IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 28, 2020, accepted March 27, 2020, date of publication March 31, 2020, date of current version April 13, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984627

Stroke Extraction for Offline Handwritten
Mathematical Expression Recognition

CHUNGKWONG CHAN

School of Mathematics, Sun Yat-Sen University, Guangzhou 510275, China

e-mail: chsongg @mail2.sysu.edu.cn

ABSTRACT Offline handwritten mathematical expression recognition is often considered much harder
than its online counterpart due to the absence of temporal information. In order to take advantage of the
more mature methods for online recognition and save resources, an oversegmentation approach is proposed
to recover strokes from textual bitmap images automatically. The proposed algorithm first breaks down the
skeleton of a binarized image into junctions and segments, then segments are merged to form strokes, finally
stroke order is normalized by using recursive projection and topological sort. Good offline accuracy was
obtained in combination with ordinary online recognizers, which were not specially designed for extracted
strokes. Given a ready-made state-of-the-art online handwritten mathematical expression recognizer, the pro-
posed procedure correctly recognized 58.22%, 65.65%, and 65.22% of the offline formulas rendered from the
datasets of the Competitions on Recognition of Online Handwritten Mathematical Expressions (CROHME)
in 2014, 2016, and 2019 respectively. