divide into
a DRNN model and a supervised dictionary learning part.
Therefore, parameters in these models may have influence on
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TABLE 1. Spatial overlap rate of the RSN templates and the group
averaged RSN identified in HCP 900 subjects release tfMRI datasets.

EMOTION MOTOR RELATIONAL SOCIAL

RSN1 0.90 0.90 0.89 0.87
RSN2 0.88 0.86 0.87 0.89
RSN3 0.90 0.90 0.90 0.90
RSN4 0.82 0.86 0.78 0.82
RSNS5 0.72 0.83 0.81 0.84
RSN6 0.89 0.85 0.68 0.84
RSN7 0.91 091 0.75 0.79
RSN8 0.83 0.84 0.82 0.81
RSNO9 0.80 0.85 0.87 0.79

(2) (b)

(c) )
DRNN Response

HRTI Response Task Design

FIGURE 11. Brain response patterns with basic RNN units.

the SUDRNN model. In this section, we will briefly discuss
a few important parameters including the RNN unit type,
the sparsity parameter A, and the dictionary size k.

1) PARAMETERS IN DRNN MODEL

An important parameter in DRNN model is the RNN cell
unit. In this section, the effect of different RNN cell units,
which includes the basic RNN unit, LSTM and GRU unit,
to the performance of the model are compared through exper-
iments. The basic RNN unit is relatively limited to reconstruct
whole-brain tfMRI signals due to its weakness in capture
temporal patterns [46]. This is because that the basic RNN
unit makes predictions only depending on the input signal
at the current moment and the previous moment, without
the ability to perceive the long-term dependent information.
Fig 11 illustrates the major results of basic RNN unit on motor
tfMRI dataset. Briefly, most of the brain response activity
patterns extracted by the basic RNN unit will closely follow
the task stimulus curve (Fig 11(a, b)), and the time-delay brain
response regressors are rarely observed. Besides, a few brain
response curves extracted by the basic RNN unit has obvious
jitter and burr (Fig 11 (c, d)) in change points, making it
difficult to extract smooth response activity curve. A possible
explanation is that the basic RNN unit can’t effectively deal
with long-term information in the tfMRI data.
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FIGURE 13. Regression residuals under different regularization
parameters A.

Conversely, the LSTM unit and the GRU unit, which are
extensions to the basic RNN unit and are good at capturing
the long-term dependent information in sequential signals,
have similar and good performance. As shown in Fig. 12,
the typical functional brain networks identified by LSTM
and GRU unit in motor tfMRI dataset are quite similar and
reproducible. Therefore, considering the good performance
of LSTM unit, we selected the LSTM unit as the RNN units
in our implementation.

2) PARAMETERS IN SDL MODEL

Two important parameters in SDL model are the sparsity
parameter A and dictionary size k. However, how to optimize
these parameters is still an open question in dictionary learn-
ing and sparse coding field. In our implementation, we set
these parameters experimentally. Figure 13 shows the mean
training residuals of different regularization parameters A
on the HCP motion tfMRI dataset with the fixed dictionary
size 400. The residuals start to raise quickly from the 0.05.
Regularization parameters A are mainly used to control the
sparsity of the coefficient matrix. The larger the A value,
the greater the influence of regularization terms in Eq. (15)
on the loss function and the larger the regression residual of
training. The larger the A value, the sparser the coefficient
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FIGURE 14. Identified functional brain networks under different
regularization parameters 1. The visual cue regressor corresponding
network in motor tfMRI is adopted as an example.
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FIGURE 15. Regression residuals under different dictionary size & in
motor tfMRI dataset.

matrix and the sparser of the voxels in the identified func-
tional brain networks. However, the within a certain range
of A settings, the identified functional brain networks are
still kept consistent as shown in Fig. 14. This also demon-
strated the SUDRNN is robust and reproducible with a range
of parameter settings. After considering the reconstruction
residual and the voxel density in brain networks, we set the
sparsity parameter A as 0.05 in our implement.

