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ABSTRACT Recently developed deep learning-based image inpainting methods have suggested their
potential applications in filling large missing regions displaying plausible content. Nevertheless, most
existing studies either merely considered the external information of the missing regions or relied on the
region context to yield semantically coherent patches while overlooking the semantic relevance and feature
continuity exhibited by missing regions; these demerits are likely to cause a discontinuous contextual
structure and blurry texture details. In this work, a novel inside-outside attention layer (IOA) was proposed,
capable of exploiting unmasked image features as references as well as learning the affinity between hole
features to predict more consistent semantic information. The adversarial loss attributed exclusively on the
natural image level cannot adequately generate a sharp texture detail. To address this problem, a texture
component discriminator was introduced via wavelet decomposition to enhance the specific performance.
Several experiments were performed on the CelebA and Places2 datasets. As revealed from the results,
in contrast to the existing research, the proposed method is capable of restoring images with complex
structures and significantly enhancing plausible structure and visual quality.

INDEX TERMS Image inpainting, attention layer, wavelet decomposition, texture component discriminator.

I. INTRODUCTION
Image inpainting refers to an image processing technique,
employing the undamaged information of the image to repair
missing information or remove unwanted image fractions
while maintaining the quality and natural structure of the
image. In other words, the repair work faces the primary
challenge of synthesizing visually realistic and semantically
reasonable pixels for the missing regions and simultaneously
maintaining consistency with the existing pixels. Given the
wide existence of images, image inpainting can be broadly
applied in the protection of artwork, which is reflected by
the repairment of lost and broken information in old photos,
the hiding of errors in pictures and videos, the removal of
unwanted fractions of images, as well as image-based ren-
dering and computer photography. Accordingly, the relevant
task has aroused huge attention in recent years.

On the whole, conventional image inpainting methods are
split into two major types in accordance with the sizes of
the damaged regions. 1) Images with small damage scales
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(e.g., scratches) can be fixed using two methods. First,
the partial differential equation (PDE) in physics is adopted
to propagate the known information to the missing areas to
achieve image inpainting [4]–[6]. The other complies with the
variational principle; the inpainting problem is converted into
a variational problem of the extremum by building a priori
model and a data model of the image. 2) In terms of images
exhibiting large damage scales, a sample patches-based tex-
ture synthesis algorithm is proposed, selecting the appropriate
sample patch size in missing areas and then substituting it
with the most similar patch from non-missing areas [1], [7].
However, conventional methods often fail to generate seman-
tically reasonable results since they fill regions at the image
level and lack a high-level understanding of the image. In con-
trast, early deep learning methods [3], [8], [9], [10] are
capable of learning semantic priors and data distributions
of the original image with generative adversarial networks,
which can enhance the visual authenticity of the image.
Nevertheless, these CNN-based methods cannot effectively
exploit contextual semantic information; they often generate
boundary artifacts and distorted structures discontinuous with
unmasked regions.
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Several recent studies focused on exploiting the semantic
information of non-missing regions to guide high-level fea-
tures restoring in missing regions [11]–[13]. The mentioned
methods are capable of maintaining the semantic continuity
of the yielded image well. Yet they are limited to rectangular
shape masks and merely consider the similarity between the
pixels to be generated inmissing regions and the known pixels
outside missing regions, thereby overlooking the correlation
between the generated pixels. Thus, they will restore blurry
texture details and pixel-discontinuous results inside masked
areas.

In the present study, to ensure high global structure consis-
tency, an attentionmechanismwas used to fill missing regions
at the high-feature level more effectively. The entire image
inpainting process was split into two stages. The first stage
aimed to assess a rough result similar to the missing part,
while the second stage complied with a U-net [14] structure
contributing to image denoising and extracting high-level
semantic expressions to refine the sketchy result output from
the first stage. To simultaneously preserve boundary pixel
continuity and mask-inner semantic correlation, an inside-
outside attention transfer layer (IOA) was embedded in this
stage. The IOA first learned the affinity between the patches
outside/inside unknown areas and then regarded it as outside
attention. Second, the inside attention was calculated, com-
plying with the similarity between adjacent patches inside
missing regions. Third, the combination of outside and inside
attention was transferred to missing regions to deal with
generated patches. The IOA layer embedded here made the
contextual semantics more coherent and achievedmore effec-
tive inpainting in restoring a natural structure. Moreover,
to eliminate boundary artifacts and enhance the texture details
of images generated, a texture component discriminator was
proposed, transferring images to thewavelet domain, learning
the distribution of detail wavelet coefficients achieved by
wavelet decomposition, as well as representing the texture
part of the image to sharpen the images generated. The whole
network was trained end to end with reconstruction loss,
multiscale reconstruction loss [13], natural image adversar-
ial loss, as well as texture component adversarial loss. The
two adversarial losses primarily originated from the wavelet
domain and natural domain of the missing regions. Experi-
ments on multiple datasets (e.g., faces and natural images)
proved that the proposed method generates higher-quality
inpainting results than existing works. Our contributions are
concluded as follows:

1) An inside-outside attention transfer layer was proposed
to learn the affinity between high-level feature patches to
more effectively reconstruct each missing pixel. The pro-
posed method is capable of achieving satisfactory results
for any shape of the missing regions (rectangular shape or
irregular shape).

2) To enhance the texture details performance, a wavelet
transform was introduced into the framework here, and
clearer details were restored by learning the high-frequency
coefficient distribution of the ground truth.

3) The proposed generative image inpainting system is
capable of achieving high-quality and plausible results even if
the images exhibit complex structures. Besides, the proposed
method achievedmore visual authentic inpainting results than
existing methods on challenging datasets Place2 [15] and
CelebA [16].

II. RELATED WORK
A. TRADITIONAL METHOD
Early image inpainting primarily represents diffusion-based
or patch-based methods exhibiting low-level features.
With diffusion equations along the mask boundary,
Bertalmio et al. [17] iteratively transferred low-level features
of known regions to unknown regions. Though the method
performs well in repairs, it can be limited to handling small
and evenly distributed areas. Bertalmio et al. [18] further
optimized repair results by introducing texture synthesis.
By learning the a priori of the image block, Chan and
Shen [19] recovered images with missing pixels. Recently
developed TV-based methods [20] have begun to consider
the smoothness of the image, which is feasible to repair
small missing areas and eliminate noise. Nevertheless, with
the enhancement of missing areas, such method can cause
a blurred appearance for the pixels inside known regions
diffused to the unknown regions. Hay and Efros [21]
attempted to employ the available parts of the image to
find similar patches for its high-quality and high-efficiency
results, which had been adopted as one of the most effective
inpainting methods in a short time; however, as they assumed
that missing patches can be identified somewhere in known
regions, matching patches are hard to find for images with
more complex textures. Moreover, these methods exhibit
poor performance in extracting high-level semantics.

B. DEEP LEARNING METHOD
To restore large and irregular missing regions, more
learning-based methods have been developed. These
learning-based methods primarily use GAN to identify the
latent distribution behaviors of missing regions and enhance
the performance in semantic image inpainting compared
with conventional methods. Larsen et al. [22] optimized the
VAE [23] by adding an adversarial training discriminator
capable of automatically encoding the input of an incom-
plete picture into a vector before decoding the vector into
a complete image; they demonstrated that a more realistic
image could be generated. Inspired by this work, the con-
text encoder model was built [3], employing an encoder to
combine learning visual representation with image inpainting
and train deep neural networks with pixelwise reconstruction
loss and generative adversarial loss as the objective function,
whereas the restoring regions were obviously inconsistent
in some cases. To solve the problems within the context
encoder model, Iizuka et al. [8] extended the design to two
discriminators and adopted trained global and local context
discriminators to distinguish real and images generated,
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FIGURE 1. Our architecture build on U-net structure and it consists of two module: (a) rough inpainting module and (b) refinement
inpainting module. Refinement inpainting module is optimize by minimizing (c) adversarial loss and (d) multi-scale L1 loss to
predict better results.

respectively, thereby enabling the network to generate locally
and globally consistent images. EdgeConnect [24] built a
two-stage adversarial model with an edge generator under an
image completion network. The edge generator can visualize
edges of the missing regions of the image, and the image
completion network can fill in the missing regions with
visualized edges as a priori. This method, however, relies
on the edge information prediction, and the existing methods
fail to effectively restore reasonable edges. Such inpainting
approach may lead to a confusing detailed texture. The partial
convolutions [25]make and renormalize the convolution to be
conditioned on only valid pixels. Though it can achieve sharp
results on small and irregular missing regions, this method is
likely to form a destroy structure when missing regions turn
out to be continuous and larger. Shift-Net [12] introduces a
shift-connection to shift the encoder feature of known regions
to estimate missing parts. Contextual attention [11] designs a
coarse-to-fine framework to guide image restoration; it first
generates a rough estimate of the masked regions, and subse-
quently an attention mechanism is proposed and embedded
in a refinement network to synthesize semantically relevant
structures using high-level features in known regions as a
reference.

