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ABSTRACT Recently, enthusiastic studies have devoted to texture synthesis using deep neural networks,
because these networks excel at handling complex patterns in images. In these models, second-order
statistics, such as Grammatrix, are used to describe textures. Although thesemodels have achieved promising
results, the structure of their parametric space is still unclear. Consequently, it is difficult to use them to mix
textures. This paper addresses the texture mixing problem by using a Gaussian scheme to interpolate deep
statistics computed from deep neural networks. More precisely, we first reveal that the statistics used in
existing deep models can be unified using a stationary Gaussian scheme. We then present a novel algorithm
to mix these statistics by interpolating between Gaussian models using optimal transport. We further apply
our scheme to Neural Style Transfer, where we can create mixed styles. The experiments demonstrate that
our method outperforms a number of baselines. Because all the computations are implemented in closed
forms, our mixing algorithm adds only negligible time to the original texture synthesis procedure.

INDEX TERMS Texture modeling, texture mixing, Gaussian models, deep neural networks.

I. INTRODUCTION
Texture mixing is the process of generating new texture
images that possess averaged visual characteristics of a given
set of exemplars [1]–[5]. It can provide visually pleasing
interpolations of difference textures, therefore, has numerous
applications in computer vision and graphics [4], [6]. Besides,
the ability to create smoothly morphing textures is regarded
as a criterion for ‘‘good’’ texture synthesis algorithms [7] [8].

In the sense that a texture can be modeled by a set
of statistics depicting the visual properties of its samples
[9]–[11], texture mixing involves ‘‘averaging’’ the corre-
sponding set of statistics. For copy-based texture synthesis
methods [12], [13], textures can be mixed by combining
pixels from multiple inputs using well-designed procedures
such as in [4] or the patch match scheme [14]. These methods
handle complex and geometric textures satisfactorily, but
they tend to produce verbatim patterns and it is difficult to
understand the mixing process. In contrast, statistical para-
metric texture methods [11], [15], [16] are more principled,
and their parameters are better understood, although they are
often not as good at handling structured textures. Moreover,
with parametric texture models, the mixing of textures can
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be computed feasibly and more easily by ‘‘averaging’’ the
corresponding set of parameters [1], [2], [5], [17].

A recent breakthrough in texture modeling involves the
use of deep convolutional neural networks (CNNs) [18]–[22]
for texture representation. This approach enables us, using
parametric models, to synthesize comparable or better tex-
tures containing complex patterns than copy-based methods.
Under this framework, researchers also cast the problem of
style transfer into texture transfer [20], [23]. However, due
to the complex structure of the parametric space of deep
CNNs [18], [21], [23], it is still unclear how to mix textures
or styles with these models.

In this paper, we address the problem of mixing tex-
tures using deep CNNs. More precisely, after studying exist-
ing deep texture models [18]–[22], we discover that the
second-order statistics (e.g. Gram matrix, correlation matrix
and their variations) used in these methods can be represented
as continuous functions of a stationary Gaussian model, so
the mixing of these statistics is reduced to the interpolation
of Gaussian models, which is known to have a closed form
solution. Therefore, we present a simple and efficient scheme
illustrated in Fig 1, for mixing the statistics of deep CNNs
via interpolation of Gaussian models. We further apply our
scheme to neural-style morphing, where we can interpolate
between different styles. We also demonstrate that our mix-
ing algorithm is fully compatible with feed-forward CNNs
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FIGURE 1. The proposed texture mixing scheme. (Top) Two texture
exemplars are passed through the CNN. (Middle) The outputs of selected
layers are mixed using a Gaussian model. (Bottom) The Gram matrices of
the mixed outputs are used as constraints to generate mixed textures.

[20], [24], where mixed textures or stylish photos with mixed
styles are generated in a fast forward pass. Experiments
demonstrate that our method produces better or at least com-
parable results than the state-of-the-art methods. It is also
worth noticing that our mixing algorithm adds only negligible
time to the original texture synthesis procedure, because all
mixing computations are in closed forms.

The rest of this paper is organized as follows: Section II
briefly reviews the related work. Section III formulates the
texture mixing problem. Section IV presents our scheme
for mixing deep statistics with Gaussian models. Section V
provides all the implementation details. Section VI compares
the proposed methods with the state-of-the-arts and analyzes
the experimental results. Section VII finally draws some
conclusion remarks.

II. RELATED WORK
Exemplar-based texture synthesis is the basis of our work,
of which the goal is to generate new texture samples from a
given texture exemplar [25]. The works on texture synthesis
can be roughly categorized into non-parametric models such
as copy-based (also known as patch-based) methods [12] and
statistic parametric models [11]. Patch-based models copy
pixels or patches directly from the exemplar to the synthe-
sized samples [12], [13]. These approaches can generate high
fidelity textures but sometimes produce verbatim patterns, i.e.
using the same parts of the exemplar repeatedly in the results.

