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ABSTRACT The Vehicle Routing Problem with Time Windows (VRPTW) has drawn considerable
attention in the last decades. The objective of VRPTW is to find the optimal set of routes for a fleet of
vehicles in order to serve a given set of customers within capacity and time window constraints. As a
combinatorial optimization problem, VRPTW is proved NP-hard and is best solved by heuristics. In this
paper, a hybrid swarm intelligence algorithm by hybridizing Ant Colony System (ACS) and Brain Storm
Optimization (BSO) algorithm is proposed, to solve VRPTW with the objective of minimizing the total
distance. In the BSO procedure, both inter-route and intra-route improvement heuristics are introduced.
Experiments are conducted on Solomon’s 56 instances with 100 customers benchmark, the results show
that 42 out of 56 optimal solutions (18 best and 24 competitive solutions) are obtained, which illustrates the
effectiveness of the proposed algorithm.

INDEX TERMS Ant colony system, brain storm optimization, heuristics, swarm intelligence, vehicle routing
problem with time windows.

I. INTRODUCTION
In recent years, logistics has been playing an important role in
many areas, such as economy, industry and environment, etc.
The Vehicle Routing Problem (VRP) is a logistics problem
and has drawn considerable attention in the last decades. VRP
has many real-world applications in industry, seeking optimal
solutions canmake real-world logistics more efficient, reduce
transportation cost and satisfy customer requests better, etc.
According to the 2019 third-party logistics study,1 reducing
transportation cost is still the top challenge.

VRP is a combinatorial optimization problem seeking to
find the optimal set of routes for a fleet of vehicles in order to
serve a given set of customers. In fact, VRP is a generic name
given to a whole class of problems, the basic VRP makes
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assumptions such as there is only one depot, the fleet vehicles
are homogeneous, one route per vehicle, etc. Researchers
eliminate these assumptions by regarding them as constraints,
which results in many variations of traditional VRP, such
as Capacitated Vehicle Routing Problem (CVRP) [1], Vehi-
cle Routing Problem with Time Windows (VRPTW) [2],
Dynamic Vehicle Routing Problem (DVRP) [3], Vehicle
Routing Problem with Pickup and Delivery (VRPPD) [4],
etc. In this paper, we address VRPTW, aiming to minimize
the number of vehicles (NV) first, and then the total dis-
tance (TD). A solution for VRPTW is feasible if the set of
routes satisfy the constraints, i.e., all vehicle capacities are not
exceeded, and all customers are served within the given time
windows. A typical example of VRPTW is shown in Fig. 1,
in which each customer node has its location and a certain
service timewindow, and three vehicles depart from the depot
to service customer requests.

Determining the optimal solution to VRP is NP-hard [5],
current VRP algorithms can be divided into two main
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FIGURE 1. A typical example of VRPTW.

categories: exact algorithms and heuristic algorithms [6].
Exact algorithms [7], [8] usually solve small scale VRP, with
the size of the problem increases, the computational time of
exact algorithms grows exponentially. Golden et al. [9] point
out that exact algorithms do not work well on VRP with more
than 50 customers.

When dealing with large scale VRP, heuristic algo-
rithms can obtain near-optimal solutions within acceptable
computational time, which is more suitable for practical
applications [6]. Heuristics can be divided into constructive
heuristics and improvement heuristics according to their
functions [6]. Constructive heuristics aim to find feasible
solutions, the most popular ones are saving heuristic [10],
nearest neighbor algorithm [11], insertion heuristic [12],
sweep algorithm [13], cluster-first route-second algo-
rithm [14], and route-first cluster-second algorithm [15],
etc. Improvement heuristics includes 1) intra-route improve-
ment heuristics such as 2-opt [16], Or-opt exchanges [17],
2-opt∗ [18] and 4-opt∗ exchanges [19], etc.; and 2) inter-route
heuristics such as λ-interchange [20], cyclic exchanges [21],
edge exchange schemes [22], ejection chains [23]–[25],
very Large Neighbor Search (VLNS) [26], Adaptive Large
Neighbor Search (ALNS) [27], etc. In addition, many other
optimization techniques have also been applied in recent
research on VRPTW, such as lagrangian relaxation [28], [29],
integer programming [30], etc.

Apart from classic heuristics, many metaheuristics have
been proposed for VRP in recent years. These proposed
metaheuristics are mainly based on local search, population
search, and learning mechanisms. Local searches include
simulated annealing (SA) [31]–[33], deterministic anneal-
ing [1], tabu search (TS) [31], etc. Population searches are
mostly evolutionary algorithms and swarm intelligence algo-
rithms, which include adaptive memory procedures [34],
Genetic Algorithm (GA) [35], Ant Colony Optimization
(ACO) [36], [37], Ant Colony Systems (ACS) [38],
Particle Swarm Optimization (PSO) algorithm [39], Brain

Storm Optimization (BSO) algorithm [40], [41], firefly algo-
rithm [42], etc. Methods of learning mechanisms are mainly
neural networks [43].

Many comparison studies [44]–[46] have analyzed the
impact of different heuristics and metaheuristics for VRP,
the conclusions drawn from those studies showed that no
single heuristic or metaheuristic could exceed others in all the
cases, and certain cases require dynamic heuristic analysis
to determine which heuristics to use according to their fea-
tures. The heuristic analysis also illustrated that hybridization
allows enhancing the strengths and compensating the weak-
nesses of two or more methods, with the aim of generating
better solutions by combining the key elements of competing
methodologies. In this paper, we further explore and imple-
ment multiple heuristics including ACS, BSO, 2-opt and
λ-interchange to achieve near-optimal solutions for VRPTW.
The peripheral frame of the algorithm is ACS, in which
after setting the initial information, ants begin to construct
routes and update pheromones locally. When all the ants have
constructed their solutions, the best solution found by all the
ants is sent to BSO for further optimization. In the modified
BSO procedure, 2-opt heuristic is performed for intra-route
improvement if one route is selected, and λ-interchange are
performed for inter-route improvement if two routes are
selected. The further optimization strategy based on BSO and
the improvement heuristics is performed not only enhance the
search in the solution space, but also avoid local optimum
of ACS.