III. APPROACH
In the present section, an image inpainting model is first
proposed based on attention layers (IOA), successfully gen-
erating missing regions obscured by free-form masks as well
as maintaining high contextual semantic consistency and
visual authenticity. Subsequently, the operating mechanism
of the IOA layer is described, followed by the training loss
functions.

A. NETWORK ARCHITECTURE
Inspired by recent image completion studies [11], the image
inpainting network here consisted of two modules, namely,
a rough inpainting module and a refinement inpainting mod-
ule (Fig. 1). The rough inpainting module initialized a coarse
image to stabilize the training process and enlarge the recep-
tive fields. Besides, the coarse prediction presented prior
knowledge and smoother pixels for IOA in missing regions,
thereby enhancing the calculation efficiency of the attention
score. Context semantics and texture details of images were
primarily reconstructed by refinement networks. The details
of the two modules are elucidated as follows.

1) ROUGH INPAINTING MODULE
In this module, masked image Im and center or irregular mask
Mwere combined as the input, and a coarse prediction Irough
was outputted by the rough network. The architecture of the
generators complies with themethod proposed by [26], which
has proven feasible in style transfer, super-resolution [27],
as well as image-to-image translation [28]. A 3 × 3 sized
kernel and local signal normalization [29] was employed
across all layers of the network except for input and output
layers. The tensor size of input was 256× 256× 4, covering
an incomplete image and a binary mask. The encoder of the
generator covered two downsampling operations. Each time,
the image size was reduced by one-half, four dilated resid-
ual blocks [30] with a dilation factor of two were followed
before decoding. To prevent the occurrence of checker-board
artifacts [31], our decoder adopted the resize convolution [32]
(bilinear interpolation was followed to resize the image) for
upsampling. Reconstruction loss was used to optimize the
rough network parameters explicitly.
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2) REFINEMENT INPAINTING MODULE
At this stage, the output results from rough inpainting module
Irough conditioned on binary mask M were adopted as input.
To extract the feature information inside missing regions
at different levels, the generator exploited a U-net structure
capable of encoding a masked image into tight latent features
and reusing the low-level feature information of the previous
layer in the decoding step. The encoder of the generator
downsampled the input to a 4 × 4 size with 6 convolution
operations, followed by four dilated residual blocks. Consis-
tent with the rough inpainting module, all convolution layers
adopted a 3 × 3 sized kernel. The IOA was located in a
32 × 32 size downsampling layer of the encoder, and the
output of the IOA was embedded in the corresponding layer
of the decoder.

Our discriminator displayed an SN-PatchGAN [33] struc-
ture, and the receptive fields of each point in the output map
could cover the entire input image in our training setting
continuously. Thus, a global/local discriminator designwould
be not required in SN-PatchGAN. The discriminator forced
the data distribution of reconstruction images consistent with
that of real images to enhance the visual authenticity of the
reconstructed images, whereas it only exploited adversarial
loss built at the entire natural image level, so a clear and sharp
texture details were not achieved in the results. To address this
problem, a texture component discriminator was proposed
to learn the texture component distribution of real images
and enhance the visual quality of inpainting from the details.
Multiscale reconstruction loss and natural image adversarial
loss are also indispensable for training, and the details of the
loss function are presented in section C.

B. INSIDE-OUTSIDE ATTENTION TRANSFER LAYER
In the image inpainting task, features in missing regions were
sometimes more tightly correlated with those in distant spa-
tial locations, whereas convolutional neural networks could
not borrow features from such a long distance with local
convolution kernels. Reference [11] proposed an attention
model adopting the features of known regions to guide fea-
ture generation in missing region M̄ , whereas this method
ignored the correlation between generated patches and might
cause a semantically incoherent inpainting result. To address
this problem, an IOA layer was proposed, which not only
considered patches in M but also focused on the correlation
between the neighboring generated patches in the missing
areas. It covers three parts, namely, reconstruction, rele-
vance calculation and generation. The procedure is illustrated
in Fig 2.

1) RECONSTRUCTION
Following the state-of-the-art approaches [11], we first
extract patches (3× 3) in known regions and reshape them as
convolutional filters to measure the affinity between patches
inside and outside M , then calculate with normalized inner
product (cosine similarity). Note that the values of the patches

insideM are initialized by a rough inpainting module.

