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ABSTRACT Cognitive prediction in the complicated and active environments is of great importance role in
artificial learning. Classification accuracy of sound events has a robust relation with the feature extraction.
In this paper, deep features are used in the environmental sound classification (ESC) problem. The deep
features are extracted by using the fully connected layers of a newly developed Convolutional Neural
Networks (CNN) model, which is trained in the end-to-end fashion with the spectrogram images. The
feature vector is constituted with concatenating of the fully connected layers of the proposed CNN model.
For testing the performance of the proposed method, the feature set is conveyed as input to the random
subspaces K Nearest Neighbor (KNN) ensembles classifier. The experimental studies, which are carried out
on the DCASE-2017 ASC and the UrbanSound8K datasets, show that the proposed CNN model achieves
classification accuracies 96.23% and 86.70%, respectively.

INDEX TERMS Environmental sound classification, spectrogram images, CNN model, deep features.

I. INTRODUCTION
Smart sound recognition (SSR) is a modern technique for
detecting sound events that exist in the real life. The SSR
is principally based on analyzing human hearing systems
and embedding such perception capability in artificial intel-
ligence applications [1]. Environmental sound classification
(ESC) takes part as a basic and necessary step of SSR. The
key target of ESC is to exactly detect the truth category
of a perceived sound, such as doorbell, horn and jackham-
mer. With the practical applications of SSR in audio surveil-
lance systems, smart device applications and healthcare [2],
the ESC problem has taken very much interest in recent
times. For automatic speech recognition (ASR) [3] and music
information recognition (MIR) [7], it has been achieved great
improvements with advances in machine learning. Because
of greatly non-stationary characteristics of environmental
sounds, these signals cannot be categorized as speech or
music only. In other words, the models constituted for ASR
and MIR will be poor when applying to ESC problems.
Therefore, it is important to develop the efficient machine
learning algorithm for ESC problems.

ESC is formed two main parts: audio based features and
classifiers. For feature extraction, audio signals are first
divided into frames with a window function such as Hamming

The associate editor coordinating the review of this manuscript and
approving it for publication was Victor S. Sheng.

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

or Hann window. Then, this set of features extracted from
each frame is used in training or testing processing [8].
Features based on Mel filters (Mel Frequency Cepstral Coef-
ficients (MFCC)) are commonly used features in ESC with
acceptable efficiency, although they are actually developed
for ASR [9], [10]. Also, a notable number of studies demon-
strate that concatenated features performed better than only
use one feature set in ESC missions. However, more concate-
nated conventional features cannot increase the classification
performance. Therefore, an appropriate feature concatena-
tion strategy is a vital part of sound classification. Artificial
Neural Network (ANN), Support Vector Machines (SVM),
Hidden Markov Model (HMM) and Gaussian Mixture Model
(GMM) are greatly used classifiers in sound and other cate-
gory. However, these conventional classifiers are designed to
classify apparent changes which conclude in the absence of
time and frequency invariability.

In recent years, deep learning (DL) models have been
demonstrated to be more capable than conventional classi-
fiers in resolving complicated classification problems. The
convolutional neural network (CNN) is one of the most
widely used models of DL, which could tackle the prior
restrictions by learning parameters, which is including the
time and frequency representations [10], [11]. The CNN is
constituted to process data that get in the shape of multi-
ple arrays: 1D signals, such as speech and biomedical signals,
and 2D for image or audio spectrograms [12], [13]. The CNN
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FIGURE 1. lllustration of the proposed method.

model constituted by Krizhevsky et al. [22] outperformed all
the conventional methods in the ImageNet Large Scale