In another experiment, we fixed the sparsity parameter
A as 0.05, and alternated the dictionary size from 200 to
600. Fig. 15 shows the reconstruction residuals in different
dictionary size under motor ttMRI datasets. From this figure,
we can see that the reconstruction residuals drop quickly from
200 to 400 and then become relatively stable. We also test the
influence to the identified functional brain networks and take
the visual cue regressor in motor tfMRI as an example. The
identified brain networks with different dictionary size set-
tings are shown in Fig. 16. From Fig. 16, we can see that with
the increase of dictionary size, the identified functional brain
networks become sparser. However, the identified functional
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- Identified Brain Networks

FIGURE 16 Identlfled functlonal brain networks under dlfferent
dictionary size k. The visual cue regressor corresponding network in
motor tfMRI is adopted as an example.

brain networks are relatively stable with these dictionary size
settings. In order to avoid introducing too much redundant
information or extracting too sparse functional brain net-
works, we set the dictionary size as 400.

IV. DISCUSSION AND CONCLUSION

In this work, we proposed a novel hybrid framework, super-
vised brain network learning based on deep recurrent neural
networks (SUDRNN), to explore the diverse and concur-
rent functional brain networks for tfMRI data. Specifically,
we proposed to adopt deep recurrent neural network (DRNN)
to automatically learn the data-driven regressors. These
learned regressors not only includes typical theoretical HRF
response regressors (as shown in Fig 3) adopted in traditional
GLM model, but also multiple time delay regressors which
holistically revealed the possible task-related regressors (such
as Fig 6 to Fig 9)in tftMRI data. After that, an effective super-
vised dictionary learning and sparse representation method
[26]was adopted to reconstruct the corresponding spatial
maps of these regressors. Extensive experiments on the motor
tfMRI of HCP 900 subjects release (more than 800 subjects)
have demonstrated the superiority of the proposed framework
in identifying diverse and concurrent brain networks. Briefly,
the proposed framework could not only identify typical task
evoked brain networks like traditional GLM models, but
also many other concurrent brain networks such as different
time delay networks and RSN brain networks simultaneously.
Compared with traditional methods, the proposed SUDRNN
framework could identify more complete task-related func-
tional brain networks and these network related regressors are
automatically learned from the real tftMRI data. What’s more,
with the help of these task related regressors, it is easy to ana-
lyze the task related brain networks across different subjects.
We further test the proposed SUDRNN framework on three
different HCP tfMRI datasets (social, relational and motor
task). Experiment results further validated the robustness and
superiority of the proposed model. In general, our proposed
framework can identify the diverse and concurrent functional
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brain networks and contributed novel insights into the holistic
functional brain activities under task performance.

In this paper, we have focused on estimating meaningful
task-related regressors and identifying more completed func-
tional brain networks with the proposed SUDRNN frame-
work. However, there are still a few questions need to be
solved in the further exploration. For instance, although we
have demonstrated LSTM and GRU cell unit is robust and
reliable to learn the meaningful task-related regressors, more
automatic parameter setting methods such as Neural Archi-
tecture Search [55] should be further explored to better tuning
the model parameters. The parameters in dictionary learning
part, such as the sparsity parameter A and dictionary size k,
also need to be determined each time. More automatically
parameter tuning methods should be developed in the future.
Besides, we have focused on characterization of the theoret-
ical HRF related regressors and well-established RSN brain
networks with the limited neuroscience knowledge. However,
it should be noticed that there are still other potentially mean-
ingful regressors and spontaneous brain network components
need to be examined in the future. Furthermore, although
tfMRI datasets of HCP 900 subject release are excellent test
beds for brain image analysis methods, we should adopt more
datasets and methods to further validate our methods.

In general, we have proposed a novel and hybrid tfMRI
brain network analysis framework. This framework could
automatically learn the task-related brain response regressors
rather than theoretically estimate the task regressors. With
the proposed SUDRNN framework, a few meaningful mul-
tiple time-delay regressors are revealed and corresponding
functional brain networks are identified which help us better
understand the functional brain activity patterns under task
performance. Besides, both spontaneous brain networks and
task-related brain networks could be simultaneously identi-
fied which makes it a comprehensive tfMRI brain network
analysis framework. Motivated by these exciting results,
we will apply it to more tfMRI datasets to learn the possible
alterations of functional brain networks and interactions in
brain disorders, such as for Alzheimer’s disease and Autism
Spectrum Disorder.
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