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ABSTRACT Many real-world phenomena can be described as complex contagions, which has attracted
much attention in the field of network science. However, the effects of the heterogeneous adoption thresholds
on complex contagions in weighted networks have not been systematically investigated. In this paper,
we propose a heterogeneous complex contagion model on the weighted network, in which individuals
have different adoption thresholds. For individuals with a relatively small adoption threshold, they are
more likely to adopt the contagion and act as activists. An edge-weight based compartmental theory is
developed to unveil spreading dynamics. Through extensive numerical simulations and theoretical analysis,
we find that, for any weight distribution heterogeneity, with the increase of the activist fraction, the growth
pattern of the final adoption size versus the information spreading probability changes from hybrid phase
transition to a second-order continuous phase transition. Meanwhile, increasing the activist fraction can
promote behavior spreading. Through bifurcation analysis, we discover that changing the heterogeneity of
the weight distribution will not change the type of phase transition. Besides, reducing weight distribution
heterogeneity can facilitate behavior spreading. Extensive numerical simulations verify that the theoretical
solutions coincide with the numerical results very well.

INDEX TERMS Complex contagions, heterogeneous adoption, weighted networks, threshold model,
compartmental theory.

I. INTRODUCTION
As an important media for information spreading, social net-
work [1]–[6] facilitate people to transmit information, such
as to recommend commodities, to forward news, to exchange
information, and so on [7]–[10]. Subsequently, informa-
tion spreading arouses the spreading of behavior related to
the information. Because of the remarkable function of the
social network, researchers based on the complex network
theory explored its spreading mechanism and paid more
attention to its network structure [11]–[14]. Among various
factors, the edges representing the social interconnection rela-
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tions [15] are responsible for reliable and useful informa-
tion transmission but always modeled with binary state [16].
In reality, social ties may be intimate or distant. Even for
the close relation, the strength can be strong or weak. There-
fore, weighted edges in a weighted network can reasonably
model the ties in social networks [17], [18], such as denoting
the strength of reputation in scientific network [19], [20],
number of calls in communication networks [21], the public
cooperation on interdependent networks [22], the number of
passengers between two airports in the airline network [23].

Traditional researches leverage the epidemic process [24]–
[28] and virus propagation [29]–[34] to investigate the simple
contagions on social networks [35]–[37], in which a sin-
gle contact between the infected and susceptible nodes is
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enough to trigger the contagion. However, for some high-
risk or high-cost innovation contagions, the single contact is
not enough to trigger the contagions. Because in the cases
of high risk or high-cost innovation contagions, one con-
tact merely brings in limited information and only multiple
contacts can eliminate people’s doubts. As a result, multiple
contacts are always necessary, and social reinforcement is
needed. For the contagion process with social reinforcement,
researchers called it complex contagions, which is precisely
depicted as a thresholdmodel for in-depth and comprehensive
exploration [38]. Furthermore, social reinforcement is mostly
induced by the effect of non-redundant information mem-
ory [39], [40], which should also be involved in the threshold
model on weighted networks.

Besides the complicated network structure, the widely
existed heterogeneity of the behavioral agents also affects
the information spreading [41], [42]: Because of different
position [43], social users have different opinions; Because of
discrepant action capabilities [44], [45], they show different
waiting and response time; Because of diverse acceptance
willingness [46], [47], they usually exhibit distinctive adop-
tion thresholds to mimic the same activity; and so on. The
heterogeneity alters the effect of spreading dynamics and
induces sophisticated statistical physical phenomena. Statis-
tical physicists found that social heterogeneity can engender
a kind of hybrid phase transition [48], [49], which simul-
taneously possesses the traditional first-order discontinuous
phase transition and the second-order continuous phase tran-
sition. Because of different knowledge levels, practical expe-
riences, personal attitudes, and social emotions, social users
have distinguishing desires to adopt informed behavior with
heterogeneous adoption thresholds. We regard the enthusias-
tic individual with a low adoption threshold as an activist and
the passive individual with a high adoption threshold as con-
servative. For example, an investor with sufficient practical
experience may more easily adopt investment advice than a
freshman.