Visual Recognition Challenge (ILSVRC-2012). This CNN
model known as AlexNet has pioneered the other popular
CNN models, such as VGGNet and ResNet. The pre-trained
CNN models, which are shared the learnable parameters,
have shown good performances in almost all classification
applications [4], [14], [15]. Moreover, hybrid approaches,
which consist of the pre-trained CNN models and conven-
tional classifiers, have been used to improve the classifica-
tion performance. In [16], the deep features are extracted
by using the pre-trained CNN model. The SVM and KNN
algorithms are used for hyperspectral images classification.
In [17], the pre-trained CNN models such as AlexNet and
VGG16 are utilized to extract deep features from EMG sig-
nals. The best accuracy is achieved with SVM classifier.
In [18], a new approach is proposed for the brain MRI clas-
sification. The feature set is constituted by combining the
AlexNet and VGG16 models with hypercolumn technique.
The evaluation is performed by the SVM classifier. In [19],
the deep features are extracted by the last fully connected
layer of the ResNet50 CNN model by using videocapsule
endoscopy (VCE) images for diagnosing celiac disease. In the
classification stage, the SVM, the KNN, the LDA and the
softmax classifiers are evaluated on a dataset. The best accu-
racy is achieved by the SVM classifier. However, the popular
pre-trained CNN models for feature extraction cannot fully
represent the sound characteristics as they are only trained
with images. In addition, the large input size and the very
deep network structure, which are needed for recognition of
high-resolution images may not be always required for ESC
problems. In this state, it is obtained the low computational
cost because of decreasing the learnable parameters.

In the paper, an approach, which consists of the deep
feature extraction and the classification stage, is proposed
for ESC problem. To this end, an end-to-end CNN model is
constructed and trained with the spectrogram images. Thus,
we obtain our own pre-trained CNN model. Then, the fully
connected layers of the constructed CNN model are discarded
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for feature extraction. Thus, a flexible CNN architecture
is obtained where the sizes and numbers of all layers are
freely changed by the authors. In the classification stage of
the proposed study, the random subspace KNN ensembles
model is used, which uses the vote of many prediction scores
in the subspace-feature sets. The classification accuracy is
used to evaluate the performance of our proposed method.
We further compare the performance of the proposed method
with other pre-trained CNN models and classifiers for clas-
sification performance. The classification accuracies have
been significantly improved by the proposed method com-
pared to the other studies on the UrbanSound8K [5] and the
DCASE-2017 ASC [6] datasets.

The main contribution of this paper is that a new CNN
architecture for ESC classification is proposed. The proposed
CNN model is not too deep which does not necessitates
too much training time. In addition, the achievement of the
proposed new CNN model is comparable with the pre-trained
CNN models.

Il. THE METHODOLOGY

The illustration of the proposed method is shown in Fig. 1.
According to the method, the input sound signals are initially
converted into time-frequency images by using the spec-
trogram method. The spectrogram parameters such as the
window type, window length and the overlap size are adjusted
during the experimental works. Later, the spectrogram images
are saved by using the viridis colour map and are resized to fit
them for the input of the proposed CNN model. The proposed
CNN model, which is shown in Fig. 2, is constituted of three
convolution, three max-pooling and normalization and three
fully connected layers. The softmax and classification layers
were followed the last fully connected layer. The rest part of
the used datasets is utilized for the feature extraction and the
testing process. The feature set is achieved with concatenating
the outputs of the first and second fully connected layers
of the proposed CNN. Finally, the performance of proposed
method is tested with the random subspace KNN ensembles,
which are used a robust classification algorithm.
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FIGURE 2. lllustration of the proposed method.

A. SPECTROGRAM IMAGES

The spectrogram method converts the signals into time fre-
quency images or loudness of a signal over time at different
frequencies existing in a specific waveform. The spectro-
grams also show how energy levels vary over time. Spectro-
gram of an input signal can be described as the square of the
Short Time Fourier Transform (STFT) magnitude. The STFT
formulation is given as follows.

F(manzzzzz_wx(nw(mnefmn )

where x(i) is input signal, and w(i) that is generally centered
at the time n is a window function such as Hamming and
Hanning window. Then, the spectrogram images are saved
via viridis colour map which is a homogenous colour map
changing from blue to green to yellow [20], [21].

B. CNN LAYERS

The CNN is designed to process data, which is taken from the
multidimensional data, i.e., a colour image composed of three
2D data including pixel density in the 3D channels. CNNs use
the properties of natural signals organized at four key ideas
that consist of shared weights, local connections, pooling and
other layers [22], [23]. Convolutional layer, ReL.U layer and
pooling layer are the most used CNN layers.

