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ABSTRACT The use of regional covariance descriptors to generate feature data represented by Symmetric
Positive Definite (SPD) matrices from images or videos has become increasingly common in machine
learning. However, SPD data itself does not constitute a vector space, and dictionary learning involves a
large number of linear operations, so dictionary learning cannot be performed directly on SPD data. For this
reason, a more common method is to map the SPD data to the Reproducing Kernel Hilbert Space (RKHS).
The so-called kernel learning is to find the most suitable RKHS for specific tasks. RKHS can be uniquely
generated by a kernel function. Therefore, RKHS learning can also be considered as kernel learning. In this
article, there are two main contributions. The first contribution is to propose a framework which based on
Kernel Learning and Riemannian Metric (KLRM). Usually the learnable kernel function framework is to
learn some parameters in the kernel function. The second contribution is dictionary learning by applying
KLRM to SPD data. The SPD data is transformed into the RKHS generated by KLRM, and RKHS after
training provides the most suitable working space for dictionary learning. Under the proposed framework,
we design a positive definite kernel function, which is defined by the Log-Euclidean metric. This function can
be transformed into a corresponding Riemannian kernel. The experimental results provided in this paper is
compared with other state-of-the-art algorithms for SPD data dictionary learning and show that the proposed
algorithm achieves better results.

INDEX TERMS Dictionary learning, symmetric positive definite matrix, reproducing Kernel Hilbert space,

Log-Euclidean metric.

I. INTRODUCTION

Sparse representation is a very popular research direction in
signal processing and computer vision problems. For a given
set of data points X = {x1, - -- , xx}, the main idea of sparse
representation is to learn the dictionary set D = {dy, - - - ,dr},
so that x;(i = 1,---,N) can be effectively represented
by the basis (dictionary) through a small number of linear
combinations of non-zero coefficients while minimizing the
reconstruction error [1]. Most of the existing sparse cod-
ing algorithms are based on vector and linear operations in
Euclidean space, that is, data points and dictionaries are ele-
ments in vector space. Sparse representation has been widely
used in many machine learning related problems, such as face
recognition [2], [3] and picture classification [4].
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However, in many practical scenarios, the data points
are usually on a Riemannian Manifold, such as SPD
matrix space [5], [6], Stiefel manifolds and Grassmann
manifolds [7], [8]. Existing dictionary learning and sparse
coding algorithms based on vector space do not consider
the inherent non-linear geometry of Riemannian manifolds,
so they cannot be directly applied to the processing of
Riemannian manifold data. The vector method simply by
vectorizing the SPD matrix will cause severe encoding dis-
tortion [9]. Mehrtash Harandi et al proposed a model for con-
verting high-dimensional SPD manifold to low-dimensional
SPD manifold [10]. In a supervised case, the model consists
of the affinity function and the similarity between two SPD
matrices. In the unsupervised case, the model consists only
of the similarity between two SPD matrices. In both cases,
the transformation matrix requires orthogonality. The model
is trained to obtain the optimal transformation matrix W, and
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finally to obtain the optimal low-dimensional SPD manifold.
Yaxin Peng et al proposed a semi-supervised metric learning
framework, and used Hinge loss function and smooth loss
function in combination with triplet constraints to construct
two different models to obtain the optimal local metric [11].
In view of the poor performance of the SPD matrix data
directly treated as Euclidean space’s data, the SPD matrix is
usually given a Riemannian geometry when analyzed, so that
the SPD matrix can be regarded as an SPD manifold or a
tensor manifold point. But this will also bring some diffi-
culties. Like the nonlinearity of the Riemannian geometry
makes it difficult to model sparse coding methods based on
linear combinations. Therefore, it is necessary to extend the
sparse coding and dictionary learning methods based on SPD
manifold.

In summary, there are mainly three ideas to solve the
nonlinear problem of SPD manifold. The first is to directly
model the SPD matrix manifold, that is, an SPD matrix is
expressed as a linear combination of the SPD matrices in the
dictionary set. The result of linear combination may not be
the SPD matrix. In addition, the optimization problem based
on the SPD manifold is difficult to solve. The second is to
map the SPD matrix manifold data to the tangent space of
an SPD matrix. The tangent space of the SPD manifold is a
linear space. The third is to map the SPD matrix manifold
data to RKHS. Huang et al proposed a novel metric learning
method that can work directly on the logarithm of the SPD
matrix. Specifically, the method mainly learns a tangent map-
ping, which can directly transform the logarithm of a matrix
(rather than a vector) from the original tangent space to a
more distinguishable new tangent space [12]. Modeling SPD
manifold data onto RKHS has been a hot research direction
in recent years [13], [14]. However, mapping SPD manifold
to RKHS not only requires that the kernel functions based on
SPD manifold meet Mercer’s theory [15], but also requires
that the kernel functions can retain the original geometry
of the manifold while mapping, so it will requires the high
performance of the kernel functions. The main effects of
SPD manifold are Log-Euclidean kernel function [16] and
Gaussian kernel function based on Bregman divergence [17].
However, the Log-Euclidean kernel function cannot reflect
the internal geometry of the SPD manifold, and the Bregman
divergence is only an approximation of the geodesic distance
of the SPD manifold. Therefore, the existing two kernel func-
tions have their own defects. So as to reflect the geometric
structure of the manifold better and the geometric relationship
information of the existing manifold data can be added to the
kernel function, that is the method of geometric perception
kernel learning.

This paper researches dictionary learning and sparse cod-
ing methods on SPD manifold, maps SPD manifold data to
RKHS for processing, and innovates sparse coding meth-
ods on SPD manifold from kernel functions and dictionary
learning. The main work and innovations of the paper are as
follows:
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1) A data-dependent kernel function learning method is
proposed. The data dependency function adds a data
dependency to the basic kernel function, and uses the
data dependency to provide more information about
the original data, so that the new kernel function can
better reflect the geometric information of the original
data. The parameters of the data dependencies in the
data dependence kernel function can be obtained by
combining learning with specific goals.

2) A dictionary learning and sparse coding method on
SPD manifold based on data-dependent kernel learning
is proposed. Apply this kernel learning to the Rieman-
nian manifold dictionary learning and sparse coding
method based on kernel method, optimize the three
variables of kernel parameters, dictionary learning and
sparse coding at the same time, learn the optimal kernel
parameters and dictionary, and use the learned kernel
parameters and dictionary so you can get better encod-
ing results.

3) Experimental analysis. The KLRM-DL proposed in
this paper were tested on three data sets, and compared
with RSR, TSC, K-LE-DLSC and other algorithms.
The validity of the algorithms was verified by compar-
ing the classification accuracy of each algorithm.

The following content of the paper is arranged as follows.
In Chapter 2, we will introduce the basic mathematical
knowledge involved in this paper, including sparse cod-
ing, dictionary learning, Reproducing Kernel Hilbert Space
and Riemannian manifold. In Chapter 3, important research
results obtained by other researchers in the field of kernel
learning will be introduced. In Chapter 4, we will describe
in detail the kernel algorithms designed in this paper, includ-
ing data-dependent kernel learning frameworks and dictio-
nary learning and sparse coding methods on SPD mani-
fold based on data-dependent kernel learning. In Chapter 5,
we will solve each model proposed in Chapter 4, and give
the algorithm block diagram of this paper. Then in Chap-
ter 6, the experimental part of the thesis combines multiple
mainstream data sets and compares with multiple mainstream
algorithms. Finally, we will summarize the work of our thesis
in Chapter 7.

Il. NOTATIONS AND PRELIMINARIES

A. NOTATIONS

In this article, we use the lowercase letter x as a datapoint,
the bold capital letter X as a set of the datapoint. The trans-
pose, trace, inverse of the matrix are expressed as X7, 1r(X)
and X! Sym'’,_ | denotes SPD manifold.

B. REPRODUCING KERNEL HILBERT SPACE (RKHS)

RKHS is a common mathematical platform for various kernel
methods in machine learning. One can map data from the
original data space to RKHS, and then complete various
machine learning tasks on RKHS. The original data space can
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be the familiar Euclidean space, or manifolds, such as SPD
manifold, Grassmannian Manifolds, and so on.

When an inner product is defined on a linear space, the lin-
ear space can become an inner product space. Complete inner
product space is a Hilbert space. RKHS is a special Hilbert
space.

Definition 1: Let H = (L*(S2), (e, ®)) be a Hilbert space
of functions and k : 2 x Q — R, if

1) Forall x € 2, kc(e) = k(e,x) € H;

2) Forallx € Qandallf € H,

FO) = (Fs k) = (F(0), k(o, 1)) = /Q F@k, 2)dz
()

then H is called RKHS and k(x, y) is called the reproducing
kernel of H.
Remark 1: L*(2) and (e, o) are defined as follows:

LX(Q) = {fIf : Q@ — R,/ If 0> dx < +o0},
Q
f. g = /Q f(x)g(x)dx ()

In practice, €2 is the so-called data space. Using the repro-
ducing kernel k(x, y), a transformation from the data space 2
to RKHS H can be defined as follows: ¢ : @ — H, for all
x e

¢(x) =k(e,x) € H 3

According to the reproducing property of k, it can be easily
proven that

(p(x), () = k(x,y) “

The above formula has been widely used in many machine
learning algorithms based on RKHS.

In mathematics, it can be proved that an RKHS can be
uniquely generated by using a kernel function such that the
kernel function is exactly the reproducing kernel of the gen-
erated RKHS. It must be pointed out that kernel functions are
different from reproducing kernels. Reproducing kernels are
defined based on Hilbert space, while kernel functions are
defined independently.

Definition 2: Letk : Q x Q — R, if

1) Forallx,y € @, k(x,y) = k(y, x)

2) For all integer N and all xq, - - - , xy € 2, the following

matrix is positive definite:
k(xt, x1) k(xt, xn)

K = . .
k(xy, x1) k(xn, xn)

then the function & is called kernel function.
The process of generating an RKHS from a kernel function
k is as follows:
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1) Generate a linear space by using the kernel function:
Hy = span{k(e, x)|x € Q}
N
D aik(e.x)lxie Qe eRieZTY  (5)
i=1
2) Define an inner product on Hk for allf, g € Hg, since

f(o)= Za k(e, xi), g(e) = Z Bik(e, yj), then

j=1

(f.g) =[o1 -+ an]
k(x1, y1) k(xi,ym) | | Bi
: : : (6)
k(xn, y1) k(xn, ym) | | Bu

3) Complete Hy to obtain the complete space of Hg,
denoted as Hj, then Hj is an RKHS and theNkernel
function k is exactly the reproducing kernel of Hj.

Since an RKHS can be uniquely generated from a kernel
function, the task of learning an RKHS can be translated into
atask of learning a kernel function. This is what the algorithm
proposed in this paper does.

C. SPARSE CODING

The so-called dictionaries finds a set of basic data
{dy, - ,dL}, other data x can be approximated by a linear
combination of this set of basic data:

L 2
X — Z a,-di
i=1

where a = [aj, ---,ar] and Sparse(a) is called the sparse
regular term of dictionary encoding, which means that while
the best linear approximation, the non-zero components of
the approximation coefficient @; are minimized We usually
use l-norm to represent the sparse regular term of sparse
coding [17]:

min + ASparse(a) @)
a

L
Sparse(a) = flall; = Y _ |ail ®)

i=1

Itis worth mentioning that Sparse(a) is the feature of sparse
coding. Without Sparse(a) the problem (7) would become the
problem of subspace projection. If {dy, - - - , d1.} are orthonor-
mal, then

L
X — Z a,-d,-
i=1

D. DICTIONARY LEARNING

The premise of sparse coding is to have a suitable dictionary.
This dictionary is learned from samples. According to the
specific application, collecting a certain number of fully rep-
resentative samples and then use them for dictionary learning.

min =Sa=x'dy, i=1,---,L (9)
a
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Let X = {x1,---,xy} be the learning sample to find the
suitable dictionaries {d, - - - , dr}. The objective function of
dictionary learning is:

N L 2
min Xi — ajid;i|| + ASparse(A; 10
a4 i Z ijaj P (AiRow) (10)
i=1 j=1
ap - oayL
where A = is the sparse coding matrix.
aNi -+ anL
In the above objective function, the sparse coding matrix A
is a by-product which is not needed, dictionary {d;, - -- , dL}
is needed.

E. RIEMANNIAN MANIFOLD

Inrecent years, as a kind of data space for non-Euclidean data,
Riemannian manifold has been more and more applied to
machine learning. Riemannian manifold evolves from topo-
logical space.

Definition 3: Let M be a Hausdorff topological space with
a countable topological basis. If any givenx € M, there exists
a neighborhood U, of x, Uy is homeomorphic to an open set
O, C R” of the n-dimension Euclidean space R”, then M is
called a n-dimensional topological manifold.

Remark 2: (Uy, ¢y) is called a local coordinate of M,
where ¢, is the homeomorphic mapping between U, and O,.
{(Ux, ¢x)|x € M} is called locate coordinate system of M.

Definition 4: Let M be a topology manifold, if for all local
coordinates (U, ¢) and (V, §) with UUV # &, if the mapping
§o¢~l (U UV)— 8(U UV)is infinitely differentiable,
then M is called differential manifold.

Definition 5: Let M be a differential manifold, w be a
second-order tensor field on M, ie., for all p € M,
w(p) is a second-order tensor on the tangent space of p, if w
is symmetric, positive definite and smooth, then w is called a
Riemannian metric and (M, w) is a Riemannian manifold.

Based on Riemannian metric, we can define geodesic dis-
tance on Riemannian manifold.

Definition 6: Letp e M,q € M, p : [0, 1] > M, satisfy
p(0) = p, p(1) = q and p is smooth, then p represents a
smooth curve from p to g on M.

Furthermore, for all 1 € (0, 1), p(t) € M, and p'(¢) is
a tangent vector of p(¢) such that for all smooth function f
defined on a neighborhood of p(t),

d(f o p)(©)
do
Thus, the length of the curve p is defined as:

(1) = o (11)

1
L(P)=/0 Vw(p@)(p' (1), p'(1)dt (12)

Theorem 1: Let Cp, represents the set of all smooth curves
between p and ¢, and

d(p. q) = min{L(p)|p € Cpg} (13)
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then d(p, g) satisfies the three axioms of distance and (M, d)
becomes a distance space.

Remark 3: The distance d(p, q) is often called geodesic
distance. Although geodesic distances are defined from
Riemannian metric, however, what we use in practical appli-
cations is geodesic distances, not Riemannian metric.

A Riemannian manifold often used in many machine learn-
ing applications. The commonly-used geodesic distances on
Sym'| | are as follows:

1) For all x,y € Sym ,, the so-called Log-Euclidean

distance is as follows:

8G1(x,y) = |[log(x) — logW) (14)

where ||A||p = +/tr(ATA).
2) For all x,y e Sym’_ ,, the so-called affine invariant
geodesic distance is as follows:

Sc2(x,3) = [logr™3yxH) (1s)

F

Remark4: x e Sym| , then x = u x diag(Ay,- -,
An) x ul, where A; > 0 are the eigenvalues of x, u consists of
the orthonormal eigenvectors of x, then log(x) is defined as
log(x) = u x diag(log(A1), - - - , log(A)) x ul .

lIl. RELATED WORKS

In recent years, Sym!, | has been widely used in computer
vision, such as pedestrian detection [18], texture classifi-
cation [13], [19], target recognition [5], motion recogni-
tion [20], and face recognition [21]. Sparse coding has been
a research hotspot because of its good representation ability.
However, the existing sparse coding algorithms are mostly
based on Euclidean space. The sparse coding methods of SPD
manifold needs further study.

A. KERNEL LEARNING

In machine learning problems, some problems may not be
modeled directly in Euclidean space, or the model may not be
valid. Typically, data is mapped to RKHS can solve this prob-
lem. Mapping data from the original space to RKHS requires
defining the kernel function, which the kernel function deter-
mines the impact of the model on RKHS. This makes kernel
learning a key problem, because kernel function defines the
relationship between the original data points and the data on
RKSH. In order to make kernel function on RKHS better
reflect the geometric properties of the original data, geomet-
ric perception kernel learning (GKL) has attracted people’s
attention. The effect of a model based on geometric percep-
tion kernel depends on the selected geometric perception ker-
nel and other information used, which may include category
information or surrounding spatial information. According
to the information sources used, the geometric perception
kernel learning methods can be divided into two categories:
one is the geometric perception kernel learning method based
on single-source information, and the other is the geometric
perception kernel learning method based on multi-source
information.
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The kernel learning method based on single source infor-
mation only focuses on the geometric structure information of
the data itself and does not use other information. Diffusion
kernel were proposed by Kondor and Lafferty [22]. Lafferty
further explains the diffusion kernel that are generated from
manifold data through thermodynamic equations [23]. It can
better reflect the geometric structure of data. The research of
Smola and Kondor [24] shows that the spectrum of Laplace
graph can generate a series of geometric perception ker-
nel after various filtering functions, including regularized
Laplace kernel, diffusion kernel, random walk kernel and
arccosine kernel. In addition, common manifold based data
dimensionality reduction methods such as ISOMAP [25],
Local Linear Embedding (LLE) [26], Laplacian Eigenmap
(LE) [27] can also be unified in the framework of geometric
perception kernel [28], [29]. These data reduction methods
based on manifold learning can be understood as kernel
principal component analysis or the Nystrom formula of
constructing kernel functions.

Based on multi-source information, the geometric percep-
tion kernel learning method not only uses the geometric
structure information of the data, but also uses the category
information and the surrounding spatial information. Com-
bining the geometric structure information with the surround-
ing spatial information, Sindhwani’s research [30] shows
that the standard kernel function can directly calculate the
kernel matrix of the new data points by using the geomet-
ric structure information of the existing data. Sindhwani’s
idea was born out of a primitive RKHS. A new RKHS
is determined by the distribution of the data sample. Let
RKHS H = (S(w), (e, @)y ) generated as a kernel function k,
wi(i = 1,---,N) be a sample of the data space €2, and
w = {w, - ,ony} € Q is the sample of the data space,
so for any f, g € S(w),

f @i = &+ (@Mg(w) (16)
f(w1) g(w1)

where f(w) = : e RV, g(w) = eRN M
S (wn) g(wn)

is a symmetric positive semidefinite matrix. Sindhwani
proved H = (S(w), (e, ®)57)) that it also is an RKHS
and derived the form of the corresponding kernel function
with H:

k(xi, xj) = k(xi, x) — pkl (I + MK) "Mk, (17)

where K is the kernel matrix generated by the data sample w,
kle, is the kernel vector generated by the x; and data sample.
M 1is the regular matrix based on the data sample, and is
usually represented using Laplace mapping.

E(xi, xj) is a data-dependent kernel, which takes into
account the distribution of the original data. This allows it
to better reflect the geometry of the original data than the
original kernel.
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B. DICTIONARY LEARNING AND SPARSE
CODING METHODS
Applying the sparse coding algorithm to SPD manifold,
the problem can be transformed into how to use the linear
representation of the SPD matrix to remain an SPD matrix.
The eigenvalue of SPD matrix is always greater than 0, but
SPD manifold is not linear space. This means that sparse
coding of SPD matrix will face two problems. The first
problem is how to solve the linear combination of SPD matrix
still is SPD matrix, and the second problem is how to measure
the relationship between two SPD matrices. According to the
dictionary learning of SPD manifold and the sparse coding
model, we can roughly divide the solution into three types:
1) Dictionary learning and sparse coding which inherent
in SPD manifold;
2) SPD manifold dictionary learning and sparse coding
method mapped to tangent space;
3) SPD manifold dictionary learning and sparse coding
method based on kernel method.

1) DICTIONARY LEARNING AND SPARSE CODING

METHODS INHERENT IN SPD MANIFOLD

The idea of sparse coding inherent in SPD manifold is to
directly model on SPD manifold, that is, the dictionaries is
also SPD matrices. The original data to be encoded is repre-
sented by a linear combination of dictionaries. And then the
Logdet divergence or Frobenius matrix norm is used to mea-
sure the reconstruction error. For an SPD matrix, the linear
combination of them is not guaranteed to be an SPD matrix.
There are two solutions, the first is to ignore the positive
definite condition of the matrix, and the second is to set the
limit of the positive definite condition. If the positive definite
condition is ignored, it is equivalent to ignoring the fact that
the eigenvalue of the matrix is greater than 0, which is equiv-
alent to the fact that the model becomes relatively simple
to solve the objective function when calculate in symmetric
matrix space. However, the original SPD manifold structure
was ignored. The constraint of positive definite condition
makes the objective function become non-convex, and it takes
a long time to solve.

Sivalingam proposed Tensor Sparse Coding (TSC) for
positive definite matrices [31], which represents a positive
definite matrix as a linear combination of positive definite
matrices, and then restricts the combined matrix to positive
definite, that is, dictionary set is D = {di,---,dr} <

L

Sym', ., X can be expressed as X = > yid;, where y; is the

i=1
combination coefficient, and then the Logdet divergence is
used to measure the reconstruction error:

Dy(X,X) = tr(X~'X) — logldet(X™'X)] —d  (18)

The solution of the sparse coding objective function
becomes the MAXDET optimization problem, which can
be solved by the interiorpoint algorithm. In addition,
Sivalingam further proposed a Tensor Dictionary Learning
algorithm based on Logdet divergence [32]. However, the
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computational complexity of the above two methods is too
high. Sra and Cherian used the Frobenius matrix norm as
the error metric to learn a matrix dictionary with rank-1 to
represent the SPD matrix [33]. However, existing research
results [17], [34] show that the Frobenius matrix norm is
simply to vectorize the SPD matrix and then calculate the
vector norm value between two vectorized SPD matrices. The
Frobenius norm is not a good measure because it ignores the
geometry of the SPD manifold. Anoop proposed that the SPD
matrix represents a linear combination of the SPD dictionary
matrix and strictly requires that the combination coefficient
is greater than or equal to O [1], for x; € Sym’} , the dictionary
setis D = {di,---,dr} € Sym’ and y; € RT, where
y; is the combination coefficient, and then the Riemannian
geodesic distance is used to measure the reconstruction error,
the objective function established is:

) 1 n n
min =Y dg(x;, Dy) + »_ Sparse(y;) + Q(D)  (19)
Dyerl 245 i=1
L
where Dy; = ) y;D;, Sparse(e) is the sparse regular
=1

j=

term and Q(D) is the regular term for the dictionary D.
1 1

And d2(x.Dy) = |log(x~3 YX‘f)HF is geodesic dis-

tance. Similarly, because the coding coefficient is restricted
to be greater than or equal to 0, the objective function
is also non-convex, and optimization requires a large time
overhead.

2) SPD MANIFOLD DICTIONARY LEARNING AND SPARSE
CODING METHODS MAPPED TO TANGENT SPACE

The sparse coding and dictionary learning model in Euclidean
space cannot be directly applied to SPD manifold. In order
to apply the existing vector-based sparse coding algorithm to
the SPD matrix manifold, one idea is to map the SPD matrix
manifold data onto the vector space. There are two mapping
spaces available. The first is the tangent space of the mean
point of the SPD manifold data, which can map one SPD
matrix to the tangent vector of the tangent space of another
SPD matrix. The tangent space of SPD matrix is linear space,
and the tangent vector on the tangent space is symmetric
matrix. The second is Exp mapping, which can map the
tangent vector on the tangent space of an SPD matrix to the
SPD manifold. Using these two mappings, Zhang mapped
the region covariance feature to the tangent space, and then
obtained the sparse representation [35] by vectrization. Guo
maps the SPD matrix manifold to the tangent space [36],
and then the SPD matrix of each mapping on the tangent
space can be represented by linear combinations of the SPD
matrices of other mappings. Yuan calculated the sparse rep-
resentation by mapping SPD manifold to tangent space [37],
and then applied it to motion recognition problem. Although
the method based on Log-Euclidean mapping can be applied
to SPD manifold by mapping SPD matrix manifold data to
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linear space, the sparse coding method based on Euclidean
vectors can be applied to SPD manifold. More importantly,
the tangent space of a data point of an SPD matrix manifold
can only retain the local geometric structure of the neigh-
borhood of that point, so if all data points of an SPD matrix
manifold are mapped to the tangent space of the same point.
The tangent space cannot reflect the geometric relationship
between all points, so learning dictionary may not be optimal,
which will affect the effect of sparse coding.

3) SPD MANIFOLD DICTIONARY LEARNING AND SPARSE
CODING METHODS MAPPED TO RKHS

SPD manifold are nonlinear space. Another approach is to
map the SPD matrix to the RKHS. First, we need to define a
kernel function that it will produce a unique RKHS.

Harandi uses the Stein kernel function to map the SPD
matrix manifold data to RKHS [13], [17], and then builds a
model on RKHS to solve the problems of sparse coding and
dictionary learning. The training data X = {x1,--- ,xy} <
Sym, . and D = {dy,--- ,d.} € Sym!, | the initialized dic-
tionary are mapped to the RKHS by the non-linear mapping
generated by the Stein kernel function:

X = {x1, -, ) == oX) = {p(x1), -, 9an)}  (20)
D={d, - ,d1} > o) = {p(d), -, p(dr)} (1)

Then ¢(X) can be represented the linear combination of
¢(D) represented by RKHS and the regularization 1-Norm
restrictions on the combination coefficients can be used to
establish the objective function on RKHS:

N L 2 N
min Zl v x) - ;yw(d» + 2 le il 22)
= J= =

Zhang proposed an SPD manifold online dictionary learn-
ing algorithm based on the Stein kernel function [38]. The
Gaussian kernel function based on the Stein divergence
is only positively definite for some bandwidth parameters,
so the Stein divergence is only an approximation of the Rie-
mannian metric. So Barachant proposed a sparse coding and
dictionary learning method based on the Riemannian kernel
function and applied it in the human-machine interface [39].
Li based on the Log-Euclidean framework and proposed to
use the LE kernel function to map the SPD matrix manifold
data to RKHS to solve the sparse coding and dictionary
learning problems [16]. Similarly, the training data X =
{x1,---,xy} € Sym’| and the initialized dictionary D =
{d1, --- ,dp}are mapped to the RKHS through the non-linear
mapping ¢ generated by the LE kernel function, and then the
objective function is established on the RKHS:

N L 2 N
min X}j v ) - Z]jymd,-) + 2 Z} il @3)
= J= 1=
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The objective function can be derived as:

N L L L
min 21: -2 21: Vitke(is d) + Y Y yiyipke(dy, dp)
i= j=

Jj=1p=I

N
+2) il 24
i=1

where kg (e, o) is the LE Gaussian kernel function, which
is similar to K-SVD [39] when the dictionary is updated.
Although the method based on the LE kernel function has
achieved good results in face recognition and picture classifi-
cation, it does not reflect the geometric structure of the SPD
manifold. The key to mapping the SPD matrix manifold data
onto RKHS while preserving the geometry of the manifold
is the construction of the kernel function. Therefore, in the
SPD manifold dictionary learning and sparse coding methods
based on kernel methods, the selection and construction of
kernel functions is a key issue.

Although Sym’, does not form a linear space, we can
configure a metric or divergence to measure the difference
between the two SPD. The metric that is commonly used
today is the Riemannian metric. However, from the perspec-
tive of computational complexity, divergence seems to be
simpler than Riemannian metric [17]. Harandi uses the Stein
divergence and Jeff divergence defined by the Bregman diver-
gence to measure the difference between the two SPD [17].
Zhang et al argue that directly using the original eigenvalues
may be problematic, and propose a discriminative Stein ker-
nel, in which an extra parameter vector is defined to adjust
the eigenvalues of input SPD matrices [40]. Asha Das et al
applied RKHS-based sparse coding and dictionary learning
to breast tumor classification methods [41]. Zhi Gao et al pro-
pose a novel SPD distance measure for the similarity-based
algorithm [42]. That is a tailored set-to-set distance measure
by making use of the family of « — B divergences and
further propose to learn the point-to-set transformation and
the set-to-set distance measure jointly, yielding a powerful
similarity-based algorithm on SPD manifold.

Definition 7: Let ¢ : Sym’; — R be a strictly convex dif-
ferentiable function on the definition Sym’ , then the Bregman
divergence d; : Sym’; x Sym’, — [0, +o0] on Sym| is
defined as: for any X, Y € Sym/,,

3¢(¥)
diX,Y)=¢(X)—¢(¥) —{ =5 X - ¥ (25)
ay) 3l
ay11 3Y1n
where (X, Y) =or(XTY), %0 = | -
) W

. . Oyl ’ 0V
Using the Bregman divergence, the Stein divergence and

Jeff divergence can be further defined.
Definition 8: Let the strictly convex differentiable func-
tion in Bregman divergence be {(X) = —log|X|, and the
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definition of Jeff divergence is as follows:

1 1
JIX,Y) = Ed;(X, Y)—{-Ed;(Y,X) (26)
Definition 9: Let the strictly convex differentiable func-
tion in Bregman divergence be {(X) = —log|X|, and the
definition of Stein divergence is as follows:
SX,Y)= ]d X X+Y)+ 1a’ Y X+Y) (27)
T2 27 T

Bregman divergence is only an approximation to the
geodesic distance of SPD manifold, so the kernel function
based on Bregman divergence has some defects, such as it
cannot fully reflect the true distance between two point of
SPD manifold.

IV. SPD DATA DICTIONARY LEARNING FOR
DATA-DEPENDENT KERNEL LEARNING

BASED ON RIEMANNIAN METRIC

A. SPD DATA AND RIEMANNIAN METRIC

At present, using local covariance descriptor to extract feature
data from image or video data is a very popular method.
Such feature matrices are SPD matrices. Sym’| , is not a
linear space so that matrix addition and multiplication of
real numbers does not ensure the result is still SPD matrix.
The finite-dimensional linear space is isomorphic with the
Euclidean space. Various machine learning algorithms devel-
oped on Euclidean space that cannot be directly applied
to Sym'} | .

Although Sym’, | cannot constitute a linear space, we can
define a measure on Sym’| ,. This measure measures the
distance between two SPD matrices. Here we use the Rieman-
nian metric, which is the most commonly used. The geomet-
ric structure of Sym} | is usually kept by Riemannian metric.
Only the Riemannian metric is defined and the geodesic
distance generated by the Riemannian metric. Because the
distance between the tangent vectors on the tangent space can
reflect the geodesic distance of the corresponding points on
Sym’,_, . Log-Euclidean metric is a Riemannian metric that it
is usually used.

B. SAMPLE-DEPENDENT AND LEARNABLE KERNEL
Because Sym'| | does not constitute a linear space in the real
field, we cannot do dictionary learning directly in Sym/| ,.
This is because dictionary learning involves many linear oper-
ations. The algorithm in this paper is to map Sym’} , to RKHS
H and then do dictionary learning on H.

H can be uniquely determined by the kernel function. Now,
the downside of the kernel approach in machine learning is
that we do not have a lot of kernels to choose. For specific
machine learning, existing kernel methods and samples are
not closely related. Whatever the sample is, the original data
maps to the same RKHS. This paper proposes a framework
based on data-dependent and learnable kernel as follows:

k(x,y) = kp(x, ) + ¢ BT OMBG), ¢ >0 (28)
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where kp(x,y) is a kernel function, called the basic kernel
function. It can be selected according to needs, but must
satisfy the conditions of SPD.

Remark 5: M is a symmetric semi-positive definite
matrix, which is the learnable part of the kernel function. For
example, in this article, M will be optimized according to the
requirements of dictionary learning.

Bx, x1)

Remark 6: E(x) = e RV, where
Bx, xn)

{x1,---, xn} is the dataset, N is the number of given learning

samples. B(x, y) is any binary function, which can be selected
according to the specific application.

For any finite number of data {xi, - - - , xy}, there is
[ k(xy, x1) k(xi, xn)
K = : :
| k(xn, x1) k(v , xn)
[ kp(x1, x1) kp(x1, xn)
| kp(xn, x1) kp(xn , xn)
BT (cOMB(x1) BT )M Bxn)
+¢ : :
BT (en )M B(x1) BT (on )M Bxn)
=Ky + ¢ M® (29)

where ® = [E(xl) e E(xN)] € RVN*N_ Because kj(e, o) is
a kernel function, K, is an SPD matrix, and because M is
a symmetric semi-definite definite matrix, OTM P is also a
symmetric semi-definite definite matrix. Therefore, K is an
SPD matrix.

Note that belkin’s kernel framework %(x,-, x;) = k(x;, xj) —
,uk)g (I +MK )_lexj starts from space [43]. It first redefines
an inner product, and then proves that the inner product sat-
isfies the sufficient and necessary conditions for reproducing
kernel, while our proposed framework starts from the kernel
function.

C. DICTIONARY LEARNING BASED ON KERNEL LEARNING
AND RIEMANNIAN METRIC (KLRM-DL)

This paper proposes dictionary learning based on kernel
learning and Riemannian metric. KLRM-DL first builds an
RKHS H based on the data-dependent and learnable kernel
function k(e, e) proposed in this paper, then uses k(e, @) to
transform a given dictionary learning sample to H, and finally
do dictionary learning in H.

1) BASIC KERNELS BASED ON LOG-EUCLIDEAN METRIC
KLRM-DL selects the radial basis kernel function [15] and
the Log-Euclidean metric as the basis kernel function for
data-dependent and learnable kernel functions:

kp = e %G1 (30)
where 81 (x, y) is Log-Euclidean metric as defined in Eq. 14.
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2) THE CONSTRUCTION OF DICTIONARIES IN RKHS

Since Sym’, , does not constitute a linear space, it makes
little sense to learn dictionaries on Sym’, . And our machine
learning is only done in RKHS H, not in Sym} . Therefore,
we only need to learn dictionaries in H.

Let X = {x;,---,xy} € Sym, be a set of data
points used for dictionary learning, and use the reproduc-
ing kernel of H to transform X into a set of new data
points ¢(X) = {¢(x1), -, oxy)} € H. KLRM-DL uses
a linear combination of ¢(X) to construct the dictionaries
{p(d1), -+, p(dL)} € H:

N
o(d) =Y byp(x) eH, i=1,- L (31)
j=1
bin - biy

where B = o =

BlRow
e RN And B

bry -+ by Brrow

is a dictionary generation matrix.
Obviously, learning a dictionary in H is learning B. And
then we can derive:

N N
(o(dy), p(dy)) = <Z byip(xi), qujgo(xj>>
i=1 j=1

bpibgi (p(xi), 9(x)))

Il
M=
M=

Il
~.
Il

Il
M=
M=

bpibgik(xi, x;)

1 j=1

= BprowKB g, (32)

And finally we come out:

(p(d), p(dy)) (o(d1), p(dL))

{p(dL), ¢(d1)) {p(dL), ¢(dL))

B T T
BIR(’WKBIROW BlR(’WKBLROW
T T
_B LRUWKB 1Row B LRUWKBLR()W

r T T
BIR”WK[BIR()W o 'BLRow]

_BLROWK [B{Row e BZRGW]

_B lRawKB T

= : = BKB" (33)
| BrrowKB”

D. THE MODEL OF KLRM-DL
The objective function of dictionary learning is

2
L

1 e = > ajed)| + rSparse(Airon) | (34)
i=1 j=1
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ary -+ air A1Row
whereA=| © . |= is a sparse coding
ani - AanL ANRow
matrix for dictionaries. Then
L 2

o) = ) ajo(d)
j=1
= [lo(x)|I* + AirowBKBT AL

iRow
So

N L 2
Z P(xi) — Zaij(ﬂ(dj)
i=1 Jj

1

- 2AiRowBK'T

iRow

(35)

= Z loGe)ll? + tr(ABKBTAT) — 2tr(ABK) ~ (36)

i=1

N
Since )’ ||g0(x,-)||2 has nothing to do with B and A,

i=1
the objective function for dictionary learning is simplified as:

N
%1 tr(ABKBTAT) — 2tr(ABK) + Z Sparse(Airow)

i=1

(37)

In the above objective function, the sparse coding matrix A
is not necessary. The dictionary generation matrix B is what
we want to get.

Further, KLRM-DL uses the data-dependent and learnable
kernel function k proposed in this paper, where the learning
samples use the learning samples X to do dictionary learning.
k in this paper is

K=K, + (D' M® (38)
k(xr,x1) - k(xr, xn)
where K = : : ,
k(xn,x1) -+ k(xn, xn)
® = [Bxi), -+, Blaw)]
Blx1, x1) Blx1, xn)
= : : e RVN - (39)
Bxn, x1) Bxn, xN)
Therefore, the objective function of KLRM-DL is:
N

: 2 T T AT
E I? + tr(AB(Kp, + ¢ ®T M )BT A
A{%{r]}l_ 1|I<0(xz)ll r(AB(Kp + ¢ ) )
=

N
—2tr(AB(Kp + t T M ®)) + A Z Sparse(Ajgow)  (40)
i=1
Remark 7: 1f you take B(x, y) = kp(x, y), then
kp(x1, x1) kp(x1, xn)
¢ = : . : e RNV,

kp(xn , x1) kp(xn , xn)
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And then
K = Kp + ¢ KpMK), = Kp(Iy + {MKp) 41)

E. SPARSE CODING
After KLRM-DL, B and kernel function feature matrix M will
be determined.

For any x € Sym’| ,, the objective function of its sparse
coding matrix is:

L 2
o(x) = > _ajp(d)| = llew)I* +a" BKB a
=1
] —2a’ Bk(x) (42)
where a = [a1, - -+ , oz ]T and
k(x, x1) kp(cx, x1) BT (x)MB(x)
k=] = |= : +¢ :
k(x, xn) kp(x, xy) BT (xen )M B(x)
= kp(x) + ¢ T MB(x)

So the objective function of sparse coding of x is:

mina’ BKBT a — 2a" Bk(x) + ASparse(a) (43)
a
V. SOLUTION TO KLRM-DL
The final objective function can be expressed as:

2

N L
min, le 9(x1) — Airow le bijp(x)|| + ASparse(Airow)
= j:

N
= min ;ac(x,-, xi) — 2AiRowBk(x;)
1=

+ AirowBK (X, X)BT AL, ) + ASparse(Ajgoy)  (44)

where

k(x, x1) k(x1, xn)

KX, X) =

k(xn, x1) k(xy, xn)

The key to dictionary learning and sparse coding on SPD
manifold is to choose a suitable kernel function. Kernel
functions use the data-dependent kernel functions k(x, y) =
kp(x,y) + ;ET(x)ME(y), ¢ > 0 proposed in this paper.
This kernel function learning and dictionary learning can be
combined.

KLRM-DL needs to learn the dictionaries and kernel func-
tion parameters. The dictionaries and kernel parameters can
be learned together or separately. This article adopts the
strategy is learning together.

Given training data X = {xy,--- ,xy} C Sym'jr 4 learn-
ing dictionaries and kernel parameters use an alternating
optimization strategy, which is divided into three steps in
each iteration: update the sparse coding matrix A, update
dictionary coding matrix B and update kernel parameters M.
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The other two variables are fixed when each variable is
updated. The steps are explained below.

1) Update the sparse coding matrix A. In the process of A,
fixed M and B,the objective function is:

N
min ) (~2AigowBk(x)

i=1

+AirowBK (X, X)B" Alg,,)

+ ASparse(Airow) (45)
The solution of the above equation is a typical Lasso
problem which can be quickly solved by the toolbox
SPAMS [44] or CVX [45].

2) Update dictionary coding matrix B. During this phase,

the coding results A and kernel parameters M are fixed.
The objective function is:

N
min 2;(—2AiRovak<xi)
1=
+ A[ROWBK(Xv X)BTAZI;OW)
= ml;n (—2tr(ABK (X, X))

o (ABK(X, X)BTAT)) (46)
The function about B is:
f(B) = —2tr(ABK(X, X)) + tr(ABK (X, X)BT AT)
(47)
The derivative of f(B) with respect to B, we get:
f _Zatr(ABK(X, X)) N atr(ABK (X, X)BTAT)

dB 9B OB
= —24TK(X,X)+ 2ATABK (X, X) (48)

Let the derivative be 0, we can get the updated formula:
B=ATa)~'AT (49)

3) Update kernel parameter. When updating the kernel
parameters M, A and B are fixed, and the objective
function is:

N

min 2<k(xl-, Xi) — 2AiRow Bk (x;)
1=
+ AirowBK (X, X)BT ALy ) + atr(MT M)

= n}viln r(®Z, X)'Md(Z, X))

—2tr(AB®(Z, X) M (Z, X))
+tr(ABO(Z, X)" Moz, X)BTAT)
+trMTM) (50)
where tr(MT M) is the regular term for M, ®(Z, X) =
Bz, x1) --- B(z1,xN)
: : : € RN and Zz =

B(zg,x1) -+ Blzg,xN)
{z1,--+,zp} canbe a subset of X = {x,---, xy}, not

necessarily Z = X.
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Let

fM) = tr(@Z,X)"Md(Z, X))
—2tr(AB®(Z, X) ' M®(Z, X))
+tr(ABO(Z, X)"Mo(Z, X)BT AT)
+r(MTM) (51)

There are two main ways to solve the above equation,
one is Trust-region method [46], the other is Riem-CG
method [47]. Riem-CG can get results faster and the
results are stable, so we use Riem-CG to update M in
this paper.