In this paper, we articulate a general complex conta-
gion model to investigate the aforementioned heterogeneous
adoption on weighted social networks, emphasizing the
social reinforcement effect derived from the memory of
non-redundant information. To analyze the impact of com-
plex contagion with heterogeneous adoption on weighted
the social network, we develop a unified edge-weight based
compartmental theory. Based on our proposed model and
theory, under any edge weight distribution, if we increase
the fraction of the activist, the growth pattern of the final
adoption size versus the information spreading probability
will change from the hybrid phase transition to the continuous
phase transition. At the same time, if we enlarge the activist
fraction, the behavior spreading will be expedited. Moreover,
the behavior spreading can also be promoted if we reduce
the weight distribution heterogeneity. However, the type of
phase transition will not be altered. Extensive simulations and
analysis suggest that our theoretical predictions coincide with
numerical simulations very well.

The rest of the paper organizes as follows. In Sec. II,
we describe the spreading dynamics on theweighted network.
In Sec. III, we develop the edge-weight based compartmental
theory. In Sec. IV, we introduce the numerical simulation
method and parameter settings; In Sec. V, we give the the-
oretical predictions as well as simulation results and make
further discussion in terms of our results. In Sec. VI, we draw
the conclusions.

II. HETEROGENOUS COMPLEX CONTAGION MODEL ON
WEIGHTED NETWORK
To investigate the social behavior spreading, we conceive a
complex network to mimic the situation of contagion with N
nodes. For avoiding the unnecessary obstruction of degree-
degree correlation, a configuration model [50] is applied here
to model such network with degree distribution p(k). In the
network, nodes and edges stand for the individuals and their
relationships, respectively. Because of the inherent charac-
teristic of social reinforcement [51], an individual i adopt a
behavior when he successfully received mi pieces of non-
redundant behavior information [39] exceed his or her adop-
tion threshold Ti, which reflects the willingness of accep-
tance. A smaller adoption threshold corresponds to a higher
willingness of behavior acceptance. In the model, to depict
the heterogenous willingness of acceptance, an individual i as
an activist is assigned with adoption threshold Ti = 1 accord-
ing to the probability q and as a conservative is assigned
with adoption threshold Ti = T according to the probability
1 − q. To describe the intimate relationships, we use the
weighted network, in which an edge between node i and j
has a specific weight ωij to indicate the extent of intimacy in
terms of a weight distribution g(ω) independent of the degree
distribution p(k). Because the information transmission prob-
ability from individual i to j positively correlates with their
relationship weight ωij, individual i can transmit behavior
information to j with probability

λ(ωij) = 1− (1− β)ωij , (1)

where β is the unit transmission probability. Obviously, given
β, increasing ωij will augment λ(ωij), conforming with the
positive correlation between the weight of relationship and
transmission preference.

Traditional model SIR (susceptible-infected-recovered)
depicts the state-transition of individuals in the scene of
epidemic spreading without memory of epidemic contagion.
Since social reinforcement originated from the memory of
non-redundant information transmission, we use a general-
ized susceptible-adopted-recovered (SAR) model to describe
the state-transition of individuals in the scene of behav-
ior spreading with the memory of information transmis-
sion. At each time step, an individual simultaneously can
only stay in one of the three states: S-state (Susceptible),
A-state (Adopted) or R-state (Recovered). An individual in
the S-state can receive the behavior information from neigh-
bors but has not adopted the behavior. An individual in the
A-state adopts the behavior and can transmit the behavior
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information to the susceptible neighbors. Besides, an indi-
vidual in the R-state abandons the behavior and refuses to
transmit behavior information further.

Furthermore, in the model, social behavior spreads accord-
ing to the following process. Initially, a vanishingly small
fraction of individuals are randomly selected as seeds (in the
adopted state). At each time step, each adopted individual i
tries to deliver information to his or her susceptible neighbor
j alongside an edge of weight ωij with the probability λ(ωij).
Once the information is successfully delivered through an
edge, the edge will disallow for the repeated information
transmission, i.e., one edge only allows for non-redundant
information transmission. Noticeably, an adopted individual
can try many times before the success of information trans-
mission. After successfully receiving information, the sus-
ceptible neighbor j will add one to his or her cumulative
number mj of information pieces, i.e., mj → mj + 1. Subse-
quently, the susceptible neighbor j compares the new value of
mj with his or her adoption threshold Tj. If mj ≥ Tj, he or she
will adopt the behavior and enter into the A-state, and stay
in the S-state otherwise. Because the cumulative number of
received information pieces from distinct neighbors deter-
mines the adoption of behavior, the non-Markovian effect
is undoubtedly generated from the behavior spreading with
social reinforcement. When finishing information transmis-
sion, the adopted individual imay lose interest in the behavior
and turn into the R-state with probability γ . Once the indi-
vidual falls into the R-state, he or she will never participate in
further behavior spreading. At last, the spreading dynamics
will terminate when there are no adopted individuals left.