The basic aim of the convolutional layers is to determine
local connections of features from the previous layers and
mapping their information to particular feature maps. The
convolution of the input / with filter F (FeR?*%2%) is given
as follows.

a a
(I 5 F)p = Zk:—al 1 le_az 2P ihn—km—1 - (2)

ReLU (g (z) = max(0, z)) which is a non-linearity acti-
vation function, is applied the feature maps created with the
convolutional layers. The task of the max-pooling layers is to
combine similar features conveyed from the previous layer.
The max-pooling layers realize down-sampling operation by
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calculating the maximum value of the field on the feature map
overlapping with the filter [23].

CNN structure, which is from the fully connected (fc) layer
to classification layer, is in general similar to the multi-layer
perceptron neural network (MLP). The task of the fc layers is
the same as the hidden layers in the MLP. One or more the fc
layer can be in a CNN structure. The fc layer connects each
neuron in next layer to each neuron in previous layer.

Softmax function is generally utilized in CNNs, to match
the non-normalized values of previous layer to a possibility
distribution over predicted class scores [24].

Xi

o(xi) = j=1,....K A3)

Yjeied

where o (x;) is the softmax output for each x;, and x; repre-
sents values of the input vector.

The batch normalization layers are used to decrease train-
ing time of CNNs and the sensitivity to network initializa-
tion [27]. Therefore, this layer is chosen for the normalization
process in the proposed CNN architecture. The normal-
ized activations with input (x;), mini-batch mean (m;) and
mini-batch variance (vp) variables is computed as

A Xi—mp

Xi= )
\/ v%—i—e

where € is constant and develops the numerical state in case
thevy, is very small. The my and the v;, calculations are also
shown in equations (5) and (6), respectively.

1
my =~ % 5)

1 n
=) ) ©)

Finally, the activations in the batch normalization layer is
concluded with shift and scale operation as

yi= axi+b @)

where a and b are balance and scale factors, respectively.
These factors are learnable variables updated to the most
appropriate values during training process.

C. DEEP FEATURE EXTRACTION WITH THE PROPOSED
CNN MODEL

The feature extraction processing with the pre-trained
CNN models is called as deep feature extraction in
literature [16], [25], [26]. For deep feature extraction, it is
used the fc layers of the pre-trained CNN models. In the
paper, instead of the pre-trained CNN models such as
VGGNet and AlexNet, the fc layers of the proposed CNN are
utilized for deep feature extraction. The layer numbers of the
proposed CNN, Alexnet, VGG16, VGG19 and ResNet-50 is
given in Tab 1.
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TABLE 1. The layer info of the proposed CNN and the pre-trained CNN
models.

Layers AlexNet  VGGI6  VGGI9  ResNet-50 Prg‘;\%ffd
convolution 5 13 16 53 3
pooling 5 5 5 2 2
ReLU 7 15 18 49 5
Input 227x227  224x224  224x224  224x224  100x100
First fc 4096 4096 4096 - 500
Second fe 1000 1000 1000 1000 450

D. KNN ENSEMBLES WITH RANDOM SUBSPACE METHOD
The random subspace method is used random subspace
ensembles to boost the classification accuracy of k-nearest
neighbor (KNN) classifiers. The method bases on a stochastic
operation that randomly chooses a number of components
of the learning model in creating of each classifier [28]. In
the method, the training dataset is sub-divided into random
subspaces and distance calculations such as Euclidean and
Chebyshev are performed by using the test samples on train-
ing set constituting with the random subspaces. According
to the number of nearest neighbors (K), the most appropriate
subspace class membership is determined by the distance and
majority voting [29]. Then, class memberships coming with
each subspace ensemble is assembled in a class vector (C).
The classification is achieved with highest average score in C.
The base random subspace method implements the following
items:

e Step 1: Select without changing a stochastic set of the
M-size from training dataset (M<N).

e Step 2: Train a KNN learner using only the selected
predictors (b).

e Step 3: Repeat stepl and step2 until there are L KNN
learners.