Si,j =
< pi,p̄j >
||pi|| · ||p̄j||

. (1)

where pi represents the i-th patch extracted from M and
i ∈ (1,n), n is the number of patches inM . p̄j denotes the j-th
patch extracted from contextual regions M̄ , j ∈ (1,m).m is the
number of patches in M̄ . Si,j represents similarity between pi
and p̄j
Then softmax is applied to compute the attention score λi,j

for each patch:

λi,j =
exp(Si,j)
m∑
j=1

exp(Si,j)
. (2)

After obtaining the attention score, the outside attention
patch is defined as:

pi′ =
m∑
j=1

λi,j · p̄j. (3)

where pi′ represents the reconstructed outside attention patch,
which corresponds to the i-th position inM

2) RELEVANCE CALCULATION
In this part, we focus on the semantic relevance Riinside
between two adjacent patches inside M , and set the previ-
ous patch pi−1 as an important reference to reconstruct pi.
To maintain the continuity and integrity of the reconstruction
results, feature information outsideM also need to be consid-
ered. so pi′ is set to another reference during the process of
reconstruction, and Riinside and R

i
outside are denoted as:

Riinside =
< pi,pi−1 >
||pi|| · ||pi−1||

. (4)

Rioutside =
< pi,pi′ >
||pi|| · ||pi′||

. (5)

3) GENERATION
We reconstruct the patches insideM in order from left to right
and top to bottom. pNewi stands for the reconstruction result
of pi. Note that p1 has no previous patch, consequently pNew1 is
directly replaced by outside attention patch p1′. Thus the first
reconstructed patch pNew1 = p1′. After obtaining the value
of pNew1 , we can utilize Riinside and R

i
outside to calculate pNew2 .

In summary,the reconstruction process can be denoted as:

pNewi =
Riinside

Riinside + R
i
outside

× pNewi−1

+
Rioutside

Riinside + R
i
outside

× pi′. (i ∈ (2, n)) (6)

Note that the generate operation is an iterative process,
which means all previous generated patches (pNew1 to pNewi−1 )
and outside attention patch pi′ are contribute to the recon-
struction of pNewi , thus more contextual semantic information
can fill in missing regions. Finally, we reuse extracted patches
(p̄1 to p̄m) in M̄ as deconvolutional filters to reconstructM .
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FIGURE 2. Structural overview of Inside-outside attention.

C. LOSS FUNCTION
We want to obtain a approximately the same result as the
real image in the rough inpainting module, by which we
can provide an initial value for the pixels in M to calculate
the attention score. By minimizing the reconstruction loss,
the ability of the generatedmodel to learn the overall structure
is optimized. In the refinement inpainting module,we use
multiscale reconstruction loss [13] to restore the generated
image at different scales. Considering that images generated
with only reconstruction losses usually obtain blurred results,
adversarial loss is used to force the data distribution of gener-
ated images consistent with that of real images, which greatly
improves the visual quality of generated images. Further-
more,the normal discriminator can only learn the statistics
of natural images, and it can hardly capture high frequency
texture details to produce satisfactory perceptual results.
As high frequency wavelet coefficients can characterize the
texture details of images, we proposed a texture component
adversarial loss which is based on wavelet decomposition
to help texture reconstruction. The details of the multi-scale
reconstruction loss and adversarial loss are described below.

1) RECONSTRUCTION LOSS
In the rough inpainting module, we use L1 distance as the
reconstruction loss to constrain the difference between the
rough result Irough and the ground-truth Igt .

Lr =
1
NIgt
||M � (Irough − Igt )||1

+α
1
NIgt
||M̄ � (Irough − Igt )||1. (7)

where Na denotes the total number of pixels in a.

2) MULTISCALE RECONSTRUCTION LOSS
In the refinement inpainting module, we follow [13] to use
multiscale reconstruction losses to refine the constraints on
the predicted values at each scale. the groud truth is down-
sampled to different scales that correspond to the feature
maps from each layer in the decoder. Then L1 loss is applied
between the feature maps of prediction and the ground truth
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FIGURE 3. The correlation between detail wavelet coefficients and the image blur level. The first row are input images with different blur level.
The second row are the results of wavelet decomposition, For the convenience of observation, the third row shows the normalized wavelet.

on each specific scale:

Lms−r =
L−1∑
l=1

(
1
NI lgt
||M � (I lgt − f (x

l))||1

+α
1
NI lgt
||M̄ � (I lgt − f (x

l))||1). (8)

where x l denotes the feature map of the l-th layer in the
decoder, f is a 1×1 convolution that decodes x l into an RGB
image with corresponding resolution. I lgt denotes the ground
truth downsampled to the same resolution as x l