It is worth to mention that Wu et al. [41] proposed
a brainstorming-based ant colony optimization algorithm
named IBSO-ACO to solve VRP with soft time windows.
In the IBSO-ACO method, an improved BSO was designed
and combined with the ACO algorithm. The main differences
between their work and ours are: 1) A penalty cost is added to
their objective function if the constraints of the time window
is violated, while we focus on VRP with hard time windows,
i.e., time window constraints must be satisfied by all vehicles;
2) The algorithm proposed by us hybridized ACS instead of
the classic ACO in order to balance exploration and exploita-
tion better due to the state transition rule in the ACS [47];
3) The global pheromone update in the ACS also makes the
search more directed; 4) In the BSO procedure, we applied
a different clustering scheme which clusters the population
according to the geographical coordinates of customers in
different routes, while the IBSO-ACO clusters the population
according to the cost; 5) The IBSO-ACO was performed at
the solution level, i.e., it maintains a population of solutions,
and generates new solution randomly, which is very time
consuming and will probably lead to infeasible solutions.
However, the proposed algorithm applied different heuristics
such as 2-opt and λ-interchange to generate new solutions,
which is more effective and more efficient.

The main contributions of this paper are:
• A hybrid ACS-BSO algorithm is proposed, in which
BSO is used to further optimize the solution and to avoid
local optimum compared to classic ACS.
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• Both intra-route and inter-route improvement are con-
sidered in the BSO procedure.

• 56 instances of VRPTW with 100 customers are eval-
uated to demonstrate the effectiveness of the proposed
algorithm.

The rest of this paper is organized as follows. Section II
describes the definition and mathematical model of VRPTW.
Section III first introduces classic ACS, BSO, 2-opt and
λ-interchange algorithms, and then proposes the hybrid
ACS-BSO algorithm. Section IV evaluates ACS and the pro-
posed algorithm. Section V concludes the paper.

II. PROBLEM DEFINITION AND MODELING
The VRPTW can be defined as a directed complete graph
G(V ,E), where V = {v0, v1, . . . , vn} is the vertex set,
E = {(vi, vj)|vi, vj ∈ V , i 6= j} is the edge set. Normally, v0 is
set as the depot, and {v1, v2, . . . , vn} are N customers. A set
of |K | homogenous vehicles with the same capacity Q depart
from depot v0. Each customer vi has a demand of capacity
qi and a service time window [ei, li], where ei is the earliest
time at which service for customer vi may start, and li is the
latest time at which service may start. Thus, a vehicle must
wait if it arrives at customer vi before ei, and it must arrive
before li. Each customer request also has a service time si, and
each customer in the network requires to be serviced by one
vehicle only once. The travel cost cij between vertices i and
j is represented in proportion to Euclidean distance between
them. In the 100 customer instances of Solomon’s VRPTW
benchmark, the vehicle speed is set as the unit, i.e., the time
cost tij is equal to cij. The mathematical model of VRPTW is
defined as follows [46].

Parameters description:
K the set of all vehicles
V the set of all customers
N total number of customers
Q maximum vehicle capacity
cij distance cost from vertex i to vertex j
tij travel time from vertex i to vertex j
qi demand of customer at vertex vi
ei earliest arrival time at vertex vi
li latest arrival time at vertex vi
si service time at vertex vi
ti arrival time at vertex vi
wi wait time at vertex vi
Objective function:

minTD =
∑
k∈K

∑
i∈V

∑
j∈V

cijxijk (1)

subject to: xijk =

{
1 if vehicle k travels from vi to vj
0 otherwise

(2)∑
i∈V

xi0k =
∑
j∈V

x0jk = 1 (∀k ∈ K ) (3)

∑
j∈V ,j 6=i

xijk=
∑

j∈V ,j 6=i

xjik ≤ 1 (∀i ∈ V , ∀k ∈ K )

(4)

∑
k∈K

∑
i∈V ,i 6=j

xijk = 1 (∀j ∈ V ) (5)

∑
k∈K

∑
j∈V ,j 6=i

xijk = 1 (∀i ∈ V ) (6)

∑
i∈V

qi
∑

j∈V ,j 6=i

xijk ≤ Q (∀k ∈ K ) (7)

wj = max{ej − ti − tij, 0} (∀i, j ∈ V , i 6= j)

(8)

ti + si + tij + wi ≤ tj (∀i, j ∈ V , i 6= j) (9)

ei ≤ ti + wi ≤ li (∀i ∈ V ) (10)

where TD is the total distance of all vehicles in Eq. (1).
Eqs. (3)-(4) illustrate that there are maximum |K | vehicles
used to serve customers. Eqs. (5)-(6) ensure that each cus-
tomer is serviced by one vehicle only once. The vehicle
capacity constraint is specified by Eq. (7). The time windows
constraints are defined by Eqs. (8)-(10). A solution is feasible
if all the constraints are satisfied. The route can be repre-
sented as a concatenation of customers, and the solution is
represented as a list of routes, a typical solution for a VRP
with 10 customers is shown in Fig. 2, which has two routes:
0-5-2-1-6-3-0; 0-4-8-7-10-9-0.

FIGURE 2. A solution for VRP with 10 customers (vertex 0 as depot).

III. PROPOSED HYBRID ACS-BSO ALGORITHM
In this section, we first introduce the ACS, improvement
heuristics 2-opt and λ-interchange (local search), and BSO
algorithm. Then, the hybrid ACS-BSO algorithm is proposed.
The breadth search of solutions is ensured via swarm intel-
ligence algorithm due to its population based feature, while
the depth search of solutions is achieved by the local search
heuristics. Therefore, hybridization of swarm intelligence
algorithm and local search leads to both breadth and depth
search of solutions.

A. ANT COLONY SYSTEM
Ant Colony Optimization (ACO) [48] is first proposed
by Dorigo, which is inspired by ant behavior of leaving
pheromones to direct each other to food while exploring the
environment. When a colony of ants have different routes
to reach the food, those who travel the shorter route go
back and forth to the depot more frequently and leave more
pheromones. Ants choose route according to the density
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of pheromones, i.e., the more pheromones left on a route,
the more likely ants choose this route. At the same time,
pheromones also evaporate over time.

