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ABSTRACT This paper proposes two novel vector decomposed neural network models for behavioral mod-
eling and digital predistortion (DPD) of radio-frequency (RF) power amplifiers (PAs): vector decomposed
long short-term memory (VDLSTM) model and simplified vector decomposed long short-term memory
(SVDLSTM) model. The proposed VDLSTM model is a variant of the classic long short-term memory
(LSTM) model that can model long-term memory effects. To comply with the physical mechanism of RF
PAs, VDLSTM model only conducts nonlinear operations on the magnitudes of the input signals, while the
phase information is recovered by linear weighting operations on the output of the LSTM cell. Furthermore,
this study modifies the LSTM cell by adding phase recovery operations inside the cell and replacing the
original hidden state with the outputmagnitudes that are recoveredwith phase information.With themodified
LSTM cell, a low-complexity SVDLSTMmodel is proposed. The experiment results show that the proposed
VDLSTM model can achieve better linearization performance compared with the state-of-the-art models
when linearizing PAs with wideband inputs. Besides, in wideband scenarios, SVDLSTM model with much
fewer parameters can present comparable linearzation performance compared to VDLSTM model.

INDEX TERMS Nonlinear power amplifier, behavioral modeling, digital predistortion, neural network, long
short-term memory, vector decomposed.

I. INTRODUCTION
In the advanced fifth-generation (5G) wireless communi-
cation systems, carrier frequencies and signal bandwidths
increase significantly driven by the high-capacity demand [1],
[2]. Wideband signals modulated at high carrier frequencies
have high peak-to-average ratio (PAPR) and encounter a
conflict between linearity and efficiency of radio frequency
(RF) power amplifiers (PAs). Due to the inherent nonlinear
characteristics, RF PAs working in a high-efficiency state
introduce severe nonlinearities, which results in bit error rate
(BER) deterioration and adjacent channel interference [3].
Lots of linearization methods have been developed to bal-
ance the trade-off between linearity and efficiency, such as
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feed-forward technology, analog predistortion and digital
predistortion (DPD) [4]. Among them, DPD is generally
believed to be the most promising linearization technology
for its flexibility and high performance. The key of DPD is to
extract an inverse behavioral model called digital predistorter
and place it before the PA that needs to be linearized. The
digital predistorter is implemented in digital domain. Then,
the cascade of the digital predistorter and the nonlinear RF
PA will be a linear system [5]. By selecting the proper behav-
ioral models for the digital predistorter, DPD can effectively
compensate the nonlinearities of the RF PAs.

Various DPD models have been proposed to compensate
the nonlinearities of RF PAs [5]–[10]. Volterra-based models
such as memory polynomial (MP) model [5], generalized
memory polynomial (GMP) model [6] are the most widely
used ones. However, the basis functions of the Volterra-based
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models are polynomials, which leads to high correlation
among different basis functions [11]. This characteristic of
Volterra-basedmodels would limit the performance evenwith
a large amount of basis functions, andmay deteriorate numer-
ical instability [12]. Based on canonical piecewise-linear
(CPWL) functions, another state-of-the-art model, decom-
posed vector rotation (DVR) model was proposed to model
the PAs with strong nonlinearities such as envelope tracking
(ET) PAs [9]. DVR model is an effective supplement to
the Volterra-based models. However, since signals employed
in 5G communication systems have wider bandwidth and
higher PAPR, both the static nonlinearity and memory effects
of RF PAs become much more severe and complex [13],
which results in the limited linearization performance with
the conventional DPD models. Therefore, it is urgent to
develop new DPD models with better nonlinear fitting capa-
bility.