e Step 4: Constitute by averaging prediction values of the
KNN learners

o Step 5: Classify the test dataset with the highest average
value.
Where d is numeric values in the training dataset, b is the
selected subspace predictor, M is length of the b predictors,
and L is the number of learners in the ensemble. In Fig. 3,
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representation of the random subspace ensemble method is
shown for the KNN classifier.

lll. EXPERIMENTAL WORKS

A. DATASETS

In this work, two popular datasets are considered to evalu-
ate the ESC problem. UrbanSound8K dataset is organized
with ten class labels consisting of air conditioner, car horn,
children, dog bark drilling, engine idling, gun shot, jack-
hammer, siren, and street music. The record duration for an
audio file of the dataset, which contains 8732 audio files,
is up to 4 seconds and the audio files are recorded with
22.05 KHz sampled frequency. Also the record lengths of
the audio file and the number of files in each class are not
same. The DCASE-2017 ASC dataset is constituted of two
part including the development dataset with 4680 audio files
and the evaluation dataset with 1620 audio files. The duration
of each audio file is 10 second. The file numbers of each class
are balance, and all audio files are recorded with 44.1 KHz
sampled frequency. The dataset contains fifteen classes of
which labels are beach, bus, cafe/restaurant, car, city center,
forest path, grocery store, home, library, metro station, office,
park, residential area, train, tram. The performances in the
DCASE-2017 challenge have been ranked to classification
accuracy on the evaluation data.

B. EVALUATION METHOD AND CRITERIA

The development and the evaluation datasets, which the
DCASE-2017 ASC dataset contains, are used for the pro-
posed CNN training and the evaluation processes, respec-
tively. On the other hand, the UrbanSound8K dataset is
randomly divided for the proposed CNN training process with
aratio of 0.9 of the full dataset, and the evaluation process is
performed with the rest part of the full dataset. The classifi-
cation performances on the UrbanSound8K dataset is tested
with 10-fold cross-validation. The evaluation criteria consist
of accuracy, specificity, sensitivity, precision, and F-score.
These criterions are computed by using the confusion matrix
values as given the following equations.

| TP + TN ©
ccuracy =
YT TP FP+TN + FN
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FIGURE 4. Dimensional parameters related to the proposed CNN
structure.

TABLE 2. The feature extraction duration for all CNN models.

Datasets Alexnet VGGI6  VGGI9  ResNet-50 Prgl)\?;]ed
DCAE{];%ZOH 2432 sec  2835sec 3145sec 4670 sec 576 sec
UrbanSound8K 2657 sec 3015 sec 3467 sec 4876 sec 650 sec

TABLE 3. The classification accuracy on the evaluation data according to
the sizes of the FC layers in the proposed CNN.

The used datasets
The sizes of the FC
layers UrbanSound8K DCASE-2017 ASC
(%Acc) (%Acc)
fcl fc2 fcl fc2 fcl fc2
100 50 78.6 774 84.5 84.1
150 100 79.2 783 85.7 852
200 150 80.3 79.4 86.9 85.6
250 200 81.1 80.4 88.7 87.5
300 250 82.6 81.3 90.2 89.4
350 300 83.1 82.9 913 90.8
400 350 83.4 833 92.8 91.9
450 400 84.1 83.7 94.7 93.8
500 450 85.5 84.6 95.3 94.2
550 500 84.2 83.9 93.7 92.5
600 550 83.7 82.5 914 90.6
650 600 82.8 81.5 86.5 842
Specifici TN 9
pecificity = TN + FP ©
o P
Sensitivitiy = ————— (10)
TP + FN
. TP
Precision = —— (11
TP + FP
F — score — 2x PrecisionxSensitivity (12)

Precision + Sensitivity

C. EXPERIMENTAL SETUP AND RESULTS

As it was mentioned earlier, the spectrogram method was
applied to all the audio signals to convert the input audio
signals to the time-frequency images. Window size, win-
dow type, overlap and FFT size parameters of the spectro-
gram method were chosen as 1024, Hamming, 256, 3000,
respectively. These spectrogram parameters were selected
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FIGURE 5. The scatter plot of the concatenated features for the
DCASE2017-ASC dataset.
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FIGURE 6. The scatter plot of the concatenated features for the
UrbanSound8K dataset.