For a smooth nonlinear function f(x),x € R”,
the updated formula of the Riem-CG method in the 741
iteration is:

Xeyl = Xt + V& (52)
where & is the gradient descent direction:
& = —gradf () + i1 (53)

where gradf (x;) is the gradient of the function f at xi
and g that is the conversion between & and &;_:

_ (gradf (x,))" (gradf (x;) — gradf (x—1))
gradf (x;—1)" gradf (x,—1)

The step size y; can be calculated by line search [48].

For Riem-CG, the difference is that the gradient uses

the Riemannian gradient gradg;.,,f (M), and the rela-

tionship between the Riemannian gradient and the

Euclidean space gradient [49] is:

1 of (M aif (M

2

where 3];53[4) represents the Euclidean space gradient of
f(M) to M. Since gradg;.,,(M) and gradg;..f (Mi—1)
belong to different tangent spaces Ty, Sym’ and
Ty,_, Sym'y, so the equation above cannot be applied
directly. The solution is to use vector transfer, which
transfers a tangent vector to a Riemannian manifold
corresponding to the tangent vector on the point.
The updated formula of the Riem-CG method ¢ + 1
iteration is:

(54)

t

YOM - (55)

M1 =M, + yé (56)

where &; is the gradient descent direction:

& = —gradRiemf(Mz) + H‘gy,él -1 (57)

where 0, ¢, (§;—1) represents vector transfer:

d
Oy, (Er—1) = EexPM,,l(J/zfz—l +x&-Dlx=0 (38)
u; of Riem-CG method:

= (gradgemf (My), gradg;e,f (M;))
" (gradpien (M)), gradgienf (M)
0y,&,_, (gradyiem/ (M;))

_ (59)
<gradRiemf(Ml‘)’ gradRiemf(Mt))
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The Riem-CG method requires the gradient of
Euclidean space of f (M) when calculating the Rieman-
nian gradient of (M), and the European-style spatial
gradient of f (M) to M is:

Af M) Atr(d(Z, X)TMD(Z, X))
oM oM
2tr(AB<I>(Z, X\)TM®Z, X))
oM
Atr(AB®(Z, X) M d(Z, X)BT AT)
+ oM

atr(MTM)
+ -
oM
= d(Z,X)dZ, X))’
20z, X)BTAT oz, x)T
+ o, X)BTATAB®(Z, X)T +2M  (60)

The matlab version of the Riem-CG method is inte-
grated in the manopt toolbox [50]. The algorithm flow
of dictionary learning and kernel learning can be saw
in Algorithml.

Algorithm 1 Dictionary Learning and Kernel Parameter
Learning

1) Input: training data X = {x,---,xny} < Sym’j_, data
sample Z = {z1,---,z9} € Symi, numbers of dictio-
naries L, maximum number of iterations Tz, .

2) Output: dictionary B, kernel function k.

3) Initialization, initialization dictionary D generated by
SPD manifold clustering algorithm, t = 1.

4) Repeat Tjer

5) Sparse coding: update A by equation (45)

6) Dictionary update: update B by equation (49)

7) Kernel parameter update: update M by equation (56)

8) Until t + + = Tjger

VI. EXPERIMENTS

In order to understand the effectiveness of the algorithm
proposed in this paper and the influence of related parameters
on model performance, this section compares the algorithm
with other algorithms based on three real data. We have
three datasets, the first is Queen Mary University of London
(QMUL), the second is texture data (Brodatz), and the third
is face data (FERET). The first step of the experiment is to
test the effect of the parameters of the algorithm model on
the experimental results, so as to determine better param-
eters. The second step of the experiment is to compare
with other algorithms on three commonly used public data
sets. The basic kernel function and data-dependent binary
function used in this paper are Gaussian kernels based on
Log-Euclidean metric. Our accuracy was measured by linear
classifier based on ridge regression and classification method
based on minimum reconstruction error, represented by CRR
and 1-NN respectively.
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TABLE 1. Distribution of the QMUL dataset.

label b bg f 1 r

train 2256 2256 2256 2256 2256
test 2096 1107 1772 1502 2248

A. COMPARISON ALGORITHMS

The comparison algorithms are RSR [17], TSC [33] and K-
LE-DLSC [13]. In RSR, RKHS is generated by using a kernel
function and SPD data are transformed to RKHS by using
the kernel function. Two kernel functions are used in RSR:
ky(x,y) = e and kg(x, y) = e 5&Y) where J(x, y)
and S(x, y) are Jeff and Stein divergence respectively, both
of them are developed from Bregman divergence. The main
difference between RSR and our algorithm is that the kernel
functions in RSR are not learnable. By the way, our algorithm
uses Riemannian metric, not divergence.

In TSC, dictionary learning and sparse coding are per-
formed directly in the SPD space, instead of transferring to
RKHS. Since the linear combination of SPD matrices is not
necessarily an SPD matrix, TSC stipulates that the combina-
tion coefficient must be non-negative. The main difference
between TSC and our algorithm is that TSC is not based
on RKHS. In addition, the kernel functions in TSC are not
learnable either.

As well known, SPD dataset does not form a linear space
under the usual matrix addition and scalar multiplication.
K-LE-DLSC defines a special matrix addition and scalar
multiplication to make SPD dataset become a linear space,
and then defines inner product to make SPD dataset become
inner product space. Then, K-LE-DLSC defines kernel func-
tions by using these newly-defined inner products. The main
difference between K-LE-DLSC and our algorithm is that the
kernel functions defined in K-LE-DLSC are not learnable.

B. EXPERIMENTS ON QMUL DATASET

In this section, we do two experiments on the QMUL dataset.
The first experiment is to select appropriate parameters to
make the algorithm better. The accuracy of the classifica-
tion experiment was calculated to determine our parameter
selection. The second experiment is to compare the algorithm
proposed in this paper with other algorithms on the QMUL
dataset, so as to verify the reliability of the algorithm pro-
posed in this paper.

The QMUL dataset [51] is a dataset composed of pictures
of the human head, and the pictures are collected from the
terminal camera of the airport. This dataset has 20005 images.
Image is divided into five types of ‘back’, ‘background’,
‘front’, ‘left’ and ‘right’, each category represents a direction
of the head picture. ‘Back’ represents back image, ‘back-
gound’ represents background image, ‘front’ represents posi-
tive image, ‘left’ represents left image, ‘right’ represents right
image. Some sample pictures are shown in Fig. 1. The dataset
has been divided into training set and test set in advance.
The number of pictures in each type of QMUL dataset and
the specific division of training set and test set are shown
in Table 1. In this experiment, each picture is represented by

VOLUME 8, 2020



R. Zhuang et al.: SPD Data Dictionary Learning Based on KLRM

IEEE Access

Back

Background

Front

Left
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Right ;

FIGURE 1. QMUL sample picture.

?

a 13 x 13 SPD matrix, which means each position of the pic-
ture can be expressed by the 13-dimensional feature vector.
Meanwhile, the 13-dimensional feature vector is calculated
by the following formula:

FOe ) = ULx, ¥, La(x, y), In(x, y), 12+ 12,
12
arctan(%), Gi(x,y),---,Gs(x,y)] (61)
y

where I, (x, y), I,(x, y) and I,(x, y) are the three channel val-
ues of the CIElab color space. /; and Iy is one-step-degree
value respectively in the directions x and y of I (x, y), and
Gi(x,y),i = 1,---,8 is the response value of 8 DOOG
(Difference of Offset Gaussian) fifilters at the position (x, y).
Then by calculating the covariance matrix of all eigenvectors,
we can get a 13 x 13 SPD matrix. During the experiment,
200 pictures from each class were randomly selected from
the training set as training data to learn the dictionary and
kernel parameters. Later, 300 pictures from each class were
randomly selected from the test set, where 200 pictures were
used as training data for the classififier and the remaining
100 pictures were used as the testing data to calculate the
classification accuracy rate.