In recent years, owing to its excellentmodeling ability [14],
neural network (NN) has drawn the attentions of DPD
researchers and is considered as a promising candidate mod-
eling method for DPD. Various neural network based models
have been developed for DPD [11], [13], [15]–[20]. Multi-
layer perceptron (MLP) is a representative model of neural
networks. In [15], two complex-valuedMLPs were employed
to model the amplitude modulation to amplitude modulation
(AM-AM) and the amplitude modulation to phase modula-
tion (AM-PM) characteristics of PAs separately. However,
it’s difficult for these two complex-valued MLPs to converge
simultaneously. Besides, complex-valued networks have the
complex differentiable restriction on activations and neces-
sitate a cumbersome training algorithm with complex gradi-
ent operations [21]. Thus, it may lead to a lengthy training
time and increased computation resources [16]. To avoid
these problems, a real-valued time-delay neural network
(RVTDNN) model was developed in [16]. By splitting the
input and output into in-phase and quadrature (I/Q) parts,
RVTDNN can model the nonlinear characteristics of the RF
PAs with one neural network. With the same input and output
configurations as those in RVTDNN,many real-valued neural
networks for PA modeling and DPD were proposed in differ-
ent application scenarios [17]–[20]. Tomitigate the PAs’ non-
linearities with the I/Q imbalance and crosstalk in multi-input
multi-output (MIMO) transmitters, composite DPD neural
network for MIMO was studied in [20]. Another classic neu-
ral network model, long short-term memory (LSTM) model,
is widely used to model long sequence data due to the ability
to store long memories [22]. To model wideband PAs with
strong memory effects, different LSTM models have been
used in DPD [13], [23], [24].

It should be emphasized that all the neural network based
models mentioned above split the input and output into in-
phase and quadrature parts, which violates the ‘‘first-zone
constraint’’ and doesn’t match the physical mechanisms of
PAs [25]. Recently, a novel vector decomposed time-delay
neural network (VDTDNN) was proposed [26]. VDTDNN
model conducts nonlinear operations on the magnitudes of

the complex input and recovers the phase information by
well-designed linear weighting operations. Compared with
the neural networks mentioned before, VDTDNN conforms
more with physical mechanism of nonlinear PAs. Conse-
quently, VDTDNN performs better in behavioral modeling of
PAs and digital predistorters compared with otherMLP based
neural networks.

To fully utilize the modeling capability of LSTM mod-
els for RF PAs with wideband inputs, this work com-
bines the vector decomposition mechanism with LSTM
models and proposes a novel vector decomposed LSTM
(VDLSTM) model. VDLSTM model can outperform con-
ventional models and VDTDNN model in linearizing PAs
with wideband inputs. Furthermore, by designing a new hid-
den state of the LSTM cell, a simplified vector decomposed
LSTM (SVDLSTM) model is proposed. Compared to VDL-
STM model, SVDLSTM model can maintain comparable
performance with much lower model complexity.

The rest of this paper is organized as follows. Section II
introduces the proposed VDLSTMmodel. The proposed sim-
plified VDLSTMmodel is described in Section III. The com-
plexity analysis and comparision are presented in Section IV.
In section V and VI, the experimental validation and conclu-
sion are presented respectively.

II. VECTOR DECOMPOSED LONG SHORT-TERM MEMORY
MODEL
A. REVIEW OF VECTOR DECOMPOSED NEURAL
NETWORK
Generally, the signals fed into RF PAs are real-valued band-
pass signals and the nonlinear distortions are mainly caused
by the time-varied signal envelopes. To accurately character-
ize the nonlinearities of RF PAs, the baseband equivalent PA
behavioral models or the corresponding DPD models should
conduct nonlinear operations on signals’ envelopes rather
than on the real and imaginary parts separately. Besides, they
must satisfy fundamental odd-parity and unitary phase con-
straints, i.e. ‘‘first-zone constraint’’ imposed by the bandpass
nature of RF PAs excited by modulated signals having a
bandwidth much lower than the carrier frequency [25].

To meet the above requirements, the recently proposed
VDTDNN model conducts nonlinear operations on the mag-
nitudes of the input signals. Then the phase information is
recovered by the linear weighting of the outputs of MLP
neural network to satisfy ‘‘first-zone constraint’’ [26]. Specif-
ically, VDTDNN introduces a phase recovery block (PRB).
The PRB conducts linear weighting operations on each hid-
den neuron’s output. The weights are related with input sig-
nals’ phases of different memory terms. A sub-network of
VDTDNN is illustrated in Fig. 1, where only a hidden neuron
with a certain memory term is considered. The input signal
at time step n is a complex baseband signal denoted by x̃(n).
Then we define the input signal vector with memory depth
M to be x̃n, where x̃n =

[
x̃(n), x̃(n− 1), · · · , x̃(n−M )

]T .
The nonlinear operation output Ag(n) of the g-th neuron with
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FIGURE 1. The sub-network of VDTDNN.