III. HETEROGENEOUS EDGE-WEIGHT COMPARTMENTAL
THEORY
To theoretically analyze the spreading process, we develop a
heterogenous edge-weight compartmental approach, which is
derived from [39], [52], [53].

Notations S(t), A(t), and R(t) are provided to respectively
represent the densities of the susceptible, adopted and recov-
ered nodes at time step t . As depicted in themodel, an adopted
individual i try to diffuse the information to the suscepti-
ble neighbor j through an edge owning randomly assigned
weight ωij with the probability λ(ωij). After the successful
transmission of information, the susceptible neighbor j will
add one to the cumulative number mj of information pieces
from distinct adopted informers, since multiple transmission
through the same edge is prohibited. When mj exceeds the
adoption threshold Tj, the susceptible individual j will adopt
the behavior and enter into A-state. Because of the heteroge-
neous behavior adoption, the adoption threshold Tj = 1 with
probability q and Tj = T with probability 1 − q. Therefore,
the probability that individual j is not informed by a neighbor
i by time step t can be denoted by

θ (t) =
∑
w

g(w)θw(t), (2)

where g(ω) is the weight distribution and θw(t) conveys the
probability that, by time step t , j remains not informed by an
edge with weight ω.

Then, the individual j of degree k remains susceptible after
successfully receiving m pieces of information at time step t
with probability

φm(k, t) =
(
k
m

)
[θ (t)]k−m[1− θ (t)]m, (3)

Subsequently, with regard to an individual of degree k ,
no matter an activist with probability q or conservative with
probability 1 − q, the individual keeps in the S-state at time
step t with probability

φ(k, t) = q[θ (t)]k + (1− q)
T−1∑
m=0

φm(k, t). (4)

Thus, the density of the susceptible nodes at time step t is

S(t) =
∑
k=0

p(k)φ(k, t), (5)

which also indicates the probability that an susceptible indi-
vidual with arbitrary degree has not adopted the behavior by
time step t .

Here, the critical quantity to solve S(t) is θ (t), which
depends on θw(t) in Eq. (2). Accordingly, we concentrate on
the variable θw(t), which is composed of three parts, ξSw(t),
ξAw (t), and ξ

R
w (t), and denoted by

θw(t) = ξSw(t)+ ξ
A
w (t)+ ξ

R
w (t), (6)

where ξSw(t) [ξAw (t), ξ
R
w (t)] indicates the probability that a

neighbor i in the S-state (A-state, R-state) has not transmitted
the behavior information to individual j through an edge with
weight ω by time step t . After inducing ξSw(t) [ξ

A
w (t), ξ

R
w (t)],

we can educe the density of susceptible nodes S(t) at any time
step t by substituting them into Eqs. (2)-(5).

Let us first calculate the probability ξSw(t). According to the
assumption in the model, there are no correlations between
the degrees of nodes and their neighbors in uncorrelated
networks. Therefore, a randomly selected neighbor j of indi-
vidual i can possess the k-degree with probability kp(k)/〈k〉,
where 〈k〉 represents the mean-degree of the network. Based
on the mean-field approximation, ξSw(t) denotes the probabil-
ity that an arbitrary neighbor of individual j stays in the S-state
by time step t . Thus, ξSw(t) can be expressed as

ξSw(t) =
1
〈k〉

∑
k

kp(k)φ(k − 1, t). (7)

In the Eq. (7), at time step t , the neighbor j of the susceptible
individual i has degree k and φ(k − 1, t) denotes the proba-
bility that j has not adopted the behavior by this time.
Afterward, if an adopted neighbor j has not informed the

individual i via their edge of weight ω with probability 1 −
λω and meanwhile turns into the R-state with probability γ ,
we can leverage

dξRw (t)
dt
= γ (1− λw)ξAw (t) (8)

to compute ξRw (t).
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Once the behavior information is transmitted via an edge
of weight ω with probability λω, the decrease of the fraction
θw(t) can be acquired by

dθw(t)
dt
= −λwξ

A
w (t), (9)

Combining Eqs. (8) and (9), we can obtain ξRw as follows

ξRw (t) =
γ [1− θw(t)](1− λw)