In ACO, the state transition rule, i.e., the probability of ant
k moves from customer i to j is defined in Eq. (11):

pkij =


(ταij ) · (η

β
ij )∑

k∈Jk (i)(τ
α
ik ) · (η

β
ik )

if j ∈ Jk (i)

0 otherwise

(11)

where τij is the pheromone deposited for transition from
customer i to j, η is the desirability of state transition (nor-
mally set as 1/dij, where dij is the distance between customer
i and j), β ≥ 1 is a parameter which controls the relative
influence of ηij, and Jk (i) is the feasible set of customers that
remain to be visited by ant k .
When a solution is found by the ant colony, pheromones

along the edges are updated according to Eq. (12):

τij← (1− ρ) · τij +
∑
k

1τ kij (12)

where 0 < ρ < 1 is the pheromone evaporation coefficient, and
1τ kij is the pheromone deposited by ant k , which is defined

by Eq. (13):

1τ kij =

{
1/Lk if edge (i, j) ∈ ant k’s route
0 otherwise

(13)

where Lk is the length of the route traveled by ant k .
ACS [47] is a variation of ACO algorithm, which differs

from ACO in three main aspects:
1) a probability parameter is added to the state transition

rule to balance exploration and exploitation
2) a local pheromone update rule is applied when ants are

constructing routes
3) a global pheromone update is applied only to the edges

in the best route
In ACS, the state transition rule is defined by Eq. (14):

s =

{
argmaxj∈Jk (i) τij · η

β
ij if q ≤ q0

S otherwise
(14)

where 0 ≤ q ≤ 1 is a uniformly distributed random number,
0 ≤ q0 ≤ 1 is a parameter of probability, which allows ants
to focus more on exploitation when q ≤ q0 and focus more
on exploration otherwise. S is the state transition probability
from Eq. (11).

In ACS, the local pheromone update is performed by
Eq. (15):

τij← (1− ρ) · τij + ρ ·1τij (15)

The global pheromone update is performed by Eq. (16):

τij← (1− α) · τij + α ·1τij (16)

where

1τij =

{
1/Lgbest if edge (i, j) ∈ global best route
0 otherwise

(17)

where α is the pheromone evaporation rate, and Lgbest is the
length of the global best route. The global pheromone update
is performed when all the ants have completed the tours, and
only the ant which constructed the shortest tour is allowed to
deposit pheromone, which makes the search more directed.
The pseudocode of the ACS algorithm is shown in Alg. 1.

B. 2-OPT AND λ-INTERCHANGE
1) INTRA-ROUTE IMPROVEMENT WITH 2-OPT
In optimization, 2-opt [16] is a widely used local search
algorithm first proposed by Croes for solving TSP. The main
idea of 2-opt algorithm is to reverse a subset of the route
itself, as shown in Fig. 3, in which 2-opt is applied to modify
a single route: the original route is 0-4-2-1-3-5-6-7-0, after
performing 2-opt algorithm, the order of the sub-route 3-5 is
reversed, and the new route is 0-4-2-1-5-3-6-7-0.

FIGURE 3. 2-opt for intra-route improvement.

FIGURE 4. λ-interchange for inter-route improvement with operator (1,1).

2) INTER-ROUTE IMPROVEMENT WITH λ-INTERCHANGE
λ-interchange [20] is first proposed by Osman et al. It is
an improvement heuristic which can interchange customer
nodes between routes, the parameter λ is the maximum num-
ber of customers that would be interchanged. There are 2λ+1

interchange operators in total, due to the computational cost,
normally λ ≤ 3. In this paper, we only consider λ = 2,
i.e., there are eight possible interchange operators which are
(0,1), (1,0), (1,1), (0,2), (2,0), (1,2), (2,1) and (2,2). Operator
(1,2) means that for a chosen pair of routes (Rp,Rq), one
customer node from Rp is shifted to Rq and two customer
nodes from Rq are shifted to Rp. After the interchange of
customer nodes, only feasible and improved solutions will be
accepted. An example of λ-interchange with operator (1,1) is
shown in Fig. 4, in which the original route 1 is 0-3-2-4-0,
and the route 2 is 0-5-1-0, after interchange with operator
(1,1), customer node 4 is shifted from route 1 to route 2,
and customer node 5 is shifted from route 2 to route 1,

VOLUME 8, 2020 93885



Y. Shen et al.: Hybrid Swarm Intelligence Algorithm for VRPTW

Algorithm 1 ACS Algorithm
Input: G(V ,E), M : Set of ants
function Set_Init_Positions

for ∀k ∈ M do
let rk1 be the starting vertex for ant k
Jk (rk1)← V − rk1 F Jk (r): set of unvisited

vertices for ant k
rk ← rk1 F rk : current vertex where ant k locates

end for
end function
function Construct_Routes

for i := 1 to |V | − 1 do
for ∀k ∈ M do

if q ≤ q0 then F exploitation
choose next vertex sk according to Eq. (14)

else F exploration
choose next vertex sk according to Eq. (11)

end if
add edge (rk , sk ) to Routek
rk ← sk

end for
end for
for ∀k ∈ M do

add edge (rk , rk1) to Routek
end for

end function
function Local_Pheromone_Update

compute Lk∀k ∈ M F Lk : length of Routek
update pheromones according to Eq. (15)

end function
function Global_Pheromone_Update

compute Lgbest F Lgbest : global best route
update pheromones according to Eqs. (16)-(17)

end function
function Main

for ∀edge(r, s) ∈ E do
τr,s← τ0
ηr,s← 1/cr,s F Cr,s: distance between r and s

end for
loop F at this level each loop is called an iteration

Set_Init_Positions
loop F at this level each loop is called a step

Construct_Routes
Local_Pheromone_Update

end loop
Global_Pheromone_Update

end loop
end function

the obtained new route 1 is 0-3-2-5-0, and new route 2 is
0-4-1-0.

There are two selection strategies for selecting candidate
solutions S ′ from Nλ(S), where Nλ(S) is the neighborhood
solutions of current solution S.

1) Best-Improve (BI) strategy goes over all solutions S ′ in
Nλ(S) and selects the one which results in maximum
decrease in cost.

2) First-Improve (FI) strategy accepts the first solution S ′

in Nλ(S) which results in a decrease in cost.
Since BI strategy usually takes too much computational

time than FI strategy, in this paper, 2-interchange with FI
strategy is implemented to make the algorithmmore efficient,
i.e., the algorithm accepts the first improved solution and runs
the next iteration.

C. BRAIN STORM OPTIMIZATION
Brain Storm Optimization (BSO) [49], [50] was first intro-
duced in 2011, which is inspired by the human brainstorming
process, and has been widely and successfully used to solve
a lot of optimization problems [51], [52]. The procedure of
classic BSO algorithm is described as follows.