For ease of reading, the number of dictionaries is denoted
as Kp, and the number of data dependencies selected is
denoted as Kz. Because the length of the encoding vector
is consistent with the number of dictionaries Kp, Kp will
have a great impact on the encoding result. When Kp is
too small, the encoding will be so short that the information
may be missing. When Kp is too large, the computational
complexity will increase first, and then the encoding vector
may contain redundant information, so that the number Kp is
not necessarily as large as possible. Hence, in order to find
out the Kp impact on the encoding result, we can change
the value Kp but keep other settings of the algorithm model
fixed. We can change Kp to find the impact according to
the classification accuracy of the encoding result. In terms of
experimental parameter settings, the number of data samples
is 200 per class. The basic kernel function used is the kernel
function based on Riemannian metric. The parameter of this
kernel function alpha is set to 0.1. The kernel function of
the data dependencies is also the kernel function based on
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FIGURE 2. Relationship between classification accuracy and number of
dictionaries.

Riemannian metric. The parameter alpha is also set to 0.1,
and Kp is in steps of 10, from 10 to 100. The changes in the
encoding result are shown in Fig. 2. It can be seen that the
number of dictionaries is not as large as possible. When the
number of dictionaries reaches a certain number, the effect of
classification has no longer increase significantly.

In the data-dependent kernel function, data dependency is
affected by two aspects, where one is the parameter, and the
other is the data sample. Both the distribution and the number
of data samples will affect the results of data dependency
and functions. In order to explore the effect of the number of
data samples Kz on the encoding results, we can keep other
settings of the algorithm model fixed, and only change the
values Kz. And then we can find the impact of Kz based on
the classification accuracy of encoding results. In terms of
experimental parameter settings, the number of dictionaries
is 50. The basic kernel function used is the Stein kernel
function. The parameter alpha of the kernel function based
on Riemannian metric is set to 0.1. The kernel function of
the data dependency is also the kernel function based on
Riemannian metric. Kz is set in steps of 10, from 10 to 100.
The variation of coding results with Kz is shown in Fig. 3.

—CRf

7300%
7200% \/\/\_/\
7100%

accuracy %
2
H

10 0 30 40 50 60 70 a0 80 1m

number of data samples
FIGURE 3. Relationship between classification accuracy and K.

Finally, on the QMUL dataset, the proposed method
is compared with dictionary learning and sparse coding
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TABLE 2. QMUL dataset classification accuracy rate (%).

method 1-NN  CRR
Riem-DLSC 38.6 36.6
RSR-S 57.3 73.2
K-LE-DLSC-Poly 54.3 66.7
K-LE-DLSC-Exp 56.4 65.6
K-LE-DLSC-Gaussian 54.5 72.4

KLRM-DL 70.34  70.74

algorithms on SPD manifold in recent years, including
K-LE-DLSC [13], RSR-S [17], and Riem-DLSC [1], which
are all introduced in related section above. The classification
accuracy results of each algorithm are shown in Table 1.

KLRM-DL have higher classification accuracy. Hence,
Rime-DLSC has a much lower classification accuracy than
the method based on the kernel method directly in SPD. How-
ever, in the kernel method, the RSR-S using the Stein kernel
function. KLRM-DL has a higher classification accuracy rate
than K-LE-DLSC-Gaussian using LE Gaussian kernel func-
tion. Meanwhile, the proposed method KLRM-DL showing a
better effect than using the Stein kernel function only. Thus,
it can be considered that KLRM-DL are effective.

C. EXPERIMENTS ON THE BRODATZ DATASET

In this section, we perform a classification experiment on the
Brodatz dataset [52]. There are 112 texture photos in this
dataset, each photo representing one type of texture. In this
paper, two experiments will be performed on the Brodatz
dataset, one is a grouping experiment with selected textures,
and the other is a classification experiment for all texture
images.

D24 D53 D84

FIGURE 4. Brodatz dataset sample texture picture.

In the experiment of partial texture classification, we set
up the same experiment as [31]. A total of several groups of
classification experiments are set, and each group of experi-
ments contained multiple sets of data. The pictures of some
participating experiments are shown in the Fig. 4 above. The
categories and numbers selected for each group of experi-
ments are different, as shown in the Table 3 below.

For each set of data in each set of experiments, each picture
is first down-sampled to size 256 x 256, and then divided
into 64 non-overlapping local regions of size 32 x 32. For
each position /(x, y) of each local region, the feature vectors
are calculated on I(x, y). The vector uses the 5-dimensional
feature vector, and then calculates the covariance matrix of
all feature vectors in each local area, and obtains a matrix
of size as the 5 x 5 SPD matrix representing this area.
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TABLE 3. Brodatz group experiment data selection.

Experiment number Picture selection

5-texture-1 D77, D84, D55, D53, D24
5-texture-2 Fabric.0000, Fabric.0017, Flowers.0002,
Leaves.0006, Leaves.0013 [31]
5-texture-3 Fabric.0009, Fabric.0016, Fabric.0019,
Flowers.0005, Food.0005 [31]
5-texture-4 Fabric.0007, Fabric.0009, Leaves.0003,

Misc.0002, Sand.0000 [31]

D4, D9, D19, D21, D24, D28, D29, D36, D37, D38
Fabric.0009, Fabric.0016, Fabric.0019, Flowers.0005,
Food.0005, Leaves.0003, Misc.0000, Misc.0002,
Sand.0000, and Stone.0004 [31]

D3, D4, D5, D6, D9, D21, D24, D29,

D32, D33, D54, D55, D57, D68, D77, D84
Fabric.0007, Fabric.0009, Fabric.0013, Fabric.0014,
Fabric.0016, Flowers.0005, Food.0005, Grass.0001,
Leaves.0003, Leaves.0008, Leaves.0012, Metal.0000,
Metal.0002, Misc.0002, Sand.0000, Stone.0004 [31]

10-texture-1
10-texture-2

16-texture-1

16-texture-2

The generation of a 5-dimensional feature vector follows the
following formula:

fx,y) = [U(x,y), d1/dx, 31 /dy, 3°1/0x%, 3°1/3y*]  (62)

where (x, y) is the position coordinate, I (x, y) is the gray value
of the position, d//dx and d//dy are a step in the x and y
directions, 8% I/dx> and 82I/dy* are two steps in x and y
directions respectively. A 5 x 5 SPD matrix can be obtained
for each local area, and each SPD matrix can generate 64 SPD
matrices. That is, each type of texture has 64 SPD data.

In order to keep consistent with the experimental settings
in [17], 14 SPD matrices are selected as data-dependent
samples for each type of texture. The data-dependent samples
remain unchanged in all experiments. During the classifica-
tion experiment, 10 SPD matrices are randomly selected for
each type of texture. Dictionaries are randomly selected 20 of
the remaining 40 SPD matrices as the reference set of the
nearest neighbor classifier, and the remaining 20 as the test
set, sparsely encode the reference set and all SPD matrices
in the test set with the learned dictionary. Finally the 1-NN
classifier was used to calculate the classification accuracy
rate. The classification results of each group of experiments
are shown in Table 4.

TABLE 4. Grouping experiment of the dataset Brodatz classification
accuracy rate (%).

Method KLRM- Riem-

DL DLSC

RSR-S K-LE- TSC

DLSC

5-texture-1 100.0 97.4 99.9 99.7 99.5
5-texture-2 88.7 73.8 86.6 87.9 93.2
5-texture-3 98.7 73.2 91.0 91.8 89.3
5-texture-4 96.7 94.1 96.9 97.5 85.6
10-texture-1 95.7 71.4 95.3 96.0 87.7
10-texture-2 90.0 71.3 88.5 88.0 81.1
16-texture-1 93.3 74.2 91.2 90.4 85.6
16-texture-2 81.3 52.6 81.1 79.2 79.2

In the packet texture -classification experiment, the
KLRM-DL proposed in this paper are compared with the
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FIGURE 5. Comparison of algorithms for 1-NN classification accuracy in

Brodatz dataset.
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existing sparse coding methods on SPD manifold. The com-
parison methods are TSC [31], RSR-S [16], K-LE-DLSC [14]
and Riem-DLSC [1].