FIGURE 2. Phase recovery block.

nonlinear function Fg is obtained as follows:

Ag(n) = Fg
[∣∣x̃n∣∣] (1)

where
∣∣x̃n∣∣ = [

|x̃(n)| , |x̃(n− 1)| , · · · , |x̃(n−M )|
]T repre-

sents the magnitude vector of x̃n. Then the output Ag(n)
is multiplied by the phase recovery weighting coefficients
wI ,1g,m,w

I ,2
g,m,w

Q,1
g,m,w

Q,2
g,m for the m-th memory term, respec-

tively. After that, in the PRB, these weighting outputs are
combined with the complex input signal x̃(n − m)’s phase
θn−m to obtain the in-phase and quadrature parts of the output
for the m-th memory term as follows:

Iout,g,m(n)=w
I ,1
g,mAg(n) cos θn−m+w

I ,2
g,mAg(n) sin θn−m (2)

Qout,g,m(n)=w
Q,1
g,mAg(n) cos θn−m+w

Q,2
g,mAg(n) sin θn−m (3)

Define λ1 = wI ,1g,mAg(n), λ2 = wI ,2g,mAg(n), we take the
PRB for Equation (2) in Fig. 2 as an example to illustrate
the detailed architecture of PRB. Similarily, in a VDTDNN
model consisting of G neurons, the weighted summations
for all the neuron outputs after phase recovery with differ-
ent memory terms are calculated to obtain the in-phase and
quadrature parts of final complex output ỹ(n) separately:

Iout (n) =
M∑
m=0

G∑
g=1

(
wI ,1g,mAg(n) cos θn−m + w

I ,2
g,mAg(n) sin θn−m

)

=

M∑
m=0

(
AT
nw

I ,1
m cos θn−m + AT

nw
I ,2
m sin θn−m

)
(4)

Qout (n) =
M∑
m=0

G∑
g=1

(
wQ,1g,mAg(n) cos θn−m + w

Q,2
g,mAg(n) sin θn−m

)

=

M∑
m=0

(
AT
nw

Q,1
m cos θn−m + AT

nw
Q,2
m sin θn−m

)
(5)

where An = [A1(n),A2(n) · · · ,AG(n)]T represents the

neuron output vector, wj,k
m =

[
wj,k1,m,w

j,k
2,m, · · · ,w

j,k
G,m

]T

FIGURE 3. The architecture of LSTM cell.

represents the phase recovery weighting coefficient vector,
j = I ,Q, k = 1, 2.
As we can see, by decomposing the input signals into

magnitudes and phases, VDTDNN model is also based on
real numbers and doesn’t require complex gradient operations
during training. Moreover, compared with conventional real-
valued neural networks splitting the input and output into I/Q
parts, VDTDNN conforms more with the physical nature of
RF PAs due to its vector decomposition mechanism.

B. LONG SHORT-TERM MEMORY MODEL
Recurrent neural network (RNN) is an important branch of
neural networks. Due to inherent memory mechanism, RNNs
are widely used for modeling sequence data with memory
effects. However, when trained with long sequence data,
RNNs may encounter the problem of vanishing or exploding
gradients. To overcome these problems, a classic variant of
RNN, LSTM introduces the cell state to store long memory
effects and control gates to control the transmissions of mem-
ory effects [22]. The LSTM cell is shown in Fig. 3. Similar
to the RNN, at each time step n, the output signal vector of
LSTM is the corresponding result of the nonlinear operations
on a variable-length sequence Xn = [xn, xn−1, · · · , xn−T ],
where T represents the sequence length, xn represents the
input vector at the current time step. The specific forward
propagation and recurrent procedures of LSTM model are
described as follows [13]:

fn = σ
(
Wxf xn +Whf hn−1 + bf

)
(6)

in = σ (Wxixn +Whihn−1 + bi) (7)

on = σ (Wxoxn +Whohn−1 + bo) (8)

gn = tanh
(
Wxgxn +Whghn−1 + bg

)
(9)

where fn, in, on, gn represent the forget gate, the input gate,
the output gate and nonlinear output, respectively.Wxf ,Wxi,
Wxo andWxg are weight matrices for the current input vector
xn.Whf ,Whi,Who andWhg are weight matrices for the pre-
vious hidden state hn−1. bf , bi, bo and bg are corresponding
bias terms. The current cell state cn, the hidden state hn and
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FIGURE 4. The folded architecture of VDLSTM model.

the LSTM cell’s final output An can be calculated by:

cn = fn ⊗ cn−1 + in ⊗ gn (10)

An = hn = on ⊗ tanh(cn) (11)

where cn−1 represents the previous cell state, ⊗ represents
element-wise multiplication.