3) TEXTURE COMPONENT ADVERSARIAL LOSS
The wavelet transform has been proved an efficient and
highly intuitive tool for representing and storing multires-
olution images. It is capable of depicting the contextual
and textural information of an image at various levels [34],
inspiring this study to introduce wavelet transform to a deep
image inpainting system. Our texture component adversarial
loss complied with a 2-D discrete wavelet transform (DWT),
decomposing the image into a sequence of wavelet coef-
ficients of the identical resolution. Besides, a 1-level Haar
wavelet was taken to decompose the images generated and
the real images to calculate their approximate coefficients and
detail coefficients. Approximate coefficients indicated the
smooth transition of the brightness of the image color, which
could merely reconstruct the overall outline of the object,
rather than the fine details. In contrast, specific coefficients
represent the high-frequency details of the image [35]. Thus,
by learning the detailed coefficient distribution of real images
in the wavelet domain, the texture component adversarial
loss here attempted to optimize the texture details perfor-
mance of the images generated. To elucidate the correlation
between the detailed wavelet coefficients and the texture
details of the natural image, 10,000 aligned face images
were taken from CelebA randomly [15] and then resized to

256 x 256 pixels. Subsequently, bicubic interpolation was
used to downsample these images to a range of scales, fol-
lowed by upsampling using the identical method, through
which several images with different blurring levels could
be obtained. The average absolute value (MEAN_D) of the
detailed wavelet coefficients for each blurring level was com-
puted for intuitive comparison. In Fig. 3, the decomposition
process is visualized; with the rise in the image blurring level,
both visual and quantitative results of detail wavelet coeffi-
cients faded away, suggesting that it is essential to recover
the high-frequency wavelets to enhance the texture details of
the images generated.

We first perform a wavelet transform on the grayscale
image to obtain the detailed coefficients in three directions
(horizontal IH , vertical IV and diagonal ID ). After decom-
position, the length and width of the image are reduced
by half, and then the three high-frequency wavelet images
are combined as input of the discriminator. We use the
SN-PatchGAN [33] structure to apply GAN loss for each
point in the output feature map, The output feature map of
SN-PatchGAN is a 3-D feature of shape Rh×w×c, where h,
w, and c represents the height, width and number of channels
respectively. To discriminate if the input is real or fake, our
texture component adversarial loss for the discriminator is
defined as:

L textureD = EIhdgt [log(1− D
sn(Ihdgt )]

+EIhdgen [log(1+ D
sn(Ihdgen))]. (9)

Ihd = IH ⊕ IV ⊕ ID. (10)

where Dsn represents the spectral-normalized discriminator,
Ihdgen represents the high-frequency detail part of the gener-
ated image, Ihdgt denotes the high-frequency detail part of the
ground truth. ⊕ is a concatenating operation. And texture
component adversarial loss for the generator can be defined
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as:

L textureG = −EIhd
gen

[Dsn(Ihdgen)]. (11)

4) FINAL OBJECTIVE
With reconstruction loss, multiscale reconstruction loss, and
adversarial loss, our overall loss function is defined as:

L = λrLr + λms−rLms−r + λtL textureG + λiL
image
G . (12)

where λr , λms−r , λt and λi are regularization parameters,
specially, L imageG is a adversarial loss on image level,it is
defined similar to Eq 9 and Eq 11:

L imageD = EIgt [log(1− D
sn(Igt )]

+EIgen [log(1+ D
sn(Igen)). (13)

L imageG = −EIgen [D
sn(Igen)]. (14)

where Igt denotes the ground truth RGB images, and Igen
denotes the prediction results of the refinement inpainting
module.

D. TRAINING DETAILS
Our model are implemented on TensorFlow, CUDNN v7.1,
CUDA v9.2, and run on hardware with GPU TITAN V. The
inpainting network G is trained using 256× 256 images with
a batchsize of eight. Our model is optimized by the Adam
algorithm [22] with a learning rate of 1×10−4 and β1 = 0.5,
β2 = 0.999. The parameters are set as λr = 1, λms−r = 1,
λt = 1 × 10−4, λi = 1 × 10−3. And it takes 0.54 seconds
on GPU to complete a prediction for our full model. Training
procedure is shown in Algorithm 1.

Algorithm 1 Training Procedure of our proposed framework
1: while Iteration times t < TTrain do
2: \\ Start the training of D.
3: for i = 1,2 . . . , 5 do
4: Sample a batch of images Igt from training data.
5: Get a batch of binary masks M.
6: Construct inputs Im = M � Igt .
7: Obtain output Igen = Im + G(Im,M )� (1−M ).
8: Transform Igen and Igt to wavelet domain.
9: Compute the High frequency components Ihdgen

and Ihdgt respectively.
10: Update two critics with Ihdgen. I

hd
gt , Igen and Igt .