In contrast, statistical parametric methods aim to find para-
metric representations of textures, which allow more con-
trol over the synthesis processes. Portilla and Simoncelli [11]
used wavelet and pyramid decomposition to build a para-
metric texture model, which can synthesize many nature
textures, even those containing geometric patterns. Stationary
Gaussian model [5], [16], [26]–[30] is an efficient texture
model, as new textures can be synthesized fast in Fourier
domain. Gatys et al. [18] used a CNN for texture synthesis.
Their method achieved good performance over a large scope
of nature textures, but it failed to synthesize textures with
non-local structures and sometimes suffered from degraded
quality [22]. In order to overcome this difficulty, later works
added extra penalty terms such as Fourier spectrum [19] and
correlation matrix [21] to Gatys’ model [23]. Furthermore,
Li et al. [22] proposed to use centred Gram matrix instead of
Gram matrix to improve the quality of outputs.

Gatys’ neural texture model [18] was later adapted to a
neural style transfer algorithm [23], which sought to trans-
fer the ‘‘style’’ of the input image while keeping its ‘‘con-
tent’’ fixed. Although Gatys’ style transfer algorithm [23]
can produce high quality stylish photos, its computational
cost was prohibitively high. To accelerate this time con-
suming procedure, Johnson et al. [24] proposed a percep-
tual loss function and a transformation network, which can
generate textures and stylish photos in a forward manner.
Ulyanov et al. [20] further proposed to use instance normal-
ization to improve the quality of outputs. Later, Li et al. [22]
and Dumoulin et al. [31] proposed new network structures
that can learn multiple styles in one network.

In the past decades, tremendous studies have devoted to
texture mixing. It aims at generating an ‘‘averaged’’ texture
from several texture exemplars. Some patch-based texture
synthesis algorithms [4], [14] can be naturally extended to
texture mixing by considering multiple inputs. In terms of
statistic parametric models, texture mixing corresponds to
averaging statistics from different exemplars. This ‘‘averag-
ing’’ procedure has been investigated for different texture
models. Bar-Joseph et al. [17] proposed to use wavelet and a
tree structure to model and mix textures. Peyré [1] proposed
to use ‘‘grouplet’’ for synthesizing andmixing locally parallel
textures. Rabin et al. [2] used sliced optimal transport to mix
textures. Mixing stationary Gaussian texture has also been
studied in terms of optimal transport [5]. Although these
algorithms can generate homogeneous mixed textures, they
have difficulties in mixing structured textures. Recently, Yu
et al. [32] proposed a deep model called MixNet for mixing
nature textures. Although this model can handle nature tex-
tures relatively well, it can not be used for unseen images and
generally takes several days to train.

It is worth noticing that not all texture models are able
to mix textures. For example, even in the prominent work
of Portilla and Simoncelli’s [11], it is unclear how to mix
textures satisfactorily. The deep texture models [18] also
suffered from this problem, as linear interpolation of Gram
matrices only results in low quality mixtures [22].
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III. PROBLEM FORMULATIONS
Denote I ∈ R�×d as an image with d channels defined on
the grid � = {0, . . . ,M − 1} × {0, . . .N − 1}. In particular,
d = 1 for grey-scale images and d = 3 for color images. For
each pixel p ∈ �, the value I (p) is a d-dimensional vector,
and for each channel c ∈ {0, .., d − 1} at location p ∈ �,
the value I (p, c) is a real scalar.

A. EXEMPLAR-BASED TEXTURE SYNTHESIS WITH CNNs
Given a texture exemplar Iexp, the aim of exemplar-based
texture synthesis is to produce new texture samples Isyn
that are as similar as possible to Iexp regarding cer-
tain visual/perceptual measurements [11]. For instance,
Zhu et al. [10] argued that Isyn and Iex are equivalent on
statistical feature sets,

{F(`1)
syn , . . . ,F

(`k )
syn } ∼ {F

(`1)
exp , . . . ,F

(`k )
exp },

where F× := {F
(`1)
× , . . . ,F(`k )

× } = F ◦ I× are the sets of
texture features extracted from I× by a texture model F .
These models can be filter banks [10], wavelets [11] or
Markovian models [12]. The image Isyn can thus be generated
by feature projection [10], [33]. A survey of exemplar-based
texture synthesis was recently provided in [25].