It can be seen from Table 4 that the KLRM-DL pro-
posed in this chapter have better performance on Brodatz
dataset than existing SPD manifold sparse coding methods.
The classification accuracy of KLRM-DL is the highest in
most groups, and the classification accuracy of Riem-DLSC
directly modeled on SPD manifold is lower than that of SPD
manifold converted to RKHS. In grouping experiments with
a large number of categories, the classification accuracy rate
of methods such as RSR-S using the Stein kernel function
and K-LE-DLSC-Gaussian using the LE kernel function is
lower than that of grouping experiments with a small number
of categories. However, the KLRM-DL method proposed in
this chapter can still maintain a high classification accuracy
rate when the number of categories is increased. On the
16-texture-1 group, KLRM-DL is 2.1% higher than the high-
est value of the other methods. KLRM-DL on the 16-texture-2
group?2 is similar to the highest value of the existing method,
and KLRM-DL can be considered to be effective.

In the classification experiments of all textures, the exper-
imental setup is consistent with [1]. There are 112 texture
images in the Brodat dataset. Each image represents a type of
texture. In all texture classification experiments, all texture
images will be used for experiments. The way to generate
SPD data for each texture picture is consistent with the pre-
vious grouping experiments with selected textures.

In the experiment, 14 SPD matrices are selected as data
samples for each type of texture, so the total number of data
samples is 1568, the number of data samples actually used
is 400, and the data samples are fixed, leaving 50 for each
type of texture. We randomly select 20 SPD matrices as the
training set learning dictionary and kernel function, randomly
select 20 SPD matrices as the reference set for the classifier
from the remaining 30 SPD matrices, and use the remaining
10 as the test set to calculate the classification accuracy.
Using the learned dictionary to encode all SPD matrices in
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the reference set and test set, and then use the 1-NN classifier
to calculate the classification accuracy rate.

TABLE 5. Accuracy of all texture classifications of Brodatz (%).

Method 1-NN

Riem-DLSC 74.9
Fro-DLSC 23.5
K-LE-DLSC 47.9

RSR-S 76.7
TSC 37.1
GDL 47.7

KLRM-DL 77.0

The method proposed in this chapter is compared with
the existing sparse coding methods on SPD manifold in the
experiments on the classification of all texture pictures in
the Brodatz dataset. The comparison methods are TSC [31],
RSR-S [15], K-LE -DLSC [14], Riem-DLSC [37], and
GDL [33]. The classification accuracy of each method on the
Brodatz dataset is shown in Table 5. As can be seen from
the table above, the KLRM-DL method achieves the highest
classification accuracy rate when all texture pictures are clas-
sified, which is 0.3% higher than the highest value RSR-S
in the other methods, which is 2.1% better than building
directly on SPD manifold Rime-DLSC method. In addition,
the KLRM-DL method is much higher than the Fro-DLSC
method directly modeled in symmetric matrix space and the
K-LE-DLSC method using the LE kernel function. It can
be seen that the KLRM-DL method is still effective in
multi-class classification.

D. EXPERIMENTS ON THE FERET DATASET

In this section, a face recognition experiment is performed
on the FERET dataset [53]. The experiment uses the ‘b’
subset of the FERET dataset. The ‘b’ subset contains a total
of 2000 face pictures from 200 people. The direction devia-
tion angle of the face is divided into 10 directions ‘ba’, ‘bb’,
‘be’, ‘bd’, ‘be’, bf’, ‘bg’, ‘bh’, ‘bi’, ‘bk’. The picture is a
grayscale image, the original size is 256 x 384. For each
picture, the area is first extracted where the face is located,
and then down-sampled to 64 x 64. Some sample pictures
can be seen in Fig. 6.

ba be bd be bi bg bh bk

FIGURE 6. Partial picture display of the ‘b’ subset of the Feret dataset.

In the experiment, in order to maintain the experimental
setting consistent with [17], the pictures in the direction of
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‘ba’, ‘bc’, ‘bh’, bk’ are used as the training set. We are
not need dictionary learning is performed that is because the
training set pictures have category labels and the dictionary
is labeled. The pictures in the direction of ‘bd’, ‘be’, ‘bf’,
‘bg’ are the test set. The data depends on the sample points
randomly selected from the training set. The experimental
dictionary on FERET has been fixed and has class labels,
and dictionary learning is not required. Therefore, the exper-
iments proposed by the algorithm on the FERET dataset
only use the kernel learning strategy. In the experiment, each
picture can be represented by an SPD matrix of size 43 x 43.
The generation of eigenvectors follows the following
formula:

f('x’ y) = [I(-xv )’)vx: Y, |G0,0(xa )’)|» ] |G4,7(x, )’)|] (63)

Among them, (x,y) is the position coordinate, I(x,y) is
the gray value of the position, and G, ,(x, y) is the response
value of the two-dimensional wavelet filter (Gabor Filter) at
the position (x, y). The direction u of the wavelet filter G, , is
from O to 4, and the scale v is from O to 7. There are 40 wavelet
filters in total.

Calculate the encoding result of the test set, and then use
the sparse encoding-based classification method described to
calculate the recognition accuracy rate. The results are shown
in Table 6.

TABLE 6. Correct rate of face recognition in Feret dataset (%).

method bd be bf bg average

SRC 27.5 555 61.0 26.0 425
GSRC 770 935 97.0 79.0 86.6
LogEuc-SC 740 940 975 805 86.5
TSC 36.0 73.0 735 445 56.8
RSR-S 825 945 98.0 835 89.6
RSR-J 795 965 975 86.0 89.9
KLRM-DL 895 960 97.0 940 94.1

The algorithm proposed in this paper is compiled and
run on the Matlab platform. The computer processor
used is Intel’s 8th-generation 8-core processor i5-8265U.
In 20 experiments, the average sample training time of the
code is 706.54s and the classification test time is 5.68s. It can
be seen that the training and testing time of the algorithm is
relatively short. And it is compared with the existing sparse
coding methods on SPD manifold. The comparison methods
are TSC [31], LogEuc-SC [20], SRC [2], GSRC [3] and
RSR [17]. It can be seen from Table 6 that the KLRM-DL
method proposed in this chapter has a higher face recognition
accuracy rate in the ‘bd’ and ‘bg’ subsets of the Feret dataset
than the comparison algorithm. The recognition accuracy rate
on the ‘be’ subset differs from the highest value by 6.5%, and
the recognition accuracy rate on the "bf’ subset differs from
the highest value by 4.5%, both of which are not much differ-
ent. It can be seen that the performance of KLRM-DL on each
subset is more stable and is not affected by the direction of the
face picture. The performance on the set is more stable and is
not affected by the orientation of the face image. In addition,
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KLRM-DL'’s average recognition accuracy rate in Feret’s face
set is much higher than the existing sparse coding method on
SPD manifold, which is 0.9% higher than the second one.
It can be considered that KLRM-DL is effective.

VIi. CONCLUSION

RKHS is a common mathematical platform for various kernel
methods in machine learning. The learning mechanism of
kernel approach is to embed the original data space into
RKHS via kernel function, where the Euclidean computa-
tions apply. The so-called kernel learning is to choose the
most suitable RKHS according to the specific application
of machine learning (dictionary learning, transfer learning,
etc.) and a given learning sample. Since RKHS can only be
generated by kernel functions, kernel learning is also kernel
function learning. The current dilemma of kernel learning is
that there are not many types of kernel functions that can be
learned, and there are not many parameters that can be learned
in these kernel functions, such as exponential parameters
in Gaussian kernel functions, or combination coefficients in
multi-kernel learning, and so on. The first contribution of this
paper is to propose a kernel framework that calls dictionary
learning based on kernel learning and Riemannian metric,
where the SPD matrix in the positive definite quadratic form
is the learnable part of KLRM-DL and Riemannian metric
can really represent the true distance between two points.

At present, the use of regional covariance descriptors to
generate SPD matrix feature data from images or videos is
increasingly common in machine learning. However, SPD
data itself does not constitute a linear space, and most
machine learning algorithms (such as dictionary learning
algorithms) involve a large number of linear operations.
At present, a common method is to transform the SPD data to
RKHS and perform machine learning in RKHS. The second
contribution of this paper is to apply the KLRM-DL proposed
in this paper to dictionary learning of SPD data. This article
first transforms the given SPD learning samples to the RKHS
generated by KLRM-DL, and then learns KLRM-DL and dic-
tionary simultaneously on RKHS according to the dictionary
learning criteria. The RKHS learned in this way provides the
most suitable working space for dictionary applications (such
as dictionary coding and dictionary-based recognition, etc.).
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