λw
. (10)

Substituting Eqs. (7) and (10) into Eq. (6), we induce ξAw (t)
as

ξAw (t) = θw(t)−

∑
k kp(k)φ(k − 1, t)

〈k〉

−
γ [1− θw(t)][1− λw]

λw
. (11)

Further substituting Eq. (11) into Eq. (9), we can obtain

dθw(t)
dt
=
λw
∑

k kp(k)φ(k − 1, t)
〈k〉

− (1− γ )λwθw(t)

+ γ [1− λw − θw(t)]. (12)

At last, from Eq. (12), the probability θw(t) can be derived.
The densities concerning A-state, and R-state can be

acquired by

dR(t)
dt
= γA(t), (13)

and

A(t) = 1− R(t)− S(t). (14)

Based on Eqs. (5) and (12)-(14), we can obtain the densities
of individuals in S-state, A-state, and R-state at any time step
t .
When setting t → ∞ and dθw(t)/dt = 0 in Eq. (12),

the probability that an edge with weight ω did not spread the
information in the whole contagion process can be induced
by

θw(∞) =
〈k〉γ [1− λw]+ λw

∑
k kp(k)φ(k − 1,∞)

〈k〉[(1− γ )λw + γ ]
. (15)

Substituting θw(∞) into Eq. (2), we can obtain θ (∞) as

θ (∞)=
∑
w

g(w)
〈k〉γ [1−λw]+λw

∑
k kp(k)φ(k − 1,∞)

〈k〉[(1− γ )λw + γ ]
.

(16)

Furthermore, according to Eqs.(3) - (5) and Eq. (16),
we can obtain the S(∞) in the steady state. Since in the
steady state A(∞) = 0, the final adoption size R(∞) =
1 − S(∞). The physical meaning of Eq. (16) indicates the
roots that can be obtained in the simulated process. In the
information spreading process, with the increase of informa-
tion transmission rate, the final adoption size θ (∞) mono-
tonically decreases. Therefore, if there are more stable roots,
the spreading process will stabilize at the maximum root
instead of the minimum root [47].

Besides the densities of nodes in S-state, A-state, and
R-state, we are also interested in the critical transmission
probability βc, which results in the final outbreak of behavior
spreading. The critical transmission probability βc appears
when the function

f (θ (∞))

=

∑
w

g(w)
〈k〉γ [1− λw]+ λw

∑
k kp(k)φ(k − 1,∞)

〈k〉[(1− γ )λw + γ ]

− θ (∞) (17)

is tangent to the horizontal axis at critical θc(∞), where

φ(k − 1,∞) = q[θ (∞)](k−1) + (1− q)
T−1∑
m=0

φm(k − 1,∞).

(18)

Therefore, the critical spreading condition can be acquired
by

df (θ (∞))
dθ (∞)

|θc(∞) = 0. (19)

From Eq. (19), we can obtain the critical βc. After a profound
investigation, we find the final growth pattern ofR(∞) as well
as the situations of the critical outbreak are closely related
to the fraction of activists q. Then we continue to analyze
the influence of q on the critical spreading conditions in
heterogeneous complex contagion.

IV. NUMERICAL METHOD
Furthermore, we perform numerical simulations to verify
the above-mentioned theoretical analysis. Unless otherwise
specified, based on Erdös-Rényi (ER) random model with
Poisson degree distribution p(k) = e−〈k〉 〈k〉

k

k! , we build the
basic network with N = 104 nodes, mean-degree 〈k〉 = 10,
and recovery probability γ = 1.0. Besides, network weight
distribution follows g(ω) ∼ ω−αω with ωmax ∼ N

1
αω−1 and

mean-weight 〈ω〉 = 8. At least 2× 103 independent dynam-
ical realizations on a fixed network are applied to compute
the pertinent average values, which are further averaged over
100 network realizations. The complexity of running time at
each time step is O(E), where E is the number of edges.
In numerical verification, the relative variance χ [54] is

adopted to numerically determine the critical conditions, such
as βIc and β

II
c as follows

χ = N
〈R(∞)2〉 − 〈R(∞)〉2

〈R(∞)〉
, (20)

where 〈R(∞)2〉 and 〈R(∞)〉 are the averaged values of R(∞)2

and R(∞), and N denotes the network size.