In this paper, we are interested in exemplar-based texture
models using deep CNNs [18], [21], [23], because of their
abilities to synthesize textures with complex structures. This
type of methods utilize a pre-learned deep CNN FCNN for
texture description, and generate new textures Isyn by match-
ing deep features such as Gram matrix. More precisely, one
can initialize Isyn with a random noise and pursue an optimal
output by minimizing the following objective:

`k∑
`=`1

‖G(F(`)
syn)− G(F(`)

exp)‖
2
F , (1)

where G() is the Gram measure of matrix, and ‖ · ‖F denotes
the Frobenius norm. The minimization problem in Eqn. (1)
can be solved using back-propagation [18].

B. EXEMPLAR-BASED TEXTURE MIXING WITH CNNs
Given two input texture exemplars Iexp0 and Iexp1 ,
exemplar-based texture mixing aims to generate new textures
whose perceptual properties are drawn from both the inputs.
Denoting the deep features of the two inputs as Fexp0 =
FCNN ◦ Iexp0 and Fexp1 = FCNN ◦ Iexp1 respectively, the
mixing of Iexp0 and Iexp1 with ratio ρ ∈ [0, 1] is to obtain Isyn,
such that

Fsyn ∼ {ρFexp0 , (1− ρ)Fexp1},

where Fsyn = FCNN ◦ Isyn. A straightforward solution is to
pursue Isyn by minimizing

`k∑
`=`1

‖ρ G(F(`)
exp0 )+ (1− ρ)G(F(`)

exp1 )− G(F(`)
syn)‖

2
F , (2)

which actually finds an Isyn with linear interpolation of the
Grammatrices. As we shall discuss in Section VI, this mixing
often produces results with conspicuous artifacts.

In what follows, wewill develop amore effective algorithm
to interpolate the deep CNN features for mixing textures.

IV. DEEP TEXTURE MIXING WITH GAUSSIAN MODELS
Pioneered by Gatys et al. [18], several studies have addressed
texture synthesis with deep CNNs [19]–[22]. In this section,
we first reveal that all the statistic measures used in these
works can be unified into a stationary Gaussian scheme.
We then show that this unified scheme enables us to mix
textures by interpolating deep features through a simple and
fast procedure.

A. GAUSSIAN SCHEME FOR DEEP TEXTURE SYNTHESIS
Given a deep featureF ∈ RU×k withU pixels and k channels,
deep texture models [18], [19], [21], [22] need to compute
statistics of F as the textural signatures, and then synthesize
new texture samples by matching the signatures. The main
discover of this section is that all these statistics can be repre-
sented using an unified Gaussian model. Before approaching
to the main result, we first recall the definitions of these
statistics and the stationary Gaussian model as follows.

1) GRAM MATRIX G
The Gram matrix G ∈ Rk×k was first used in Gatys’
model [18]. It is defined as:

G(i, j) =
1
|U |

∑
p∈U

F(p, i)F(p, j), 1 ≤ i, j ≤ k. (3)

2) CENTRED GRAM MATRIX Ḡ
Li et al. [22] suggested to use centred Gram matrix Ḡ instead
of Gram matrix G for better synthesis results:

Ḡ(i, j) =
1
|U |

∑
p∈U

(
F(p, i)− mi

)(
F(p, j)− mj

)
, (4)

where 1 ≤ i, j ≤ k . m ∈ Rk is the mean vector of F:

m =
1
|U |

∑
p∈U

F(p). (5)

3) CORRELATION S ′

Sendik and Cohen-Or [21] proposed to use correlation S ′ to
synthesize non-local textures, and reported the state-of-the-
art results. Their deep correlation S ∈ RU×k is defined as

S ′(p, n) =
∑
p′∈U

w(p)F(p′, n)F(p+ p′, n), (6)

in which p = (i, j) is the offset vector, and i ∈ [−Q/2,Q/2]
and j ∈ [−M/2,M/2]. w is the relative weight defined by

w(i, j) = ((Q− |i|)(M − |j|))−1. (7)
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4) MODIFIED CORRELATION S
By assuming periodic boundary, all the relative weights w(p)
in Eqn. (6) become the same, correlation S ′ therefore has a
much simpler form:

S(p, n) =
1
|U |

∑
p′∈U

F(p′, n)F(p+ p′, n), (8)

where 1 ≤ n ≤ k, p ∈ U . We called S defined in Eqn. (8)
modified correlations. For simplicity, in the rest of this paper,
we only consider S instead of S ′. But as we will see in the
experiment section, these two correlation matrices produce
similar results.

5) SPECTRUM F
The Fourier spectrum F has been considered in [19] for
synthesizing non-local textures. Formally, F is defined as:

F = |F̂|, (9)

whereˆdenotes the Fourier transformation.

6) STATIONARY GAUSSIAN MODEL µ
The Gaussian models have been explored for modelling
stationary textures [5], [16]. A stationary Gaussian model
µ(m, C) consists of a mean vector m ∈ Rk and a covariance
matrix C ∈ RU×k×k .