1) Randomly generate N individuals / solutions, initialize
parameters p1, p2, p3, p4;

2) Clustering: Cluster N solutions into M clusters, and
mark the best solution in each cluster as the cluster
center;

3) Evaluate N solutions according to fitness function;
4) Replacing: Generate a random number r1 ∈ (0, 1),

if r < p1, randomly select a cluster center, and ran-
domly generate a solution to replace it;

5) Generating: Generate a random number r2 ∈ (0, 1),
if r2 < p2, randomly select a cluster and generate a
random number r3 ∈ (0, 1). If r3 < p3, generate a
new solution by adding random values to the selected
cluster center, otherwise, generate a new solution by
adding random values to a random solution in selected
cluster; If r2 ≥ p2, randomly select two clusters, and
generate a random number r4 ∈ (0, 1), if r4 < p4, then
combine two cluster centers and add random values
to generate a new solution, otherwise, combine two
random solutions in selected clusters and add random
values to generate a new solution;

6) Selecting: Evaluate the new generated solution, and
compare it to the existing solution with the same index,
the better one is kept and recorded;

7) If N new solutions have been generated, go to step 8;
otherwise, go to step 5;

8) Terminate the procedure if the maximum number of
iterations is reached; otherwise, go to step 2.

To apply the classic BSO to VPRTW, the new solution
generation operation in step 5) performs at the solution level,
which is very time consuming and will probably lead to infea-
sible solutions. To make the process more efficient, we mod-
ify the classic BSO algorithm to optimize VRPTW solutions
at the route level. First, we divide routes into two clusters
A and B according to their coordinates, i.e., the geograph-
ical coordinates of customers in the routes. Other different
clustering strategies can also be applied since clustering in
BSO is only for simulating the problem owners to pick up
better solutions they believe in the brainstorming process.
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After clustering, randomization rationale from BSO is per-
formed to enhance solution diversity and to avoid local
optimum of ACS. The algorithm has four different ways
of generating new solutions: 1) perform 2-opt on a cluster
center; 2) perform 2-opt on a random route in the cluster;
3) perform 2-interchange on two cluster centers; 4) perform
2-interchange on two random routes in two different clusters.
More details are shown in Alg. 2.

Algorithm 2 Modified BSO for VRPTW
Input: solution S (i.e., NV, routes) as initial solution
Output: new_solution S ′

for i := 1 to NV do
compute cost for routes in S

end for
while not termination do

perform route clustering on S
find centers for each cluster
for i := 1 to NV do

if rand(0, 1) < p1 then
randomly pick a cluster Cj
if rand(0, 1) < p2 then

nri← 2-opt(cj) F cj: center of Cj
else

nri← 2-opt(rj) F rj: random route in Cj
end if

else
randomly pick two clusters Cj,Ck
if rand(0, 1) < p3 then

nri← 2-interchange(cj, ck )
else

nri← 2-interchange(rj, rk )
end if

end if
S ′← update S with nri
if S ′ outperforms S then

S ← S ′

end if
end for

end while
return S

D. PROPOSED HYBRID ACS-BSO ALGORITHM
The proposed hybrid ACS-BSO algorithm combines popula-
tion based method and local search, the overall procedure is
described in Alg. 3.

The first step is to initialize the parameters for ACS and
BSO algorithms. After initialization, the outer-loop of ACS
starts. In the inner-loop of the proposed algorithm, the ini-
tial solution is constructed in two ways, either picking the
nearest neighbor as the next customer or picking a new cus-
tomer randomly. In this case, the diversity of the solution is
ensured, and different initial solutions can also help to avoid
local optimum. When the initial solution is constructed, ant
actions described in Section III-A is performed. Since local

Algorithm 3 Hybrid ACS-BSO Algorithm
1: Initialize parameters
2: while not termination do F each loop is an iteration
3: set ants’ initial positions
4: while not termination do F each loop is a step
5: construct solution
6: perform local pheromone update
7: send current best solution to BSO
8: further optimize by BSO with local search
9: end while
10: perform global pheromone update
11: end while

pheromone update can’t ensure the quality of the solution,
current best solution is then sent to BSO to get further opti-
mization. Besides, further intra-route and inter-route opti-
mization can also improve the diversity of solutions. Global
pheromones of ants are updated after BSO. The proposed
algorithm will output the best solution found if the condition
of termination is satisfied, i.e., either the maximum number
of iterations is achieved, or the solution is not improved after
a certain number of iterations.

IV. EXPERIMENTS AND DISCUSSIONS
For our experiments, we choose the 56 instances of
Solomon’s benchmark with 100 customers, which is most
widely used for evaluation. The benchmark has six sets of
problems: C1, C2, R1, R2, RC1, and RC2. ‘‘C’’ stands
for clustered, which means that the geographical coordi-
nates of customers are clustered in problem sets C1 and C2.
‘‘R’’ represents random, whichmeans the benchmark data are
randomly generated (uniformly distributed) in problem sets
R1 and R2. And ‘‘RC’’ means a mix of random and clustered.
In problem sets 1 (i.e., R1, C1, and RC1), the capacity of
the vehicle is small, and the time windows are narrow, thus
more vehicles are required to service the customers, and fewer
customers will be serviced by the same vehicle. The number
of vehicles required are normally larger than 10 for problem
sets 1. In contrast, problem sets R2, C2 and RC2 have wide
time windows and permit more customers per route, the num-
ber of vehicles required are much fewer.

A. EXPERIMENT SETUP
The parameters for ACS are set as follows: M = 30,
α = 1, β = 2, ρ = 0.1, q0 = 0.1, max_iter = 500. All
the parameters were tuned to balance the quality of solutions
and the computational cost. Although the maximum number
of iterations of ACS is set as 500, the proposed algorithm
terminates earlier before achieving the maximum number of
iterations except for a few complicate instances.

BSO is used to further improve the solutions obtained by
ACS, the probability parameters for BSO are set as: p1 = 0.3,
p2 = 0.4, p3 = 0.5. Since it is nested in the loop of ACS,
the number of maximum iterations for BSO is set as 15,
i.e., for each current best solution obtained by ACS, BSO
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TABLE 1. Results for Solomon’s 56 instances with 100 customers.

will further optimize the solution by using either 2-opt or
2-interchange method with first improvement strategy.

The proposed algorithm was programmed in Python,
and all our experiments were conducted on an Intel Xeon
E5-2650 CPU@2.30GHz PC with 16GB RAM.

B. RESULT ANALYSIS
The best results obtained by classic ACS and the proposed
algorithm are shown in Table 1, as well as the Best Known

Solutions (BKS) found by other researches so far. In Table 1,
‘‘NV’’ represents the number of vehicles, ‘‘TD’’ means total
distance, ‘‘BNV’’ and ‘‘BTD’’ stands for best number of
vehicles and best total distance, respectively. Although the
objective is to minimize the total distance, researches also
focus on minimizing the number of vehicles used as well.
Tan et al. points out that all the instances in problem sets
C1 and C2 have positively correlating objectives, and many
instances in problem sets R1, R2, RC1, and RC2 have
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TABLE 2. Average results of total distance over 10 runs for each problem set.