V. RESULTS AND DISCUSSION
The section discusses the results based on parameters as in
Section IV.With the increase of q, the critical conditions of βc
differs, we first discuss the situation with a small q, e.g., q =
0.25. FromEq. (17), we find f (θ (∞)) = 0 has only one trivial
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FIGURE 1. (Color online) Graphical analysis of critical conditions and the dependence of the final adoption size R(∞) on information transmission
probability β. In the top panel, the roots of f (θ(∞)) with (a) q = 0.25 and (b) q = 0.8. The final adoption size R(∞) versus β with (c) q = 0.25 and (d)
q = 0.8. In (c) and (d), the solid lines indicate the theoretical solutions and the symbols represent the numerical simulations and they agree with each
other very well. Moreover, in (c) and (d), the relative variance χ versus β with q = 0.25 and 0.8 respectively. The parameter settings are network size
N = 104, mean-degree 〈k〉 = 10, recovery probability γ = 1.0, ρ0 = 0.001, mean-weight 〈ω〉 = 8, and network weight distribution exponent αω = 2.1.

solution θ (∞) = 1 when β is small. With the increase of β,
f (θ (∞)) = 0 continuously keeps only one trivial solution
θ (∞) = 1. Until Eq. (17) is first tangent at θ (∞) = 1 (see
the red dot in Fig. 1(a)), R(∞) always increases continuously
(see example in Fig. 1(a)), which means there is a second-
order (continuous) phase transition. From setting θc(∞) = 1
in Eq. (19), we can derive∑

ω

g(ω)
qλω[〈k2〉 − 〈k〉]
〈k〉[(1− γ )λω + γ ]

= 1, (21)

where 〈k〉 and 〈k2〉 are the first and secondmoments of degree
distribution, respectively. Combining Eqs. (21) and (1), βIIc
can be obtained (see Fig. 1(a) for βIIc = 0.1365), which only
causes local behavior adoption.

Since Fig. 1 is intended to analyze critical conditions and
the dependence of the final adoption size on information
transmission probability, the two values of q are adequate
for the purpose and comprehensively represent the total two
phenomena. Specifically, q = 0.25 illustrates the case of
hybrid phase transition with two critical transmission rates
βIc and βIIc of continuous growth pattern and discontinuous
growth pattern, and q = 0.8 illustrates the case of the sec-
ond order continuous phase transition with only one critical

transmission rate βIc . As shown in Fig. 1(a), when β is large
enough, three nontrivial roots of f (θ (∞)) = 0 come out (see
Fig. 1(a) for β = 0.16). In this case, the largest stable root is
meaningful. For β = βIc = 0.1675 (causing global behavior
adoption), the tangent point θs(∞) is the solution (see the
green square in Fig. 1(a)). For β > βIc , the meaningful
solution is the only stably fixed root. The meaningful solution
of f (θ (∞)) = 0 changes abruptly from a relatively large value
to a relatively small value, when β > βIc (see Fig. 1(a) from
β = βIc = 0.1675 to β = 0.18), leading to a discontinuous
growth of R(∞). Based on the bifurcation theory [55], we can
obtain the discontinuous critical information transmission
probability by setting θc(∞) = θs(∞) in Eq. (19). We can
obtain βIc from∑

ω

g(ω)
qλω

∑
k kp(k)1(k)

〈k〉[(1− γ )λω + γ ]
= 1, (22)

where

1(k) =
dφ(k − 1,∞)

dθ (∞)
|θs(∞).

Here θs(∞) < 1 is the fixed point (double roots) in Eq. (16)
and combining Eq. (18) and (3) can deduce

1(k) = (k − 1)qθs(∞)k−2 + (1− q)9(k), (23)
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FIGURE 2. (Color online) For different weight distribution exponents αω , the final adoption size R(∞) versus β with (a) αω = 2.1, (b) αω = 3 and (c)
αω = 4. The lines from theoretical solutions coincide with the symbols from numerical simulations very well. The relative variance χ versus β with (d)
αω = 2.1, (e) αω = 3 and (f)αω = 4. The basic parameters are N = 104, 〈k〉 = 10, 〈ω〉 = 8, ρ0 = 0.001, and γ = 1.0.