C(p, i, j) =
1
|U |

∑
p′∈U

(
F(p′, i)− mi

)(
F(p+ p′, j)− mj

)
,

(10)

m =
1
|U |

∑
p∈U

F(p). (11)

where p ∈ U , 1 ≤ i, j ≤ k .
Although the four statistics considered above i.e., G, Ḡ, S

and F , seem irrelevant, the following proposition suggests
that they can all be represented by the stationary Gaussian
model µ.
Proposition 1: Given feature maps F ∈ RU×k , its Gram

matrixG, centred Grammatrix Ḡ, correlationS and spectrum
F can be derived from a stationary Gaussian model µ(m, C):

G = C(0)+ mmT , (12)

Ḡ = C(0), (13)

∀p ∈ U , S(p) = diag(C(p))+ m� m, (14)

∀ω ∈ U , F(ω) = (|U ||Ŝ(ω)|)
1
2 . (15)

where T is the transpose operator and � denotes the
component-wise product.

The derivations of Eqn. (12) (13) (14) are straightfor-
ward. Eqn. (15) holds because the correlation S is the
auto-correlation of F, which leads to

Ŝ(ω) =
1
|U |

F̂(ω)� F̂(ω)∗,

where ∗ denotes the conjugate transpose.

It is interesting to notice the similarity between G and Ḡ.
As shown in Eqn. (12) and Eqn. (13), these two statistics
both contain the orderless part of C, i.e., C(0). As a result,
they can not encode ordered elements and can not be used
for synthesizing non-local textures. On the contrary, S(p)
contain diag(C(p)), which is in the the ordered part of C.
Therefore, S(p) is sensitive to ordered elements in textures
and can be used for synthesizing non-local textures. It is also
worth noticing that Eqn. (15) can explain the similar effects of
S and F in synthesizing non-local structures, because these
two statistics can be derived from each other.

B. INTERPOLATING DEEP STATISTICS
VIA GAUSSIAN MODEL
In this section, we discuss the interpolation of Grammatrix G
for simplicity, but all discussions apply for other deep
statistics.

In order to synthesize mixed textures in Gatys’ model [18],
we need to find an intermediate Gram matrix to represent
the average of the two textures. Formally, given two feature
maps F0 and F1 corresponding to two exemplar textures, we
seek to find a continuous function G(ρ), ρ ∈ [0, 1], such that
G(ρ) = G(Fρ) when ρ = 0, 1. Even though the solution is not
unique, it is generally difficult to find a natural and effective
interpolation method. For instance, the simple linear interpo-
lation ρG0+ (1−ρ)G1 satisfies this requirement. However, it
performs poorly in texture mixing (see experiments in Fig. 4
and 6), because linear interpolation of Gram matrices does
not necessarily result in Gram matrices.

The significance of Proposition. 1 is that it provides a
method to interpolate Gram matrix. In other words, if we are
able to interpolate stationary Gaussian models, Proposition. 1
directly enables us to calculate interpolated Gram matrices.
Specifically, given Gaussian models µ0 and µ1 correspond-
ing to F0 and F1 respectively, if we can find a continuous
function µ(ρ) = (mρ, Cρ), ρ ∈ [0, 1] such that µ(ρ) = µρ
when ρ = 0, 1. Eqn. (12) in Proposition. 1 asserts that an
interpolated Gram matrix can be generated as follows:

G(ρ) = Cρ(0)+ mρmTρ . (16)

Namely, the interpolation of Gram matrices is reduced to the
interpolation of Gaussian models.

Several ways to interpolate Gaussian models have been
investigated, such as linear interpolation, Fisher-Rao interpo-
lation [34] and optimal transport interpolation [5]. However,
linear interpolations of Gaussian models are no longer Gaus-
sian, and no explicit formula is known for high dimensional
Fisher-Rao interpolation. Alternatively, optimal transport
interpolation provides a closed-form solution to the problem
and the interpolated µ(ρ) remains Gaussian [5].

According to [5], the interpolated µ(ρ) can be calculated
in two steps. First, we calculate the interpolated feature map
F̂ρ in in Fourier domain:

∀ρ ∈ [0, 1], F̂ρ = (1− ρ)F̂0 + ρĜ, (17)
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∀w, Ĝ(w) = F̂1(w)
F̂1(w)∗F̂0(w)

|F̂1(w)∗F̂0(w)|
, (18)

where ∗ represents the conjugate transpose. Then, the interpo-
lated µ(ρ) is the corresponding stationary Gaussian model of
F̂ρ , i.e.,µ(ρ) can be calculated using Eqn. (10) and Eqn. (11).