TABLE 4. The effect of input size on the performance of the proposed
method.

The input size UrbanSound8k DCASE-2017 ASC
(Acc%) (Acc%)
20%20 72.10% 79.60%
50%50 79.20% 88.10%
100x100 86.70% 96.23%
200%200 83.10% 92.10%

according to the optimum resolution of the spectrogram
images. The dimensions of the spectrogram images were
875 x 656 x 3 and then were re-sized to 100 x 100 x 3
for the input of the proposed CNN model. The re-sized
spectrogram images were fed into the proposed CNN model.
The dimensional parameters in the proposed CNN layers are
shown in Fig. 4. For example, the filter size and the filter
number in the first convolutional layer were assigned as 3 x 3
and 8, respectively. And, the pixel block size and the stride
were selected as 2 x 2 and 2 for the max-pooling layers,
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TABLE 5. Comparison for the DCASE-2017 ASC to the proposed method
with the other CNN models and classifiers.

CNN models
Classifiers
ResNet-  Proposed
AlexNet VGGI6 VGGI19 P o
Fine Tree 61.56% 62.32% 61.44%  60.10%  67.20%
KNN 69.18%  70.78% 67.16% 67.54%  79.10%
SVM 80.35%  81.20% 79.34%  79.10%  85.40%
Eﬁ;’:sgl;rees 55.92%  58.56% 57.30%  56.10%  68.40%
Eﬁfeg;il?:es 5530% 56.18%  55.68%  55.45%  75.40%
Subspace
Discriminant ~ 68.20%  69.26% 67.96%  66.12%  88.20%
Ensembles
Subspace
KNN 76.15% 79.34.% 75.82% 74.53%  96.23%
Ensembles

TABLE 6. Comparison for the Urbansound8k to the proposed method
with the other CNN models and classifiers.

CNN models
Classifiers
ResNet-  Proposed

AlexNet VGG16 VGG19 0 NN
Fine Tree 35.70% 38.10%  34.50% 35.20%  44.10%
KNN 70.35% 71.35%  69.80% 70.80%  84.20%
SVM 7620% 77.10%  75.00% 75.95%  78.00%
Boosted Trees
Ensembles 44.60% 45.80%  42.90% 43.85%  50.00%
Bagged Trees
Ensembles 63.10% 64.55%  62.10% 63.20%  67.80%
Subspace
Discriminant
Ensembles 60.50% 61.60% 59.20% 60.65%  65.40%
Subspace
KNN
Ensembles 7 350, 72350, 70.65% 70.90%  86.70%

respectively. The mini-batch size with 128, the initial learning
rate with 0.005 and the ‘adam’ optimizer were the option
parameters used in the training process of the proposed CNN
model. The training durations on both datasets are given for
the feature extraction of all CNN models in Tab. 2. For both
datasets, the feature extraction of the proposed CNN has been
completed in less time than other CNN models. According to
the results given in Tab. 3, the sizes of the first and second
fully connected layers (fc1, fc2) are selected as 500 and 450,
respectively. The scatter plots of the features concatenated
with the fcl (the size of 500) and fc2 (the size of 450) are
shown in Figs. 5 and 6 for both datasets. These parameters
are selected during the experiments and the configuration is
selected which yields the best accuracy score.

As shown in Tab. 4, The input size of the proposed CNN
model is changed by basing the classification accuracy. The
best result is reached with the size of 100 x 100.
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TABLE 7. The effect of cross validation on the performance of the
proposed method.

5-fold cross 10-fold cross
validation validation

84.20% 86.70%

Dataset

UrbanSound8K

TABLE 8. The scores of the other performance criteria for the
DCASE-2017 ASC dataset.