11: end for
12: \\ Start the training of G
13: Sample a batch of images Igt from training data.
14: Get a batch of binary masks M.
15: Update generator with reconstruction loss,

multi-scale reconstruction loss and two adversarial
critic losses.

16: end while
return result

IV. EXPERIMENT RESULTS
Centering (128× 128) and irregular masks were adopted for
training and assessing the proposed network on two datasets:
Places2 [15] and CelebA [16]. The results were qualitatively
and quantitatively compared with the current state-of-the-
art methods. To fairly evaluate, several experiments were
performed as well to prove that our attention layers (IOA) and
texture component adversarial loss are conducive to inpaint-
ing results. More prediction results of our experiment are
presented in the supplementary material.

A. DATASETS
The Places2 [15] dataset covered images of 365 different
types of scene environments collected from the natural world,
and each class consisted of 5,000 pictures for training and
900 images per category in the testing set. Considering the
computational cost, 40 categories totaling 200,000 images
were selected for training and selected 1,200 images from the
testing set (each category randomly chose 30 images) for test-
ing. CelebA[16] refers to a large-scale face attributes dataset
with 202,599 celebrity images, of which the images cover
large pose variations and background clutter. 500 cropped and
aligned images were randomly sampled for testing and the
left images for training. The proposed method was compared
with four recent works: CA: contextual attention [11], SH:
shift-net [12], GL: globally and locally consistent image com-
pletion [8], and pconv: image inpainting for irregular holes
using partial convolutions [25]. To achieve more convinc-
ing experimental results, the network structure in the above
papers was not adopted, whereas their core algorithms were
transplanted to the framework here for comparison with our
proposed method.

B. QUALITATIVE COMPARISON
To illustrate the visual and semantic coherence of damaged
regions, a center mask model was first train to compare with
several similar methods. As shown in Fig. 4, the inpainting
results of CA [11] and SH [12] exhibited poor performance
in terms of the internal continuity of the restore areas, and
the color was evidently different from the real image since
these methods only focused on the attention score of known
areas, overlooking the correlation between adjacent pixels
within the missing areas. For irregular masks, the work
of [25] was referenced, and their method was employed to
train irregular masks. Irregular masks were augmented by
performing random dilation, rotation and cropping, and then
split into four categories in line with their sizes. Fig. 5 draws
the comparison of our inpainting results with GL [8] and
PConv [25]. When images were being restored with complex
backgrounds, Gl [8] could not develop reasonable structures,
and the results were often prone to color discrepancies.
PConv [25] presented vague texture details, though it could
generate semantically coherent results in some sense, while
ours achieved obvious visual enhancement to plausible image
structures and crisp textures.
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FIGURE 4. Qualitative comparisons in centering masks with other methods on test datasets with different characteristics. In each row,
the first image is the input with a large mask in the center (128× 128), and the left images from left to right are, the results generated
by CA [11], SH [9], our model and ground truth, respectively. [Best viewed zoomed-in].

C. QUANTITATIVE COMPARISONS
Lacking effective quantitative evaluation metrics has always
been a problem frequently facing by image generation tasks
(e.g., image inpainting). The evaluation metrics of the GAN
models do not apply to image inpainting since they place
the primary emphasis on the semantic continuity between
masked areas and known areas, rather than the ability to
generate different classes of objects. Though some common
quantitative evaluation metrics are not necessarily effective
methods for image inpainting, for performing a fair quantita-
tive comparison with existing methods, we still reported our
evaluation results in terms of mean L1 error, peak signal-to-
noise ratio (PSNR) and structural similarity (SSIM) on the
two testing datasets with both center rectangle masks and
irregular masks for reference in Table 1, 2 and 3.

D. USER STUDY
Besides quantitative and qualitative comparisons, user studies
were conducted as well on two types of experiments, and
20 volunteers were recruited to assess the performance of the

TABLE 1. Comparison results over Place2 and CelebA with centering
masks between CA [11], SH [12], and Ours.− Lower is better.+ Higher is
better.

proposed method on celebA testing images. They were not
informed of any experimental information.

During the first experiment, the main objective was to
assess the naturalness and visual authenticity of the images
generated reconstructed by the proposed method. 100 sam-
ples were randomly selected from the test images, inpaint-
ing work was performed after masking them, and then the
completed image was mixed with the other 400 real images.
Volunteers were only presented either prediction results or
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FIGURE 5. Qualitative comparisons in irregular masks with other methods on test datasets with different characteristics. In each row,
the first image is the input with a random irregular mask, and the left images from left to right are, the results generated by GL [8],
SH [25], our model and ground truth, respectively. [Best viewed zoomed-in].