FIGURE 3. (Color online) Demonstrations of phase transition in the (β,q) parameter plane. The final adoption size R(∞) versus parameter pair (β,q) with
(a) αω = 2.1, (b) αω = 3 and (c) αω = 4. Each plane is divided into three areas. In area I , complex contagion can not outbreak and disappear eventually.
In the area, II , the growth of the final adoption size R(∞) follows hybrid phase transition. There exist critical transition probability βII

c marked by a red
triangle and βI

c marked by white square, which respectively trigger local and global behavior adoption. In the area, III , the growth of the final adoption
size R(∞) embodies the second-order continuous transition and it possesses the critical transition probability βI

c marked by the white circle, which
results in global adoption. The basic parameters are N = 104, 〈k〉 = 10, 〈ω〉 = 8, ρ0 = 0.001, and γ = 1.0.

where

9(k) =
T−1∑
m=0

(
k − 1
m

){
(k − 1−m)θs(∞)k−2−m[1−θs(∞)]m

− mθs(∞)k−1−m[1− θs(∞)]m−1
}
.

According to the above analysis, we discover that for
small q, R(∞) versus β first continuously increases and
then obeys a discontinuous pattern. And the continuous and
discontinuous growth of R(∞) is induced by the activists
and conservatives, respectively, which can be regarded as
hybrid phase transition [55] in the view of statistical physics,
because of mixing the traditional first-order and second-order
transitions.

Then, we proceed to study the case of a large q, e.g.,
q = 0.8. As shown in Fig. 1(b), for any β, the Eq. (17) can
only be tangent at θ (∞) = 1 when βIc = 0.0281. Otherwise,
f (θ (∞)) does not have any other tangent point θ (∞) < 1.
Moreover, the Eq. (17) has only one nontrivial solution. With
the increase of β, θ (∞) decreases continuously to a nontrivial
solution (see example Fig. 1(b)), which implies that R(∞)
follows continuous growth fashion all the time. From the
above analysis, for large q, R(∞) grows continuously as a
traditional second-order continuous phase transition. In this
case, we can set θc(∞) = 1 in Eq. (19) and combine Eq. (18)
to obtain βIc .
Moreover, the simulation results about influences of

activist fraction q and weight distribution exponent αω on
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FIGURE 4. (Color online) The final adoption size R(∞) versus β with (a) q = 0.25, (b) q = 0.5 and (c) q = 0.8. In each subgraph, with the increase of the
weight distribution exponent from 2.1 to 4, R(∞) always grows in the pattern of hybrid phase transition and can reduce the critical transmission
probability, facilitating behavior spreading.

heterogeneous complex contagions will be discussed. Given
other parameters as in Section IV, increasing q implies
enlarging the fraction of activists; moreover, increasing αω
means reducing the heterogeneity of weight distribution.
Here we provide the results and further discussions.

Let us first investigate the impact of q on social behav-
ior spreading. Apart from the analysis of Fig. 1(a) and (b),
we provide the growth pattern of R(∞) versus β via both
theoretical solutions (red solid line) and numerical method
(black circle) in Figs. 1(c) and (d). In Fig. 1(c) with small
q = 0.25, R(∞) first grows continuously with local adoption
at the critical transmission probability βIIc = 0.1365, and then
grows discontinuously with global adoption at βIc = 0.1675.
In Fig. 1(d) with large q = 0.8, R(∞) grows continuously
with global adoption at the critical transmission probability
βIc = 0.0281. In both subgraphs, the peaks of the relative
variance of χ point out the critical transmission probabilities.
In Fig. 1, the theoretical solutions conform to the numerical
results very well. We find that given weight distribution
exponentαω, increasing activist fraction q changes the growth
pattern of R(∞) from the hybrid phase transition to second-
order continuous transition, moreover, it reduces the critical
transition probability βIc , promoting global behavior adop-
tion.

Furthermore, under different weight distribution exponents
αω = 2.1, 3, 4, we continue to investigate the impact of
q on the social behavior spreading in Fig. 2. In Figs. 2(a)-
(c), we still exhibit the growths of R(∞) versus β via both
theoretical solutions (denoted by lines) and numerical simu-
lation results (denoted by symbols). We find that no matter
what the αω is, with the increase of q (from 0.25 to 0.5),
the growth of R(∞) versus β consistently changes from
the hybrid phase transition to the second-order continuous
transition. It is evident that increasing q consistently reduces
the critical transition probability under all αω. Moreover,
in Figs. 2(d)-(f), relative variance χ points out the critical
transition probabilities corresponding to Figs. 2(a), (b) and
(c). Noticeably, given αω, increasing q can decrease the criti-
cal transition probability. The results from Fig. 2 suggest that
increasing the fraction of activists can promote information
spreading and change the type of phase transition.