The other performance criteria

Classes
Sensitivity ~ Specificity ~ Precision F-score
Beach 0.9722 0.9980 0.9722 0.9722
Bus 0.9722 0.9987 0.9813 0.9767
Cafe/Restaurant 0.9630 0.9947 0.9286 0.9455
Car 0.9630 0.9987 0.9811 0.9720
City center 0.9630 0.9954 0.9369 0.9498
Forest Path 0.9630 0.9967 0.9541 0.9585
Grocery store 0.9722 0.9967 0.9545 0.9633
Home 0.9259 0.9974 0.9615 0.9434
Library 0.9352 0.9947 0.9266 0.9309
Metro station 1.000 1.000 1.000 1.000
Office 0.9630 0.9974 0.9630 0.9630
Park 0.9722 1.000 1.000 0.9859
Residential Area 0.8981 0.9954 0.9327 09151
Train 0.9722 1.000 1.000 0.9859
Tram 1.000 0.9960 0.9474 0.9730
TABLE 9. The scores of the other performance criteria for the
Urbansound8k dataset.
The other performance criteria
Classes
Sensitivity Specificity ~ Precision F-score

Air . 0.8810 0.9899 0.9024 0.8916
conditioner

Car horn 0.8506 0.9771 0.8043 0.8268
gl}:yl?;;“ 0.8090 0.9847 08571 0.8324
Dog bark 0.9022 0.9885 0.9022 0.9022
Drilling 0.8889 0.9819 0.8627 0.8756
Engine idling 0.8617 0.9846 0.8710 0.8663
Gun shot 0.8902 0.9848 0.8588 0.8743
Jackhammer 0.8095 0.9797 0.8095 0.8095
Siren 0.9136 0.9950 0.9487 0.9308
Street music 0.8659 0.9861 0.8659 0.8659

The k, which is the nearest neighbor number, and f, which
is the size of the subspace feature vector, is the most important
parameters of the random subspace k-NN ensembles.
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TABLE 10. Classification accuracies of the proposed methods for the DCASE-2017 ASC.

Classification accuracies (%) for the used methods

class index

ISPL JKU_All ca BUETBOSCHI1 DCNN_SVM F1EnsemSel GAN_SKMUN The Proposed
[15] [14] [13] [12] [11] [10] Method
1 54.6 87.0 87.0 71.3 78.7 83.3 97.2
2 59.3 66.7 59.3 84.3 71.3 74.1 97.2
3 71.3 88.9 91.7 79.6 83.3 88.0 96.3
4 79.6 80.6 92.6 85.2 93.5 93.5 96.3
5 91.7 92.6 94.4 82.4 88.9 94.4 96.3
6 85.2 92.6 91.7 78.7 98.1 95.4 96.3
7 75.0 76.9 81.5 80.6 79.6 82.4 97.2
8 98.1 88.9 97.2 73.1 94.4 88.0 92.6
9 444 49.1 47.2 59.3 53.7 75.9 93.5
10 98.1 79.6 76.9 97.2 100 88.0 100
11 84.3 65.7 49.1 81.5 86.1 92.6 96.3
12 23.0ca 454 38.0 57.4 44.4 75.9 97.2
13 76.9 55.6 58.3 85.2 75.9 86.1 90
14 82.4 84.3 81.5 92.6 90.7 67.6 97.2
15 64.8 53.7 65.7 57.4 66.7 63.9 100
Average
72.6 73.8 74.1 77.7 80.4 83.3 96.2
Accuracy
DCASE-2017 ASC urbansoundsik
! 2 g 1| 74 | 1 4 5
2 1 2
3 a 2 74 4 2 3 1 2
4 1 3 3| 1 4 2 1 6 3
501 | 1 2
4| 4 1 1 1 1
6 1 3
]
87 E = 5 1 1 13 | 1] 2
© (5]
O 8 1 1 4 2 ©
o 2 6| 1 2 3 1 5
E 9 1 1 3 2 [
10 7 4 3 1 73
" i 8 8| 2 2 2 2 2 68 3
12 1 1 1
13| 2 5 | 4 97 9 2 1 1 1 74
14 0] 9 i 10 1 3 6 71
15
1 2 4 5 6 7 8 9 10
1 2 3 4 5 6 7 8 9 10 1M 12 13 14 15

Predicted Class

Predicted Class

FIGURE 7. The scores of the other performance criteria for the
DCASE-2017 ASC dataset.

According to the experiments in [28], k and f give the best
performances for 1 and 64, respectively.