Now, we are able to calculate interpolated Gram matrix by
combining Proposition. 1, Eqn. (17) and Eqn.(18). Note that
the practical algorithm for interpolating these deep statistics
does not require computing µ(ρ), because Gρ can be derived
directly fromFρ . In summary, we have the following proposi-
tion for interpolating deep statistics. A conceptual illustration
is given in Fig. 1.
Proposition 2: Given feature maps F0, F1 ∈ R

U×k , and a
relative weight ρ ∈ [0, 1], the interpolated Gram matrix Gρ ,
centredGrammatrix Ḡρ , correlationSρ and spectrumFρ can
be written as follows:

∀ρ ∈ [0, 1], F̂ρ = (1− ρ)F̂0 + ρĜ, (19)

∀w, Ĝ(w) = F̂1(w)
F̂1(w)∗F̂0(w)

|F̂1(w)∗F̂0(w)|
, (20)

Gρ(i, j) =
1
|U |

∑
p∈U

Fρ(p, i)Fρ(p, j), (21)

Ḡρ(i, j) =
1
|U |

∑
p∈U

(
Fρ(p, i)−mρi

)(
Fρ(p, j)−mρj

)
,

(22)

Sρ(p, g) =
1
|U |

∑
p′∈U

Fρ(p′, g)Fρ(p+ p′, g), (23)

Fρ(ω) = (|U ||Ŝρ(ω)|)
1
2 . (24)

where p, ω ∈ U , 1 ≤ i, j, g ≤ k.

V. IMPLEMENTATION DETAILS
This section presents the implementation details of our Gaus-
sian scheme for texture mixing. We follow the pipeline pro-
posed by Gatys et al. [18]. However, our algorithm can be
combined with a forward generator as in TextureNet [20]
without difficulty.

By considering ‘‘styles’’ as textures, our algorithm can be
further used to synthesize stylish photos with mixed styles.
For simplicity, we only consider mixing two styles/textures
in our algorithm, but our algorithm can be extended to mixing
more styles/textures easily.

A. TEXTURE MIXING
Thanks to Proposition. 2, we can calculate interpolated Gram
matrices efficiently. In this section, we present an algorithm
to synthesize mixed textures using interpolated Gram matrix.

Specifically, given two input exemplars Iexp0 and Iexp1 , we
seek to synthesize a mixed texture Isyn with relative weight
ρ ∈ [0, 1], where ρ control the similarity between Isyn and
Iexp0 or Iexp1 . To be precise, Isyn should be similar to Iexp0 when
ρ = 0, and be similar to Iexp1 when ρ = 1. When ρ ∈ (0, 1),
Isyn should be the ‘‘average’’ of Iexp0 and Iexp1 .

First, we feed Iexp0 and Iexp1 to a pre-trained deep CNN
FCNN, and record their feature maps {F(`1)

i ,F(`2)
i . . . ,F(`k )

i }

at selected layers {`1, `2, . . . , `k}, where i = 0, 1. Then, we
calculate interpolated feature maps F(`)

ρ in each layer using

Eqn. (17) (18). Mixed deep statistics including G(`)
ρ , ¯G(`)

ρ ,

F (`)
ρ and S(`)

ρ can be calculated using Proposition. 2. Finally,
to generate new textures Isyn, Isyn is initialized as Gaussian
noise and fed into FCNN. Deep statistics such as Grammatri-
ces {G(`1)

syn , . . . ,G(`k )
syn } at selected layers are calculated. Back-

propagation is used to match the deep statistics of Isyn with
the mixed statistics. Specifically, for stationary textures, we
only consider Gram matrix:

`k∑
`=`1

‖G(`)
ρ − G(`)

syn‖
2
F , (25)

For non-local textures, we need to add S(`)
ρ (or F (`)

ρ ) as the
extra penalty term:

`k∑
`=`1

‖G(`)
ρ − G(`)

syn‖
2
F + λ

`k∑
`=`1

‖S(`)
ρ − S(`)

syn‖
2
F , (26)

where λ is the regularization weights for non-local structures.
In addition, it is straightforward to use a generator net T for
fast synthesis as in TextureNet [20], i.e., minimize

`k∑
`=`1

‖G(`)
ρ − G(T (z))(`)‖2F , (27)

where z is a random noise, and T (z) is a texture generated
by T .

Our Gaussian scheme for texture mixing is summarized in
Algorithm. 1.

Algorithm 1 Deep Texture Mixing With Gaussian Models
Input: exemplar textures Iexp0 , Iexp1 , ρ ∈ [0, 1], a pre-trained
CNN FCNN.