TABLE 3. Solution to C104.

conflicting objectives [53], i.e., a multiobjective optimization
problem. We list two columns of the best results found, one
with minimum NV and the other with minimum TD. To see
how much hybridization of different algorithms cam improve
the solutions, we computed the cost reduction between our
solutions and solutions obtained by classic ACS. To compare
with the BKS, the solutions which have fewer NV or smaller
TD are highlighted with bold fonts, the gap (i.e., percentage
deviation) between the BTD and the BKS is also computed.
The cost reduction [41] and the gap [54] are computed accord-
ing to Eq. (18) and Eq. (19).

Cost Reduction =
TDours − TDACS

TDours
(18)

Gap =
TDours − TDBKS

TDours
(19)

It can be observed from Table 1 that for problem sets
C1 and C2, all the best known solutions are found by the
proposed algorithm. Classic ACS fails to find two optimal
solutions for instances C104 and C204. For problem sets R
and RC, more vehicles are used in R1 and RC1 because they
have tight time windows, 5/12 and 2/8 solutions with fewer
NV or smaller TD are found by the proposed algorithm, all
the cost reductions of total distance are further optimized by
BSO ranging from −7.14% to −2.15% for problem set R1,
and −13.89% to −2.47% for problem set RC1. For problem
sets R2 and RC2, almost all solutions with fewer number
of vehicles (10/11 and 8/8 respectively) are found by the
proposed algorithm, and the total distance of all instances
are also optimized by the BSO algorithm. For all instances
in problem sets R and RC, all the solutions obtained by
the proposed algorithm are better than classic ACS. The
proposed algorithm found competitive solutions for 42 out

of 56 instances, including all instances in type C and 18 out
of 19 instances of problem sets R2 and RC2.

To get an overview of different problem sets, the aver-
age cost reduction and gap of each problem sets are also
computed. For all the 56 benchmark instances, the experi-
ments were run for 10 times, and the average total distance
of BKS, ACS and the proposed hybrid ACS-BSO algorithm,
as well as the average cost reduction and gap of each problem
sets are shown in Table 2. In Table 2, for problem sets
C1 and C2, the proposed algorithm has a slight improvement
over classic ACS, and there is no gap since all the optimal
solutions are obtained. For problem sets R1, R2, RC1 and
RC2, the average cost reduction are much larger than C1 and
C2 problem sets, which are −4.03%, −5.68%, −5.71% and
−4.37%, respectively. Besides, the average gaps are rela-
tively small, which are 1.08% and 0.96% for problem sets
R1 and RC1, 2.06% and 2.02% for problem sets R2 and
RC2. The average gaps are higher for R2 and RC2 prob-
lem sets is that most solutions obtained have fewer vehicles
being used to service the customers, thus result in larger total
distance.

For problem sets C1 and C2, the proposed algorithm can
find optimal solutions in less than 30 seconds. Thus, in the
aspect of convergence speed, the proposed algorithm is very
efficient.

C. CASE STUDY
Two heuristics were used in the proposed algorithm, which
are 2-opt and 2-interchange. Theoretically, a sequence of
operations of 2-opt could get stuck on the local optimum,
while a sequence of operations of 2-interchange can move
current solution to anywhere in the solution space [46]. How-
ever, 2-interchange operation is very time consuming, while
2-opt is simple and effective. Thus, both heuristics were taken
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FIGURE 5. Solution to C104 (Left: ACS, Right: Ours).

FIGURE 6. Solution to RC208 (Left: ACS, Right: Ours).

to balance the computational cost of the algorithm and the
quality of the solutions.

For further analysis of the heuristics used, two instances
were chosen, which are C104 and RC208. The solutions
to instance C104 are very similar to each other, while the
solutions to instance RC208 are quite different. The solutions

are shown in Fig. 5 and Fig. 6, and the detailed routes are
shown in Table 3 and Table 4.

It can be observed from Table 3 that most edges are
the same between the solutions obtained by ACS and the
proposed algorithm. Taking vehicle 2 and 7 as an example,
the two routes of ACS are 0-5-3-7-8-11-9-6-4-2-1-75-0 and
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TABLE 4. Solution to RC208.

0-13-17-18-19-15-16-14-12-10-0, which can be transferred
to 0-5-3-7-8-10-11-9-6-4-2-1-75-0 and 0-13-17-18-19-15-
16-14-12-0 by taking one 2-interchange operation with the
operator (0,1). In addition, for vehicle 5, the routes of ACS
is 0-57-55-54-53-56-58-60-59-0, while the routes of the pro-
posed algorithm is 0-55-54-53-56-58-60-59-57-0, the only
difference is the position of customer node 57. Apparently,
it would take a lot of 2-opt operations to mutate the route 5 of
ACS to the route 5 of the proposed algorithm, but only two
2-interchange operations to make such mutation.

For instance RC208, it can be observed from Fig. 6 that
the number of vehicles is reduced from 7 to 4 by the pro-
posed algorithm, and the total distance is reduced from
862.36 to 782.15. The detailed routes are shown in Table 4.
There are many differences between the two solutions, but
there also exists many short fragments in two solutions.
Firstly, the intra-route improvement by 2-opt would change
the position of the customer nodes in the routes, but 2-opt
operation is not able to reduce the number of vehicles. Sec-
ondly, in Table 4, many routes in the solution to ACS are
short, i.e., there are not many customer nodes in the routes.
In addition, the inter-route improvement by 2-interchange
with operator (0, x) or (x, 0) is able to reduce the number of
vehicles. Thus, the number of vehicles is reduced from 7 to 4.
However, to optimize the solution to ACS to the the solution
obtained by the proposed algorithm, a lot of 2-interchange
operations have to be taken. Therefore, any single heuris-
tic has its limitations, it is essential to perform multiple
heuristics.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a hybrid swarm intelligence algo-
rithm for solving the VRPTW. The ACS, BSO, as well as
2-opt and λ-interchange local search heuristics, were illus-
trated. The proposed algorithm uses ACS to optimize the
solution first, and then performs BSO with local search for
further optimization. Experiments on Solomon’s benchmark
with 100 customers showed that the proposed algorithm can
achieve competitive results comparing to the best known
solutions obtained by many other different methods. In addi-
tion, although classic ACS method can achieve good qual-
ity solutions for VRPTW, hybridization of different algo-
rithms can highly improve those solutions achieved from

one single classical method. We think a successful strat-
egy must consider two aspects: i) ‘‘breadth’’ via population
based method, ii) ‘‘depth’’ via local search. Our experimental
results obtained very competitive solutions with regard to the
best known solutions, a total of 42 out of 56 optimal solutions
(18 best and 24 competitive solutions) were found.