C. VECTOR DECOMPOSED LSTM MODEL
Due to the cell state and the control gates, LSTM model can
model long sequence data better compared with MLP model
and RNN model. Therefore, LSTM model is a promising
candidate that can model the nonlinear behaviors of RF PAs
with long memory effects. However, conventional LSTM
models for DPD conduct nonlinear operations on in-phase
and quadrature parts of complex signals separately, which
doesn’t comply to the physical mechanisms of nonlinear PAs.
Therefore, vector decomposition mechanism is applied in
LSTM model and VDLSTM model is proposed.

Similar to VDTDNNmodel based onMLP neural network,
the proposed VDLSTMmodel conducts nonlinear operations
on the magnitudes of the input signals and recovers the phase
information by linear weighting of the outputs of the LSTM
cell. The folded architecture of VDLSTMmodel is illustrated
in Fig. 4.

It should be noted that there is a difference in the form
of the input signals between MLP based VDTDNN model
and LSTM based VDLSTM model. The input of VDLSTM
model is a sequence. At each time step, the current element
of the sequence enters the LSTM cell. Due to the recurrent
mechanism, VDLSTM model with a certain sequence length
T can model the memory effects to some extent. Further-
more, to better model the memory effects of wideband RF
PAs, the input of VDLSTM model at current time step n is
defined to be

∣∣x̃n∣∣ = [|x̃(n)| , |x̃(n− 1)| , · · · , |x̃(n−M )|
]T ,

i.e. the magnitude vector with memory depth of M ,
which is the same as the input of VDTDNN. Natu-
rally, the input at the previous time step is

∣∣x̃n−1∣∣ =[
|x̃(n− 1)| , |x̃(n− 2)| , · · · , |x̃(n− 1−M )|

]T . Accordingly,

FIGURE 5. Sequence-to-one regression mode of VDLSTM model.

the input at the past t-th time step is
∣∣x̃n−t ∣∣ =[

|x̃(n− t)| , |x̃(n− t − 1)| , · · · , |x̃(n− t −M )|
]T where

0 ≤ t ≤ T . Since the memory terms at the past time steps,
quantified as T , influence the current LSTM cell’s output by
the transmission of the hidden state, these memory terms are
called indirect memory terms (IDMT) in this paper. Oppo-
sitely, the memory terms at the current time step quantified
as M , directly influence the current LSTM cell’s output and
are called direct memory terms (DMT). The input sequence
with IDMT and DMT are expressed as:∣∣∣X̃n

∣∣∣ = [∣∣x̃n∣∣ , · · · , ∣∣x̃n−t ∣∣ , · · · , ∣∣x̃n−T ∣∣]T

=



|x̃(n)| |x̃(n− 1)| · · · |x̃(n−M )|
...

...
. . .

...

|x̃(n− t)| |x̃(n− t − 1)| · · · |x̃(n− t −M )|
...

...
. . .

...

|x̃(n− T )| |x̃(n− T − 1)| · · · |x̃(n− T −M )|


(12)

To model the relationship between the input sequence
∣∣∣X̃n

∣∣∣
and the complex output ỹ(n), we apply the sequence-to-
one regression mode to the proposed VDLSTM, which is
depicted in Fig. 5. Firstly, based on Equation (6)-(11), the cor-
responding output of the LSTM cell at the last time step
n, denoted by An here can be calculated with

∣∣∣X̃n

∣∣∣ itera-
tively. In VDLSTM model with G hidden neurons, An =

[A1(n),A2(n), · · · ,AG(n)]T has a size of G × 1. Secondly,
these hidden neurons’ outputs are multiplied by the phase
recovery weighting coefficients separately. Thirdly, after
weighting operations, the weighting outputs are recovered
with phase information in multiple PRBs. Finally, the in-
phase part Iout (n) and quadrature part Qout (n) of the final
complex output ỹ(n), can be obtained as Equation (4) and (5).
The phase recovery operations inVDLSTMmodel are similar
to those in VDTDNN model.