For both the datasets in Tabs. 5 and 6, the proposed method
is compared with the pre-trained CNN models and the other
classifiers. The obtained results showed that classification
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FIGURE 8. The scores of the other performance criteria for the
DCASE-2017 ASC dataset.

accuracy of the proposed method was better than the other
CNN model-classifier structures.

The average classification accuracies for the DCASE-2017
ASC and the UrbanSound8K datasets has been increased
by 15% and 9.6% compared to the other best CNN model-
classifier structure, respectively. The other performance
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TABLE 11. Classification accuracies of the proposed methods for the Urbansound8k.

Classification accuracies (%) for the used methods

class index

Baseline System  Piczak CNN SKM SB-CNN The Proposed
[5] [4] 31] [8] Method

1 50.40 55.70 51.30 48.90 88,1

2 46.97 78.60 63.25 88.13 85,1

3 71.60 82.00 76.60 $3.00 80,9

4 74.90 84.00 79.50 90.00 90,2

5 76.60 66.30 79.90 80.20 88,9

6 64.10 67.90 77.20 79.80 86,2

7 90.64 92.51 91.71 94.11 89

8 63.00 62.70 70.20 67.30 81

9 74.00 81.05 75.67 85.79 91,4

10 75.00 76.00 77.00 84.40 86,6
aacvc‘l’lrfai‘; 68.57 73.09 73,69 78,65 86,7

criteria including sensitivity, specificity, precision and
F-score is separately given in Tabs. 8 and 9 for each class
of both datasets. The average scores of the sensitivity, speci-
ficity, precision, and F-score for the DCASE-2017 ASC
dataset are 0.9623, 0.9973, 0.9626, and 0.9623, respectively.
The same scores for the Urbansound8K dataset are 0.8672,
0.9852, 0.8682 and 0.8675, respectively. In Figs. 7 and 8,
the states of TP, TN, FP, and FN in both datasets are shown
for each class on the confusion matrices. In Tabs. 10 and
11, the proposed method is compared with the other method
using the same datasets. The first ten works achieving the best
classification accuracy in the DCASE-2017 ASC challenge
is used for the comparison. The average classification accu-
racy with the proposed method has been boosted by 12.93%
compared to the best challenge score [10]. In addition,
the best classification accuracy has been achieved in 13 out
of 15 classes, with a significant difference in most. For the
UrbanSound8K dataset, the average classification accuracy
has been improved by 8.05% compared to the best score [8]
in the used other methods, and the best classification accuracy
has been achieved in 8 out of 10 classes. For the Urban-
Sound8K dataset, the 5-fold cross validation test is also
applied and the obtained result is given Tab. 7. As seen in
Tab 7, when 5-fold cross validation test is used in evaluation
of the proposed method, 84.20% average accuracy score is
obtained, that score is 86.70% for 10-fold cross validation.

From this comparison, it is observed that an increase in
fold number causes an increase in the accuracy score. It is
also worth to mentioning that smaller amount of training data
causes low achievement, as it is obvious almost in pattern
recognition problems.

IV. CONCLUSION
In this a paper, a new CNN model was developed and
trained in end-to-end fashion in order to produced deep
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feature vectors for efficient classification of the environmen-
tal sounds. The developed CNN model was consisted of three
convolution, three max-pooling and normalization and three
fully connected layers. The softmax and classification layers
were followed the last fully connected layer. The proposed
new CNN model was quite effective in both classification
and running time. After training of the proposed new CNN
model, instead of using the softmax and classification layers,
we opted to used deep feature extraction. These deep features
were then used as input to the random subspaces K Nearest
Neighbor (KNN) classifier. This classifier was chosen due to
its robustness against various dataset. The DCASE-2017 ASC
and the UrbanSound8K datasets were considered in exper-
imental works and the classification accuracies were calcu-
lated for performance evaluation. The obtained results show
that the proposed CNN model and subsequent deep features
were quite successful in characterization of the environmental
sounds. The performance of the proposed method was also
compared with the state-of-the-art results. The comparison
results showed that the proposed method outperformed in all
compared methods.
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