Many successful VRP metaheuristics use either local
search or large neighborhood search (LNS). The main idea of
LNS is ‘‘destory and repair’’, and LNS usually requires very
large computational cost to explore the search space better.
In this paper, the ACS and the BSO algorithms were used
to explore the search space, which are more efficient due to
their population-based properties. In addition, the 2-opt and
λ-interchange local search methods were applied, which are
simple and effective.

The new solution generation operations of BSO in the
proposed algorithm have been performed at the route level.
According to our observation from the near-optimal solu-
tions, most fragments (i.e., edges in routes) are the same as the
best known solutions. In this case, cross over at solution level
to inherit good fragments is another possible way to improve
the convergence speed and produce high quality solutions.
Further research could also focus on solving other variants
of the VRP and related problems.

ACKNOWLEDGMENT
(Yang Shen, Mingde Liu, and Jian Yang contributed equally
to this work.)

REFERENCES
[1] F. Li, B. Golden, and E. Wasil, ‘‘Very large-scale vehicle routing: New

test problems, algorithms, and results,’’ Comput. Oper. Res., vol. 32, no. 5,
pp. 1165–1179, May 2005.

[2] J. Cordeau, G. Desaulniers, J. Desrosiers, M. M. Solomon, and F. Soumis,
‘‘VRPwith timewindows,’’ in The Vehicle Routing Problem (SIAMMono-
graphs on Discrete Mathematics and Applications), vol. 9. Philadelphia,
PA, USA: SIAM, 2002, pp. 157–193.

[3] D. M. Chitty and M. L. Hernandez, ‘‘A hybrid ant colony optimisation
technique for dynamic vehicle routing,’’ in Proc. Genetic Evol. Comput.
Conf. Berlin, Germany: Springer, 2004, pp. 48–59.

[4] I. Gribkovskaia, O. Halskau, and K. N. B. Myklebost, ‘‘Models for pick-
up and deliveries from depots with lasso solutions,’’ in NOFOMA2001,
Collaboration in Logistics: Connecting Islands Using Information Tech-
nology. Goteborg, Sweden: Department of Transportation and Logistics,
Chalmers Univ. of Technology, Reykjavik, Iceland, 2001, pp. 279–293.

[5] J. K. Lenstra and A. H. G. R. Kan, ‘‘Complexity of vehicle routing and
scheduling problems,’’ Networks, vol. 11, no. 2, pp. 221–227, 1981.

VOLUME 8, 2020 93891



Y. Shen et al.: Hybrid Swarm Intelligence Algorithm for VRPTW

[6] N. A. El-Sherbeny, ‘‘Vehicle routing with time windows: An overview
of exact, heuristic and Metaheuristic methods,’’ J. King Saud Univ.-Sci.,
vol. 22, no. 3, pp. 123–131, Jul. 2010.

[7] G. Laporte, ‘‘The vehicle routing problem: An overview of exact and
approximate algorithms,’’ Eur. J. Oper. Res., vol. 59, no. 3, pp. 345–358,
Jun. 1992.

[8] R. Baldacci, N. Christofides, and A. Mingozzi, ‘‘An exact algorithm for
the vehicle routing problem based on the set partitioning formulation with
additional cuts,’’Math. Program., vol. 115, no. 2, pp. 351–385, Oct. 2008.

[9] B. L. Golden, S. Raghavan, and E. A.Wasil, The Vehicle Routing Problem:
Latest Advances and New Challenges, vol. 43. New York, NY, USA:
Springer, 2008.

[10] G. Clarke and J. W. Wright, ‘‘Scheduling of vehicles from a central depot
to a number of delivery points,’’ Oper. Res., vol. 12, no. 4, pp. 568–581,
1964.

[11] D. J. Rosenkrantz, R. E. Stearns, and P. M. Lewis, ‘‘An analysis of several
heuristics for the traveling salesman problem,’’ SIAM J. Comput., vol. 6,
no. 3, pp. 563–581, 1977.

[12] M. M. Solomon, ‘‘Algorithms for the vehicle routing and scheduling
problems with time window constraints,’’ Oper. Res., vol. 35, no. 2,
pp. 254–265, Apr. 1987.

[13] B. E. Gillett and L. R. Miller, ‘‘A heuristic algorithm for the vehicle-
dispatch problem,’’ Oper. Res., vol. 22, no. 2, pp. 340–349, Apr. 1974.

[14] M. L. Fisher and R. Jaikumar, ‘‘A generalized assignment heuristic for
vehicle routing,’’ Networks, vol. 11, no. 2, pp. 109–124, 1981.

[15] J. E. Beasley, ‘‘Route first—Cluster second methods for vehicle routing,’’
Omega, vol. 11, no. 4, pp. 403–408, 1983.

[16] G. A. Croes, ‘‘A method for solving traveling-salesman problems,’’ Oper-
ations Res., vol. 6, no. 6, pp. 791–812, Dec. 1958.

[17] I. Or, ‘‘Traveling salesman type combinatorial problems and their relation
to the logistics of regional blood banking,’’ Ph.D. dissertation, Northwest-
ern Univ., Evanston, IL, USA, 1977.

[18] J.-Y. Potvin and J.-M. Rousseau, ‘‘An exchange heuristic for routeing
problems with time windows,’’ J. Oper. Res. Soc., vol. 46, no. 12,
pp. 1433–1446, Dec. 1995.

[19] J. Renaud, F. F. Boctor, and G. Laporte, ‘‘A fast composite heuristic for
the symmetric traveling salesman problem,’’ INFORMS J. Comput., vol. 8,
no. 2, pp. 134–143, May 1996.

[20] I. H. Osman and N. Christofides, ‘‘Capacitated clustering problems by
hybrid simulated annealing and tabu search,’’ Int. Trans. Oper. Res., vol. 1,
no. 3, pp. 317–336, Jul. 1994.

[21] P. M. Thompson and H. N. Psaraftis, ‘‘Cyclic transfer algorithm for mul-
tivehicle routing and scheduling problems,’’ Oper. Res., vol. 41, no. 5,
pp. 935–946, Oct. 1993.

[22] G. A. P. Kindervater and M. W. P. Savelsbergh, ‘‘Vehicle routing: han-
dling edge exchanges,’’ in Local Search in Combinatorial Optimzation.
Princeton, NJ, USA: Princeton Univ. Press, 1997, pp. 337–360.

[23] J. Xu and J. P. Kelly, ‘‘A network flow-based tabu search heuristic for
the vehicle routing problem,’’ Transp. Sci., vol. 30, no. 4, pp. 379–393,
Nov. 1996.