III. SIMPLIFIED VECTOR DECOMPOSED LONG
SHORT-TERM MEMORY MODEL
In this section, a novel simplified VDLSTM model is pro-
posed. In the LSTM cell of VDLSTM model, the size of the

VOLUME 8, 2020 63783



H. Li et al.: VDLSTM Model for Behavioral Modeling and DPD for Wideband RF PAs

hidden state is the number of hidden neurons G. Since the
number of parameters of the weight matrices for the previ-
ous hidden state is proportional to G2, the total number of
parameters will become quite large when there are numerous
hidden neurons in VDLSTM model. Therefore, the priority
of VDLSTM model’s simplification is to reduce the size of
the hidden state without modeling performance degradation.
Thus, the new hidden state with fewer elements needs to
present good representation ability of memory effects compa-
rable to the hidden state hn in VDLSTMmodel. In VDLSTM
model, the output An of the LSTM cell that needs to be
recovered with phase information is the same as the hidden
state hn. Hence, the intermediate variables that are generated
during the phase recovery stage contain the information of
the hidden state and some of them could be used as the
elements in the new hidden state. Based on the above analysis,
the detailed design processes of the new hidden state are
described as follows. As we can see, the complex output of
VDLSTM model with phase recovery is expressed as:

ỹ(n) = Iout (n)+ jQout (n)

=

M∑
m=0

(
AT
nw

I ,1
m cos θn−m + AT

nw
I ,2
m sin θn−m

)
+ j

M∑
m=0

(
AT
nw

Q,1
m cos θn−m + AT

nw
Q,2
m sin θn−m

)
(13)

We define the in-phase and quadrature parts of the m-th
memory term as:

Iout,m(n) = AT
nw

I ,1
m cos θn−m + AT

nw
I ,2
m sin θn−m (14)

Qout,m(n) = AT
nw

Q,1
m cos θn−m + AT

nw
Q,2
m sin θn−m (15)

Then the complex output of VDLSTM can be rewritten as:

ỹ(n) =
M∑
m=0

[
Iout,m(n)+ jQout,m(n)

]
=

M∑
m=0

|ỹm(n)| ej
6 ỹm(n) (16)

where |ỹm(n)| represents the output magnitude of the m-th
memory term, 6 ỹm(n) represents the corresponding phase.
Apparently, both the output magnitude |ỹm(n)| and the cor-
responding phase 6 ỹm(n) contain information of the hidden
state. Considering that the nonlinear operations of VDLSTM
model should be conducted on magnitudes rather than on in-
phase and quadrature components separately, the hidden state
transmitted to the next time step should be composed of mag-
nitudes. Therefore, we define a new hidden state composed of
output magnitudes of all the memory terms as:

hPRBn =

[
APRB0 (n),APRB1 (n), · · · ,APRBm (n), · · · ,APRBM (n)

]T
where:

APRBm (n) = |ỹm(n)| =
√
Iout,m(n)

2
+ Qout,m(n)2 (17)

FIGURE 6. Modified LSTM cell combined with phase recovery operations.

FIGURE 7. The folded architecture of SVDLSTM model.

The size of new hidden state isM + 1. Generally, the number
of the hidden neurons G is much larger than the memory
depth M . Thus, the size of the new hidden state is greatly
reduced compared to that in VDLSTM model. Besides, even
though the new hidden state is derived during the phase
recovery stage, it doesn’t violate the vector decomposition
mechanism.

To transmit the new hidden state composed of output
magnitudes, the output of original LSTM cell needs to be
recovered with phase information and the output magnitudes
of different memory terms are calculated in every time steps.
Therefore, in the proposed SVDLSTM model, the original
LSTM cell architecture is modified by adding phase recovery
operations inside the LSTM cell as Fig. 6. With the modified
LSTM cell, the folded architecture of SVDLSTM model is
illustrated in Fig. 7. As shown in Fig. 7, the modified LSTM
layer with phase recovery operations is composed of an
LSTM cell, a fully-connected layer andM+1 recurrent PRBs
for each memory term respectively. The LSTM cell conducts
nonlinear operations on magnitudes of the input signal. Then,
similar to the phase recovery operations in VDTDNN and
VDLSTM models, the fully-connected layer conducts linear
weighting operations on the LSTM cell’s output An. At last,
the weighting outputs are recovered with phase information
in the novel recurrent PRBs. In recurrent PRBs, not only
in-phase and quadrature parts of final complex output are
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FIGURE 8. The architecture of recurrent PRB.