TABLE 2. Comparison results over Place2 with irregular masks between
GL [8], Pcov [25], and Ours.− Lower is better.+ Higher is better.

the ground truth from the test dataset and given one second
to determine whether the sample is a real image or completed
image. The result revealed that 95% of the real images were
correctly classified, and 84% of the completed images by the
proposed method were categorized as real (Fig. 6), thereby

TABLE 3. Comparison results over CelebA with irregular mask between
GL [8], Pcov [25], and Ours.− Lower is better.+ Higher is better.

thoroughly demonstrating that our results exhibit good visual
authenticity.

During the second experiment, a horizontal comparison
was drawn with other methods (Table 4). Each time, a pair
of images (two images in respective pair) completed from

VOLUME 8, 2020 62351



X. He et al.: Image Inpainting Based on Inside–Outside Attention and Wavelet Decomposition

FIGURE 6. Result of user study experiment 1 on our CelebA test images.
The numbers represent the percentage of the images that are Classified
as ground truth.

TABLE 4. Result of user study experiment 2 on our CelebA test images.
Each entry is the percentage of cases in which the results of our approach
were judged to be more realistic than those of another solution.

the identical corrupted input by two different methods were
presented to the volunteers without any information. The
volunteers were supposed to choose themore natural and real-
istic image in each pair. This rule was followed to compare
our model with CA [11], SH [12], GL [8] and Pconv [25],
and all the completed results displayed the identical size
of 256 × 256. By the entire experiment, all the images were
shuffled to ensure unbiased comparison, and the observation
time was not limited to free volunteers to spend much more
time making rational judgments.

E. OBJECT REMOVAL
To evaluate our method is effective in practical application,
we use our model trained on Place2 and CelebA to remove
unwanted part of real images outside of these two datasets.
the examples at first row in Fig.7 are from the scenes in life,
we restore them with the model trained on Place2, we can see
the inpainting regions integrate with the surrounding environ-
ment and has a coherent contextual semantics. The images
at second row are human’s face, we restore them with the
model trained on CelebA. As is known to all, it is difficult to
identify peoplewhen something on their face (like glasses and
beard),thus we use our method to remove unwanted object on
human’s face and successfully restore a natural face which is
similar to the original one.

F. ABLATION STUDY
To expound how IOA layer and texture components adver-
sarial loss work for image inpainting, we study the effects
of different parts in the image inpainting. Fig. 8 respectively
shows the inpainting results obtained by our full frame-
work, removing IOA layer, removing wavelet decomposi-
tion discriminator and the coarse-to-fine model without IOA
and wavelet decomposition discriminator(Dtexture). From the
results, we can see that without IOA and Dtexture, the frame-
work can hardly infer the consistent information and texture

details with existing regions, and the generated part is illogi-
cal. Furthermore, if IOA layer is ignored, the effect ofDtexture
is not obvious, only some unreasonable and disordered details
are generated. As shown in the fourth column, if our model
only contains IOA but notDtexture, the results still with bound-
ary artifacts and unclear texture details although it shows
coherent contextual semantics. With the help of both IOA
and Dtexture, our full model enjoys strong power to generate
visually and semantically close images to the ground truth.

1) IOA LAYER VS. CONTEXTUAL ATTENTION LAYER [11]
To assess the effect of the IOA layer, the IOA layer was
substituted with the contextual attention layer and a conven-
tional 3 × 3 layer, and then these layers were trained on the
identical framework to compare the differences between the
three methods. Fig. 9 (b)reveals that when only the U-net
structure was used without any attention layer, the masked
part restored unnatural and blurry results accompanied by
artifacts. Fig. 9 (c) presents the contextual attention layer
inpainting results, suggesting that the semantic information
in missing regions was inconsistent with the known regions,
though it indeed enhanced the quality of the image. Compared
with them, the proposedmethod exhibited better performance
(Fig. 9 (d)).