[24] C. Rego and C. Roucairol, ‘‘A parallel tabu search algorithm using ejection
chains for the vehicle routing problem,’’ inMeta-Heuristics. Boston, MA,
USA: Springer, 1996, pp. 661–675.

[25] C. Rego, ‘‘A subpath ejection method for the vehicle routing problem,’’
Manage. Sci., vol. 44, no. 10, pp. 1447–1459, Oct. 1998.

[26] O. Ergun, J. B. Orlin, and A. Steele-Feldman, ‘‘Creating very large scale
neighborhoods out of smaller ones by compounding moves: A study on the
vehicle routing problem,’’ SSRN Electron. J., 2002.

[27] S. Ropke and D. Pisinger, ‘‘An adaptive large neighborhood search heuris-
tic for the pickup and delivery problem with time windows,’’ Transp. Sci.,
vol. 40, no. 4, pp. 455–472, Nov. 2006.

[28] D. Aggarwal, V. Kumar, and A. Girdhar, ‘‘Lagrangian relaxation for the
vehicle routing problem with time windows,’’ in Proc. Int. Conf. Intell.
Comput., Instrum. Control Technol. (ICICICT), Jul. 2017, pp. 1601–1606.

[29] V. Kumar, M. S. Bhangu, and R. Anand, ‘‘Lagrangian relaxation for dis-
tribution networks with cross-docking centre,’’ Int. J. Intell. Syst. Technol.
Appl., vol. 18, nos. 1–2, p. 52, 2019.

[30] D. Aggarwal and V. Kumar, ‘‘Mixed integer programming for vehicle
routing problem with time windows,’’ Int. J. Intell. Syst. Technol. Appl.,
vol. 18, nos. 1–2, p. 4, 2019.

[31] I. H. Osman, ‘‘Metastrategy simulated annealing and tabu search algo-
rithms for the vehicle routing problem,’’ Ann. Oper. Res., vol. 41, no. 4,
pp. 421–451, Dec. 1993.

[32] W.-C. Chiang and R. A. Russell, ‘‘Simulated annealing metaheuristics for
the vehicle routing problem with time windows,’’ Ann. Oper. Res., vol. 63,
no. 1, pp. 3–27, Feb. 1996.

[33] V. F. Yu, S.-W. Lin, W. Lee, and C.-J. Ting, ‘‘A simulated annealing
heuristic for the capacitated location routing problem,’’ Comput. Ind. Eng.,
vol. 58, no. 2, pp. 288–299, Mar. 2010.

[34] Y. Rochat and É. D. Taillard, ‘‘Probabilistic diversification and intensi-
fication in local search for vehicle routing,’’ J. Heuristics, vol. 1, no. 1,
pp. 147–167, Sep. 1995.

[35] E. Alba and B. Dorronsoro, ‘‘Solving the vehicle routing problem by using
cellular genetic algorithms,’’ in Proc. 4th Eur. Conf. Evol. Comput. Com-
binat. Optim. (Lecture Notes in Computer Science), vol. 3004. Coimbra,
Portugal: Springer, Apr. 2004, pp. 11–20.

[36] J. E. Bell and P. R. McMullen, ‘‘Ant colony optimization techniques for
the vehicle routing problem,’’ Adv. Eng. Inform., vol. 18, no. 1, pp. 41–48,
2004.

[37] B. Yu, Z.-Z. Yang, and B. Yao, ‘‘An improved ant colony optimization for
vehicle routing problem,’’ Eur. J. Oper. Res., vol. 196, no. 1, pp. 171–176,
2009.

[38] M. Reimann, K. Doerner, and R. F. Hartl, ‘‘D-ants: Savings based ants
divide and conquer the vehicle routing problem,’’ Comput. Oper. Res.,
vol. 31, no. 4, pp. 563–591, Apr. 2004.

[39] T. J. Ai and V. Kachitvichyanukul, ‘‘A particle swarm optimization for the
vehicle routing problem with simultaneous pickup and delivery,’’ Comput.
Oper. Res., vol. 36, no. 5, pp. 1693–1702, May 2009.

[40] L. Ke, ‘‘A brain storm optimization approach for the cumulative capac-
itated vehicle routing problem,’’ Memetic Comput., vol. 10, no. 4,
pp. 411–421, Dec. 2018.

[41] L.Wu, Z. He, Y. Chen, D.Wu, and J. Cui, ‘‘Brainstorming-based ant colony
optimization for vehicle routing with soft time windows,’’ IEEE Access,
vol. 7, pp. 19643–19652, 2019.

[42] D. Aggarwal and V. Kumar, ‘‘Performance evaluation of distance metrics
on Firefly Algorithm for VRP with time windows,’’ Int. J. Inf. Technol.,
pp. 1–8, Nov. 2019.

[43] H. Ghaziri, ‘‘Solving routing problems by a self-organizing map,’’ in
Artificial Neural Network. Amsterdam, The Netherlands: North-Holland,
1991, pp. 829–834.

[44] G. Laporte, M. Gendreau, J.-Y. Potvin, and F. Semet, ‘‘Classical and
modern heuristics for the vehicle routing problem,’’ Int. Trans. Oper. Res.,
vol. 7, nos. 4–5, pp. 285–300, Sep. 2000.

[45] A. V. Breedam, ‘‘Comparing descent heuristics and metaheuristics for the
vehicle routing problem,’’ Comput. Oper. Res., vol. 28, no. 4, pp. 289–315,
Apr. 2001.

[46] K. C. Tan, L. H. Lee, Q. L. Zhu, and K. Ou, ‘‘Heuristic methods for vehicle
routing problem with time windows,’’ Artif. Intell. Eng., vol. 15, no. 3,
pp. 281–295, Jul. 2001.

[47] M. Dorigo and L. M. Gambardella, ‘‘Ant colony system: A cooperative
learning approach to the traveling salesman problem,’’ IEEE Trans. Evol.
Comput., vol. 1, no. 1, pp. 53–66, Apr. 1997.

[48] M. Dorigo, ‘‘Optimization, learning and natural algorithms,’’ Ph.D. disser-
tation, Politecnico di Milano, Milan, Italy, 1992.

[49] Y. Shi, ‘‘Brain storm optimization algorithm,’’ in Proc. Int. Conf. Swarm
Intell. Berlin, Germany: Springer, 2011, pp. 303–309.

[50] Y. Shi, ‘‘An optimization algorithm based on brainstorming process,’’ in
Emerging Research on Swarm Intelligence and Algorithm Optimization.
Hershey, PA, USA: IGI Global, 2015, pp. 1–35.