calculated, but also the new hidden state hPRBn is obtained
for the input at the next time step. The detailed architecture
of a recurrent PRB is shown in Fig. 8. A recurrent PRB
for the m-th memory term consists of two PRBs. We define
the inputs of the recurrent PRB, i.e. the weighting LSTM
cell’s outputs to be γ I ,1m (n) = AT

nw
I ,1
m , γ I ,2m (n) = AT

nw
I ,2
m ,

γ
Q,1
m (n) = AT

nw
Q,1
m , γQ,2m (n) = AT

nw
Q,2
m . The first two inputs

γ I ,1m (n), γ I ,2m (n) enter the first PRB, while the last two inputs
γ
Q,1
m (n), γQ,2m (n) enter the second PRB. Then with the outputs

of these two PRBs, the in-phase part Iout,m(n) and quadrature
part Qout,m(n) for the m-th memory can be calculated as
Equation (14) and (15). The output magnitude APRBm (n) of
the m-th memory term is calculated as (17) with Iout,m(n)
and Qout,m(n) in the magnitude extraction block. The output
magnitude APRBm (n) is used as an element in the new hidden
state hPRBn , and the I/Q components Iout,m(n) and Qout,m(n)
are used to calculate the in-phase and quadrature parts of
the final output ỹ(n) respectively. According to the above-
mentioned description, the construction of SVDLSTMmodel
is finished. The complete forward propagation and recurrent
procedures are presented as follows. First, by replacing the
original hidden state with the new hidden state, Equation (6)-
(9) can be modified as:

fn = σ
(
Wxf xn +WPRB

hf hPRBn−1 + bf
)

(18)

in = σ
(
Wxixn +WPRB

hi hPRBn−1 + bi
)

(19)

on = σ
(
Wxoxn +WPRB

ho hPRBn−1 + bo
)

(20)

gn = tanh
(
Wxgxn +WPRB

hg hPRBn−1 + bg
)

(21)

whereWPRB
hf ,WPRB

hi ,WPRB
ho andWPRB

hg are new weight matri-
ces for the previous hidden state. Then, the output of the
LSTM cell composed of all the hidden neurons’ outputs, can
be obtained as (10) and (11). After phase recovery andmagni-
tude extraction operations, the current hidden state hPRBn that
will be transmitted to the next time step and I/Q components
Iout (n), Qout (n) of final output can be calculated.

IV. COMPLEXITY ANALYSIS AND COMPARISON OF
VDLSTM AND SVDLSTM
In this section, the complexity analysis of the proposed
VDLSTM model and SVDLSTM model is presented.

FIGURE 9. Relationship between total paramaters and the number of
hidden neurons. The upper triangular denotes M = 5, the lower triangular
denotes M = 10, the circle denotes M = 15.

Compared to VDLSTM, SVDLSTM has much fewer param-
eters while maintaining equivalent performance.

We assume that there is only one hidden layer in VDLSTM
and SVDLSTM models, and the number of hidden neurons
is G. The memory depth of the input vector is M . Since the
input sequence length T does not bring differences to the total
parameters of VDLSTM and SVDLSTM models, it is not
considered here. There are two parts of parameters: (i) The
weight matrices for the current input and the previous hidden
state in the LSTM cell, together with the corresponding bias
terms; (ii) The phase recovery coefficients in the PRBs or the
recurrent PRBs. The number of total parameters in VDLSTM
model is:

N1 = 4× ((M + 1)+ G+ 1)× G+ 4× G× (M + 1)

= 4G2
+ 8MG+ 12G (22)

While the number of parameters in SVDLSTM model is:

N2 = 4× ((M + 1)× 2+ 1)× G+ 4× G× (M + 1)

= 12MG+ 16G (23)

Then the quantity gap of parameters between VDLSTM
model and SVDLSTM model can be obtained as:

N1 − N2 = 4× (G−M − 1)× G (24)

Equation (22) for VDLSTM model includes a term that
is proportional to G2, while Equation (23) for SVDLSTM
model only includes terms that are proportional to MG or G
separately. Generally, to realize a relatively good modeling
performance, the number of hidden neurons G is much larger
than the memory depth M especially when modeling PAs
with wideband inputs. This fact means that the network com-
plexity of SVDLSTM model is much lower than VDLSTM
model. Taking G = 100 and M = 6 as an example,
the total parameters of VDLSTM and SVDLSTM models
are 46000 and 8800 respectively. The visualization of the
relationship between the total parameters and the number
of hidden neurons G with different memory depths M are
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FIGURE 10. Photograph of the experiment bench.