2) EFFECT OF IOA LAYER AT DIFFERENT LAYERS
The comparison of the IOA layer embedded here and other
methods demonstrated the superiority of our attention model.
Fig. 9 shows that it achieved an outstanding result in pre-
serving semantics. Note that the IOA layer appeared to be
embedded in different upsampling layers of the decoder. The
shallower the embedding position, the more the information
can be obtained, whereas the much more the computational
time will be required; if the embedding position is overly
deep, some specific information conducive to inpainting may
be lost. Given this, a reasonable embedding position should
be selected to ensure that our model considers both the calcu-
lation costs and the inpainting performance. Fig 10 shows the
result of the IOA layer at a range of upsampling layers. When
the IOA was placed at a 64 × 64 size upsampling layer, our
network yielded visually natural results (Fig. 10 (b)), whereas
it took too much time on the calculation (i.e., 1.34 sec-
onds per image). When the IOA was placed at a 16 ×
16 size upsampling layer, our model exhibited high efficiency
(i.e., 0.12 seconds per image), whereas it remarkably dis-
counted the restoration results (Fig. 10 (c)). By performing
the IOA layer in the 32 × 32 size upsampling layer, the effi-
ciency (i.e., 0.54 seconds per image) and performance can be
balanced at a high level by our model (Fig. 10 (d)).

3) WITH AND WITHOUT TEXTURE COMPONENT
ADVERSARIAL LOSS
A complete model that does not involve texture component
adversarial loss was first trained as shown in Fig. 11 (b).
blurry images were generated without high-frequency infor-
mation. Subsequently, the featureGAN loss [36]was added to
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FIGURE 7. Comparison results of object removal case on real world images. Each example from left to right: ground truth, input mask, our result.

FIGURE 8. The effect of different components in our model. Each example from left to right: the input incomplete images, the results wihout IOA and
Dtexture, the results without IOA, the results without Dtexture, the results with our full model and the ground truth.

FIGURE 9. The comparison result of our IOA attention model with a
non-attention model and contextual attention [11]. Each example from
left to right: input image, non-attention model, Contextual attention, IOA
attention.

highlight the high-frequency information, whereas the results
still did not show sufficiently clear details (Fig. 11 (c)).
Finally, feature GAN loss was substituted with texture com-
ponent adversarial loss (Fig. 11 (d)), suggesting that the stone
in the rectangle box displayed distinct edges and corners.
It is therefore proved that our texture component adversarial
loss successfully suppressed noisy high frequencies while

FIGURE 10. The effect of IOA layer on different layers.Each example from
left to right: input image, 16 × 16 size upsampling layer, 32 × 32 size
upsampling layer, 64 × 64 size upsampling layer.

generating perceptually plausible structured textures. More-
over, our results showed naturally synthesized sharp details
without blurriness or high-frequency artifacts.

4) TWO-STAGE DEEP LEARNING METHOD
Two-stage network architecture is similar in spirits to residual
learning [30] or deep supervision [38]. The rough inpainting

VOLUME 8, 2020 62353



X. He et al.: Image Inpainting Based on Inside–Outside Attention and Wavelet Decomposition

FIGURE 11. The comparison result of our texture component adversarial
loss with non-texture component adversarial loss model and feature GAN
loss. Each example from left to right: input image, non-texture
component adversarial loss, feature GAN loss, with-texture component
adversarial loss.

FIGURE 12. The comparison result of our method and previous two-stage
deep learning methods. Each example from left to right: input image,
CA[11], EC[24], our full model and ground truth.

module enlarge the receptive fields and provide prior knowl-
edge for missing regions. Intuitively, the refinement network
sees a more complete scene than the original image with
missing regions, so its encoder can learn better feature rep-
resentation than the rough network. Similar to CA [11] and
EdgeConnect (EC) [24], our approach also uses a two-stage
strategy. We conduct further experiment to evaluate the
superiority of our proposed two-stage network. As shown
in Fig. 12, when compared with previous two-stage deep
learningmethods, our approach performs better and generates
visually pleasing results.

V. CONCLUSION
In this study, a novel inside-outside attention layer was
presented via a coarse-to-fine network structure capable

of achieving semantically-reasonable and visually-realistic
results for image inpainting, since it can not only learn the
relevance between generated and existing pixels, but also
enhance the continuity among generated features in missing
regions. Moreover, the texture component adversarial loss
was introduced to learn the distribution of images in the
wavelet domain to restore sharp and fine-detailed images.
Experimental results verified the effectiveness and superior-
ity of our proposed methods. In the subsequent work, we plan
to enhance the effect of texture details reconstruction from
two aspects. From a horizontal perspective, different wavelet
bases exhibit unique features, thereby leading to a variety of
wavelet transform results. We will explore the contribution
of other types of wavelet bases (e.g., daubechies wavelet and
symlets wavelet). Furthermore, from a vertical perspective,
hopefully, we can introduce multilevel wavelet decomposi-
tion to determine whether it is conducive to enhancing the
performance of the texture component discriminator.
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