Globally, we study the change of growth pattern of the final
adoption size R(∞) with q ranging in [0,1]. In Fig. 3, we plot
the final adoption size R(∞) on the (β, q) plane according to
the theoretical method in Section III. In subgraph (a)(αω =
2.1), (b)(αω = 3) and (c)(αω = 4), based on the growth
pattern under different q, the plane is consistently divided into
three areas. In region I , social behavior spreading can not out-
break. In region II , R(∞) first grows continuously with local
adoption at critical spreading probability βIIc (denoted by
red triangle) and then increases discontinuously with global
adoption at critical spreading probability βIc (denoted by the
white square), showing the hybrid phase transition. In region
III , R(∞) keeps growing continuously with global adoption
at critical spreading probability βIc (denoted by a white cir-
cle), which embodies the second-order continuous transition.
Moreover, we find the critical spreading probability consis-
tent decreases with the increase of q in all subgraphs. Fig. 3
confirms again that changing weight distribution heterogene-
ity (i.e., changing αω) does not alter the growth pattern, and
increasing q can promote the behavior spreading. Besides,
we further find that, given q, increasing αω (from 2.1 in
subgraph (a) to 4 in (c)) also can reduce the critical spreading
probability, which means that increasing αω and reducing
weight distribution heterogeneity can promote the behavior
spreading, too.

For emphasizing the promotion of reducing weight dis-
tribution heterogeneity on the behavior spreading, we pur-
posely give the growth pattern of R(∞) versus β with αω
from 2.1 to 4 in Fig. 4. The lines obtained from theoreti-
cal solutions agree with the symbols from numerical results
very well. In Fig. 4(a), we find R(∞) always grows in the
pattern of hybrid phase transition regardless of αω. Anal-
ogously, in Figs. 4(b) and (c), R(∞) all grows continu-
ously in the pattern of second-order transition. Noticeably,
given q, increasing αω can decrease the critical transition
probability, but will not alter the type of phase transition,
which can also be proved by the bifurcation theory as
in Fig. 1. The phenomena in Fig. 4 suggest that reducing
weight distribution heterogeneity can promote the behav-
ior spreading; however, it cannot alter the type of phase
transition.
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VI. CONCLUSION
In complex contagion, researchers ignore the heterogeneous
adoption effect on weighted social networks with the consid-
eration of social reinforcement derived from the memory of
non-redundant information. In this paper, at first, concerning
the heterogeneous adoption, we divide the population into
activists and conservatives with a tunable fraction, moreover,
assign heterogeneous weights to the complex network using
weight distribution. Then, we propose a general complex
contagion model to describe the heterogenous adoption effect
on weighted social networks with heterogeneous weight dis-
tribution. Then, we adopted an edge-weight compartmental
theory to predict the contagion effect. Our findings suggest
that the theoretical predictions agree with the simulation
results very well.

Combing the numerical simulations and the theoretical
analysis, we find that even the weight distribution varies,
the final adoption size grows versus the transmission proba-
bility, with the pattern changing consistently from the hybrid
phase transition to the second-order continuous phase transi-
tion. At the same time, increasing the fraction of activists will
spur the behavior spreading, i.e., more activists can accelerate
information spreading and further promote conservatives to
adopt the behavior. Moreover, diminishing the heterogeneity
of the weight distribution can also promote the behavior
spreading; however, it cannot alter the type of phase tran-
sition. Our work enriches the studies about phase transition
phenomenon, moreover, provides insights into deeply under-
standing the influence of heterogeneous adoption behaviors
and weighted network structures on social complex conta-
gions.

The research on the complex contagions with heteroge-
neous adoption thresholds on weighted the network can offer
the heuristic idea to the investigations on other spreading
dynamics such as epidemic spreading, innovation spreading,
marketing, and diffusion of computer virus. Moreover, our
work can stimulate further works to design better control
strategies to optimize the behavior spreading in the social
network. Besides, the behavior spreading on weighted mul-
tiplex networks has not been investigated and deserves to be
studied in the future. Additionally, this work mainly aims at
innovating theoretical methods and unveiling the mechanism
of social contagions onweighted complex networks consider-
ing adoption threshold heterogeneity. We will further explore
the influence of the heterogeneous degree distribution in our
future work with experiments on BA scale-free networks.
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