[51] S. Cheng, J. Chen, X. Lei, and Y. Shi, ‘‘Locating multiple optima via brain
storm optimization algorithms,’’ IEEE Access, vol. 6, pp. 17039–17049,
2018.

[52] Z. Jia, H. Duan, and Y. Shi, ‘‘Hybrid brain storm optimisation and sim-
ulated annealing algorithm for continuous optimisation problems,’’ Int. J.
Bio-Inspired Comput., vol. 8, no. 2, p. 109, 2016.

[53] K. C. Tan, Y. H. Chew, and L. H. Lee, ‘‘A hybrid multiobjective evolution-
ary algorithm for solving vehicle routing problem with time windows,’’
Comput. Optim. Appl., vol. 34, no. 1, pp. 115–151, May 2006.

[54] D. Bustos Coral, M. Oliveira Santos, C. Toledo, and L. Fernando Nino,
‘‘Clustering-based search in a memetic algorithm for the vehicle routing
problem with time windows,’’ in Proc. IEEE Congr. Evol. Comput. (CEC),
Jul. 2018, pp. 1–8.

[55] S. Jung and B.-R. Moon, ‘‘A hybrid genetic algorithm for the vehicle rout-
ing problem with time windows,’’ in Proc. 4th Annu. Conf. Genetic Evol.
Comput. San Mateo, CA, USA: Morgan Kaufmann, 2002, pp. 1309–1316.

93892 VOLUME 8, 2020



Y. Shen et al.: Hybrid Swarm Intelligence Algorithm for VRPTW

[56] G. B. Alvarenga, G. R. Mateus, and G. de Tomi, ‘‘A genetic and set
partitioning two-phase approach for the vehicle routing problem with time
windows,’’ Comput. Oper. Res., vol. 34, no. 6, pp. 1561–1584, Jun. 2007.

[57] J. Berger, M. Salois, and R. Begin, ‘‘A hybrid genetic algorithm for
the vehicle routing problem with time windows,’’ in Proc. Adv. 12th
Biennial Conf. Can. Soc. Comput. Stud. Intell. Artif. Intell. (AI) (Lecture
Notes in Computer Science), vol. 1418. Vancouver, BC, Canada: Springer,
Jun. 1998, pp. 114–127.

[58] H. C. B. de Oliveira and G. C. Vasconcelos, ‘‘A hybrid search method for
the vehicle routing problem with time windows,’’ Ann. Operations Res.,
vol. 180, no. 1, pp. 125–144, Nov. 2010.

[59] T. Vidal, T. G. Crainic, M. Gendreau, and C. Prins, ‘‘Time-window
relaxations in vehicle routing heuristics,’’ J. Heuristics, vol. 21, no. 3,
pp. 329–358, 2015.

[60] P. Shaw, ‘‘Using constraint programming and local searchmethods to solve
vehicle routing problems,’’ in Proc. 4th Int. Conf. Princ. Pract. Constraint
Program. (Lecture Notes in Computer Science), vol. 1520. Pisa, Italy:
Springer, Oct. 1998, pp. 417–431.

[61] J.-F. Cordeau, G. Laporte, and A. Mercier, ‘‘A unified tabu search heuristic
for vehicle routing problems with time windows,’’ J. Oper. Res. Soc.,
vol. 52, no. 8, pp. 928–936, Aug. 2001.

YANG SHEN received the B.E. degree from
Northwestern Polytechnical University, in 2013.
His research interests include swarm intelligence,
evolutionary computation, artificial intelligence,
multiobjective optimization, and so on.

MINGDE LIU received the B.E. degree from
the Hebei University of Technology, in 2018.
His research interests include swarm intelligence,
evolutionary computation, artificial intelligence,
machine learning, dynamic optimization, and
so on.

JIAN YANG received the B.S. and M.S. degrees
from the Department of Control Science and
Engineering, Harbin Institute of Technology,
China, in 2005 and 2007, respectively, and the
Ph.D. degree from the Department of Mechani-
cal Engineering, Harbin Institute of Technology,
Shenzhen, in 2019. He is currently a Research
Fellow with the Department of Computer Science
and Engineering, SUSTech Artificial Intelligence
Institute (SAINT), Southern University of Science

and Technology (SUSTech). His research interests include swarm intel-
ligence, robotics, computational intelligence, intelligent cybernetics, and
bio-inspired systems.

YUHUI SHI (Fellow, IEEE) received the Ph.D.
degree in electronic engineering from Southeast
University, Nanjing, China, in 1992. He is cur-
rently the Chair Professor with the Department
of Computer Science and Engineering, Southern
University of Science and Technology, Shenzhen,
China. Before joining the Southern University of
Science and Technology, he was with Electronic
Data Systems Corporation, Indianapolis, IN, USA.
His main research interests include the areas of

computational intelligence techniques (including swarm intelligence) and
their applications. He is the Editor-in-Chief of the International Journal of
Swarm Intelligence Research.

MARTIN MIDDENDORF received the Diploma
degree in mathematics and the Dr. rer. nat. degree
from Leibniz University Hannover, Germany,
in 1988 and 1992, respectively, and the Profes-
sorial Habilitation degree from the University of
Karlsruhe, Germany, in 1998. He has worked at the
Technical University of Dortmund, Germany, and
Leibniz University Hannover, as a Visiting Profes-
sor of computer science. He was a Professor of
computer science with the Catholic University of

Eichstaett-Ingolstadt, Germany. He is currently a Professor with the Swarm
Intelligence and Complex Systems Group, Leipzig University, Germany. His
research interests include algorithms from nature, bioinformatics, and swarm
intelligence.

VOLUME 8, 2020 93893


	INTRODUCTION
	PROBLEM DEFINITION AND MODELING
	PROPOSED HYBRID ACS-BSO ALGORITHM
	ANT COLONY SYSTEM
	2-OPT AND -INTERCHANGE
	INTRA-ROUTE IMPROVEMENT WITH 2-OPT
	INTER-ROUTE IMPROVEMENT WITH -INTERCHANGE

	BRAIN STORM OPTIMIZATION
	PROPOSED HYBRID ACS-BSO ALGORITHM

	EXPERIMENTS AND DISCUSSIONS
	EXPERIMENT SETUP
	RESULT ANALYSIS
	CASE STUDY

	CONCLUSIONS AND FUTURE WORK
	REFERENCES
	Biographies
	YANG SHEN
	MINGDE LIU
	JIAN YANG
	YUHUI SHI
	MARTIN MIDDENDORF