Output: a sample of mixed texture Isyn.
for i = 0, 1 do{

F(`1)
i ,F(`2)

i . . . ,F(`k )
i

}
← FCNN ◦ Iexpi .

end for
for ` = {`1, `2, . . . , `k} do

F(`)
ρ ← Mixing(F(`)

0 ,F
(`)
1 , ρ) using Eqn. (17) (18);

Compute G(`)
ρ , ¯G(`)

ρ , F (`)
ρ and S(`)

ρ as needed using
Proposition. 2.
end for
Generate Isyn by minimizing Eqn. (25), Eqn. (26) or
Eqn. (27).

B. STYLES MORPHING
Our scheme can also be applied to morphing the styles of two
images. Given a content image Iori and two style images Isty0
and Isty1 . The goal of styles morphing is to transfer the style
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FIGURE 2. Comparison of using different correlation matrices. From top to bottom, 1st row: input images; 2nd row: results achieved using Gram
matrix G [18]; 3rd row: results achieved using correlation matrix S′ [21]; 4th row: results achieved using our modified correlation matrix S
described in Eqn. (14). Observe that both S and S′ can synthesize non-local textures faithfully, but Gram matrix can not.

FIGURE 3. Top: exemplar textures used in texture mixing experiments.
Bottom: photos and style images used in style morphing experiments.

of Iori to the interpolation of Isty0 and Isty1 , while keeping the
content of Iori fixed.
Similar to the texture model, Gram matrices at selected

layers are used to parametrized the style. Denote Fori, Fsyn
as the feature maps of Iori and synthesized image. Let Gsty0 ,
Gsty1 and Gsyn be the Gram matrices of the style images
and the synthesized image. Similar to Algorithm. 1, after
interpolating Fsty0 and Fsty1 using Eqn. (17) and Eqn. (18),
mixed Gram matrix G(`)

ρ can be computed using Eqns. (21).
The stylish image Isyn can be generated by minimizing

`k∑
`=`1

‖G(`)
ρ − G(`)

syn‖
2
F + α‖F

(`)
ori − F(`)

syn‖
2
F . (28)

where G(`)
ρ is an interpolated Gram matrix of Gsty0 and Gsty1 .

α is a parameter to control the degree of style bending.
It is also possible to generate stylish images using a for-
ward generator T , which seeks to transform the content
image Iori to a stylish photo T (Iori). T can be trained by
minimizing

`k∑
`=`1

‖G(`)
ρ − G(T (Iori))(`)‖2F + α‖F

(`)
ori − F(T (Iori))(`)‖2F .

(29)

VI. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, we first evaluate the performance of our
modified correlation matrix S on non-local textures by com-
paring with Sendik’s results [21]. Then we present our tex-
ture mixing results for both non-local textures and stationary
textures. Our results are compared with other sate-of-the-
art algorithms. Finally, we apply our algorithm to style
transfer and compare our results with other style morphing
algorithms.

For all experiments, we use VGG-19 [35] network
pre-trained on ImageNet dataset [36]. 10 values of relative
weight ρ are used, i.e., we let ρ = 0

9 ,
1
9 ,

2
9 ,

3
9 ,

4
9 ,

5
9 ,

6
9 ,

7
9 ,

8
9 ,

9
9 . In texture mixing experiments, input images

are down-sampled to (256, 256) or (128, 128) depending on
their original sizes. Pairs of texture and style exemplars are
shown in Fig. 3, which are from the DTD dataset [37] or
collected from Internet. All input images are initialized as
white Gaussian noise. In style morphing experiments, input
images are down-sampled to (256, 256). We use the L-BFGS
algorithm [38] for optimization. All experimental results are
available at http://captain.whu.edu.cn/TexMixDeepG.
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A. COMPARISON OF CORRELATIONS MATRICES S AND S′

Because our mixing algorithm involves the use of modified
correlationS, which is slightly different from the original def-
inition of Sendik’s correlation S ′, we need to verify that these
two statistics actually produce similar results. We follow the
same experimental settings as in [21]: we use layers pool1,
pool2, pool3, pool4 for Gram loss, and use layer pool2
for correlation loss. Additional total variation loss is added on
layer conv1.
Fig. 2 presents the comparison of S and S ′. One can see

that Gram matrix fails to capture non-local structures, and
sometimes causes blurry effects. On the contrary, both S and
S ′ can re-produce non-local structures faithfully. The results
of S and S ′ are comparable for most of exemplars. For some
exemplars (the brick texture), S produces even better results
as the results are less noisy or preserve the structures better.

B. COMPARISONS WITH STATE-OF-THE-ART TEXTURE
MIXING METHODS
This section evaluates our texture mixing method by com-
paring it with several other texture mixing algorithms. We
show that our method is able to mix textures effectively in
all scenarios. The baselines are listed as follows:

- GaussTexton [5]: A simple and fast texture mixing
algorithm based on stationary Gaussian models.

- ImageMelding [4]: An efficient texture mixing method
based on patch match algorithm.