FIGURE 11. The flow diagram of ILC-based DPD.

illustrated in Fig. 9. Equation (24) shows that as G becomes
larger to model more complex nonlinearities, the quantity gap
becomes much larger between these two models.

V. EXPERIMENTAL VALIDATION
In this section, the modeling and linearization performance
of the conventional models, the proposed VDLSTM and
SVDLSTM models are compared. The photograph of the
experiment platform is shown in Fig. 10, which consists of
a personal computer (PC) with MATLAB and Python soft-
wares, a Vector Signal Generator (SMW200A) from Rohde
and Schwarz, a linear driver amplifier, a main PA under test,
a 40 dB RF attenuator and a Spectrum Analyzer (FSW43)
from Rohde and Schwarz. The main PA is a 2-stage fully
integrated Doherty PA working at 2.4 GHz from Ampleon
company. The specific transmitting and receiving procedures
are explained as follows: First, the baseband signals are gen-
erated and up-converted to the carrier frequency of 2.4 GHz
by the Vector Signal Generator under the control of the PC;
Second, after being amplified by the linear driver amplifier,
the up-converted RF signals are sent into the Doherty PA that
needs to be linearized. Third, after being attenuated by the
attenuator, the PA outputs are down-converted and captured
by the Spectrum Analyzer and sent to the PC.

In this article, iterative learning control (ILC) method is
used to verify the linearization performance of the proposed
models. Themain idea of ILC is changing adaptively the input
of the unknown system to minimize the error between actual
system output and ideal system output [27]. As depicted
in Fig. 11, ILC is applied to DPD identification, the unknown
system is the PA, the ideal system output is the linear ampli-
fication of the input of the digital predistorter x, the sys-
tem input is the predistorted signal u. First, based on ILC
algorithm, the PA’s input signal u is changed adaptively to
minimize the error between x and the actual PA output y,
which is illustrated by the dashed line in Fig. 11. By using
ILC algorithm, the optimal PA input, i.e. the optimal predis-
torted signal uopt is obtained. Second, by selecting a proper
model, the digital predistorter can be identified based on
the input of the digital predistorter and the optimal predis-
torted signal. Third, the derived digital predistorter gives the
new predistorted signal and sends it into the PA to realize
the linearization of the cascade of the digital predistorter
and the PA.

A. MODELING PERFORMANCE COMPARISON
In this experiment, in order to compare themodeling ability of
the proposed VDLSTM model and the conventional models,
the widely used GMP and DVR models, and the VDTDNN
model are used for comparison. These models are used to
model the digital predistorter, i.e. the pre-inverse of the PA
that needs to be linearized. We use ILC method mentioned
above to obtain the optimal predistorted signal for the identi-
fication of the digital predistorter.

The test signal is a 5-carrier 100 MHz OFDM signal with
PAPR of 6.6 dB. The main PA is driven under a high com-
pression and the corresponding nonlinear gain is reduced by
2 dB compared to the PA’s small signal linear gain. The output
power of the main PA is 37.1 dBm. Around 50000 samples
were recorded with sampling rate at 368.64 MSPS in each
iteration of ILC scheme to obtain the optimal predistorted
signal. The test signal and the optimal predistorted signal
are then used to train the models. The configurations of
defferent models are described as follows: The nonlinear
order and memory depth of GMP model here are 13 and
9 respectively, the nonlinear order and memory depth for the
lagging and leading cross terms are 9 and 7 respectively, and
the orders of lagging and leading cross terms are both 7. DVR
model has 13 partitions with memory depth of 13, and it
includes linear terms, 1st-order basis, 2nd-order type-1 terms,
2nd-order type-2, 2nd-order type-3 terms and DDR-1 terms
introduced in [9]. Both VDTDNN andVDLSTMmodels here
have 1 layer with 100 hidden neurons. The memory depths
of the input vectors of VDTDNN and VDLSTM models are
both 15, while the input sequence length of VDLSTM model
is 7. It should be noted that the the configurations of GMP
and DVRmodels here have presented their best performance,
which means that performance of these two models won’t
be improved with more coefficients. GMP and DVR models

63786 VOLUME 8, 2020



H. Li et al.: VDLSTM Model for Behavioral Modeling and DPD for Wideband RF PAs

TABLE 1. Modeling performance comparison of different models.