- Diversified Feed-forward Networks (DFN) [22]: Tex-
ture mixing using linear combinations of different
‘‘selectors’’. In all experiments, we used the pretrained
model provided by the authors.

- Linear Interpolation Algorithm (LIA): Linear inter-
polation of Gram matrix as given in Eqn. (2).

- Our scheme + TextureNet: The combination of Tex-
tureNet [20] and our method. This method can synthesis
mixed textures in a fast forward pass.

- LIA + TextureNet: The combination of Tex-
tureNet [20] and linear interpolation algorithm, i.e. the
Gram matrices used in TextureNet is linear interpolated
as in Eqn. (2).

- TexMixer [32]: Texture mixing by interpolating the
latent code of an generator. It should be noticed that this
model requires a large number of training data, which
is infeasible in our settings. For fair comparison, we use
the pretrained model provided in the papers.

Following the settings of Gatys [18], layers conv1_1,
pool1, pool2, pool3 and pool4 are selected for Gram
loss.

Fig. 4 displays the results of mixing two stationary tex-
tures. This type of textures have relatively simple structures,
as they can be feasibly modeled by Gaussian texture mod-
els [5]. In this experiment, we compare our algorithm with
the GaussTexton [5], Image Melding [4] and TexMixer [32].
As GaussTexton is specifically designed for Gaussian texture
mixing, and the detailed shape of the grass is completely

missed. Image melding and TexMixer can indeed generate
comparable textures, but they both produce new structures
or artifacts, i.e. vertical strips or wrinkle-like noise. Linear
algorithms (LIA and LIA + TextureNet) lead to poor quality
results, where different textures are joint together in patch-
wise. Our algorithms (both with or without TextureNet) pro-
duce the best results, as the details are preserved and no extra
structures are produced.

Fig. 5 presents the results of mixing a pair of nature
textures belong to the same category. This type of mixing
is of particular interesting in real applications, because the
mixed textures create more inner variance in a category. As
the considered textures can not be modeled by Gaussian
models, we only compare ourmethodwith ImageMelding [4]
and TexMixer [32]. Observe that our mixing algorithm can
mix the edges and the shapes of pebbles simultaneously, and
create smooth transitions from one exemplar texture to the
other without ‘‘ghosting’’. Image Melding can also create
such transitions, but it generates obviously repeated patterns,
i.e. some pebbles in mixed textures are completely the same.
The results of TexMixer are also inferior to ours, as there are
several visible blurring areas in the mixing results.

Fig. 6 shows the results of mixing a pair of nature textures
belong to different categories. This type of synthesis may
have great theoretical importance, as it not only enables us to
create textures belong to new intermediate categories, but also
uncovers the connections between different categories. This
is the most difficult scenario in texture mixing, as the exem-
plars contain regular textural elements and their visual prop-
erties, such as color and patterns, are significantly different.
We compare our method with Image Melding, TexMixer [32]
and DFN [22]. Notice all baseline methods fail to generate
intermediate textures in this experiments. In contrast, our
methods can produce considerably better results, creating
smooth transitions both in color and texture patterns from one
to the other input.

Fig. 7 compares our algorithm with baseline methods
on non-local textures. This task is different from others
as it requires to preserve the regular structures in the
mixed textures. In this experiments, we use our algorithm
with additional correlation penalty S, i.e., we optimize
Eqn. (26) to enforce the non-local structures. Our results
are compared with Image Melding and TexMixer. Notice
Image Melding indeed creates smooth transition between
textures, but the regular structures are no longer preserved.
TexMixer fails to handle this task, probably because it
can not model non-local structures. On the contrary, our
correlation-based algorithm successfully producesmixed tex-
tures, as it creates smooth transition between input exem-
plars and preserves regular structures in every intermediate
textures.

C. STYLE MORPHING
In this experiment, we extend our texture mixing algorithm
to style morphing. Our goal is to create ‘‘intermediate’’
styles between different styles, in other words, to create
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FIGURE 4. Mixing micro textures using our method with Gram matrix (1-st row), our method with correlation (2-nd row), our method +

TextureNet (3-rd row), Image Melding (4-th row) [4], GaussTexton (5-th row), LIA (6-th row), LIA + TextureNet (7-th row), and TexMixer (8-th row).
Notice that our method, both with or without TextureNet, can smoothly interpolate between two exemplars. See text for more details.

FIGURE 5. Mixing a pair of nature textures in the category ‘‘pebbles’’ using our method (1-st row), Image Melding (2-nd row) and TexMixer
(3-nd row).

smooth transitions between stylish photos. We use Jonson’s
feed-forward structure [24] together with instance normal-
ization [20]. We set style layers as relu1_1, relu2_1,

relu3_1 and relu4_1, content layer as relu4_2. Style
weight is set to 5. All other parameters are left as default. We
compare our result with Dumoulin’s algorithm [31].
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FIGURE 6. Mixing a pair of nature textures belong to different categories using our method (1-st row), our method + TextureNet (2-nd row),
Image Melding (3-rd row), DFN (4-th row), LIA (5-th row), LIA + TextureNet (6-th row), and TexMixer (7-th row). Note that our scheme, either
combined with TextureNet or not, creates more smooth transitions, both in color and texture patterns, between exemplars.

FIGURE 7. Mixing non-local textures using Image Melding (1-st row), our method + correlation matrix (2-nd row) and TexMixer (3-rd row). Note
that our algorithm can preserve structures in every mixed textures.

To produce better results, we use a technique called lag
constraint. Specifically, instead of calculating all mixed fea-
tures directly, we calculate mixed feature maps at pool1,
pool2 and pool3 layer, and propagate the mixed feature
maps to style layers relu2_1, relu3_1 and relu4_1
respectively. Results with or without lag constraint are
showed in Fig. 8.

Fig 9 compares results between our algorithm and
Dumoulin’s algorithm [31]. As we can see in this experiment,
although Dumoulin’s algorithm can morph different styles
continuously, it failed to represent most of detailed structures.
In contrast, our method can preserve more detailed struc-
tures in the images and create smooth transitions between
styles.
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FIGURE 8. Comparisons of style morphing results using linear algorithm (1-st and 4-th row), and our scheme with (3-rd and 6-rd row) or without
(2-nd and 5th row) lag constraint. Note that lag constraint technique (see text for details) produces better results.

FIGURE 9. Comparison on style morphing between Dumoulin’s algorithm [31] (1-st, 3rd and 5-th row) and our method (2-nd, 4-th and 6-th row).
Dumoulin’s algorithm can indeed create smooth transitions between different styles, but it fails to represerve detailed structures. On the contrary,
our algorithm can preserve more detailed structures and create smooth transitions simultaneously.

D. INCREMENTAL TRAINING
In the scenarios where one needs to mix textures/styles
with a large number of different relative weights, it can

be time-consuming to initialize each optimization process
with random noises. We can use incremental training to
reduce time consumption and create more smooth transitions.
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FIGURE 10. Comparison on incremental and random training for mixing wood and wool textures. Incremental training converges much faster
than random training (Top left). It also achieves slightly lower loss (Top middle). The difference of converge speed is more obvious when
synthesizing more images (Top right). Compared with the results of random training (Bottom, 2-nd row), transitions created by incremental
training (Bottom, 1-st row) are more smooth and visually pleasant.

FIGURE 11. Comparison on style morphing using incremental training (Bottom, 1-st row) and random training (Bottom, 2-nd row). Notice
that the transitions created by incremental training are slightly more smooth.

Specifically, our goal is to synthesis N images whose rel-
ative weights ρ are equally space in interval [0, 1]: 0

N−1 ,
1

N−1 ,..,
N−2
N−1 ,

N−1
N−1 . In incremental training, instead of initial-

izing each image as random noise, we generate images in
sequence from small weight to the larger weight: the first
image is initialized with random noise, while the rest of
images are initialized with the image synthesized before.
The convergence error is set to 0.001 for texture mix-
ing, and the maximum number of iterations is fixed to
be 10000.

Fig 10 illustrates the differences between these two train-
ing procedures. For texture mixing, incremental training can
speed up the optimization process by offering a better initial
point, and also lead to a lower final loss. It is also worth
noticing that incremental training creates more smooth and
visually pleasing transitions than random training. Similar
results can be observed in style morphing, which is presented
in Fig. 11.

VII. CONCLUSION
This paper proposed a novel algorithm to mix textures with
CNN. To this end, we revealed the statistics used in CNN

based texture models can be represented by a Gaussian
model, thus, interpolating this statistics is reduced to inter-
polating Gaussian models, which has a closed form solution.
Experimental results show that our algorithm excels in mix-
ing high quality textures, and creating mixed styles different
from exemplar styles.

There are still some issues need to be further investigated.
For example, we notice that the optimization based CNN
methods [18] [23] produce some low level noise. Although
in most cases one can polish the results with total variation
de-noise techniques as in [24]. This problem might be com-
pletely overcome by carefully padding the feature maps [31],
or by using upsampling and convolution instead of decon-
volution as suggest in [39]. Another important aspect is the
choice of the training set in training feed forward networks.
Current researches use the whole ImageNet dataset as the
training set, and it is time consuming to iterate through the
whole data set. It is still unclear wether it’s possible to use a
smaller training set.

Finally, note that we only described mixing of two given
textures/styles, but our algorithm can be extended to mixing
more textures/styles without difficulty.
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