TABLE 2. Linearization performance comparison between the
state-of-the-art models and VDLSTM model.

are identified in MATLAB while the trainings of VDTDNN
and VDLSTM models are implemented in PyTorch. The
maximum iterations of VDTDNN and VDLSTM models are
both 600. The modeling performance, denoted by normal-
ized mean square error (NMSE) [27] between the modeling
predistorted signal and the optimal predistorted signal of
different model is listed in Table 1.

It is clear that compared with the existingmodels, the novel
VDLSTM model can improve NMSE at least 3 dB. There-
fore, in wideband scenarios, VDLSTM model is a promis-
ing behavioral model for modeling digital predistorters
and PAs.

B. LINEARIZATION PERFORMANCE COMPARISON OF
CONVENTIONAL MODELS AND VDLSTM MODEL
After the digital predistorter is derived by modeling, the cor-
responding predistorted signal can be sent into PA to realize
the linearization of the PA output signal. In this experiment,
the linearization performances of all the models in part A are
compared. All the settings in this part are the same as those
in part A in this section.

First, the characteristic curves of the AM-AM and
AM-PM without DPD and with VDLSTM model are shown
in Fig. 12. The detailed NMSE between the linearized PA
output and the ideal PA output, and adjacent channel power
ratio (ACPR) [27] of the linearized PA output are listed
in Table 2. The power spectral density (PSD) comparision is
illustrated in Fig. 13. According to the Table 2 and Fig. 13,
by utilizing the vector decomposition mechanism, NMSE
of VDLSTM model can be improved by at least 2.5 dB
compared with that of GMP, DVR and VDTDNN. ACPR
of VDLSTM model at the lower sideband can be improved
by at least 2 dB, while ACPR at the upper sideband can be
improved by at least 4.3 dB.

C. LINEARIZATION PERFORMANCE COMPARISION OF
VDLSTM MODEL AND SVDLSTM MODEL
To further validate the linearization performance of the
proposed vector decomposition based neural networks for

FIGURE 12. AM-AM and AM-PM characteristics with and without DPD for
a 100-MHz OFDM signal.

FIGURE 13. Power spectral density comparison between the
state-of-the-art models and VDLSTM model.

wideband PAs and to compare the performance between
VDLSTM model and SVDLSTM model, a 120 MHz OFDM
signal is used as the test signal in this experiment. The settings
of VDLSTMmodel and other experiment settings in this part
are the same as those in part A and part B. For the sake of
fairness, the settings of SVDLSTM model are the same as
those of VDLSTM model.

First, the characteristic curves of the AM-AM and AM-
PM without DPD and with SVDLSTM model are shown
in Fig. 14. The curves without DPD for a 120 MHz signal
are more diffuse compared with those for a 100 MHz signal,
which means that the PA has more severe nonlinear dis-
tortions with wider signal bandwidth. The NMSEs, ACPRs
and total coefficients of different vector decomposition based
neural networks are presented in Table 3. The power spectral
density comparison is shown in Fig. 15. It can be seen from
Table 3 and Fig. 15, both VDLSTM model and SVDLSTM
model can realize excellent DPD performance for a 120MHz
signal. Besides, SVDLSTM model can realize comparable
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FIGURE 14. AM-AM and AM-PM characteristics with and without DPD for
a 120-MHz OFDM signal.

TABLE 3. Linearization performance comparison between VDLSTM model
and SVDLSTM model.

FIGURE 15. Power spectral density comparison between VDLSTM model
and SVDLSTM model.

linearization performance with 63 percent reduction of total
parameters in this experiment.

VI. CONCLUSION
In this research, the vector decomposition mechanism is
first applied to LSTM neural network and two novel vec-
tor decomposed LSTM neural networks are proposed for
behavioral modeling and digital predistortion. The proposed
VDLSTM model only conducts nonlinear operations on the
magnitudes of the input signals and restores the phase infor-
mation by linear weighting operations. Compared with the
state-of-the-art models such as GMP, DVR and VDTDNN,

the proposed VDLSTM model can achieve better model-
ing and DPD performance in wideband scenarios. Besides,
the proposed SVDLSTM model modifies VDLSTM model
by designing a new hidden state that has fewer elements
and is still compatible with the vector decomposition mecha-
nism. SVDLSTMmodel can realize comparable linearization
performance compared to VDLSTM model but with signifi-
cantly less coefficients.
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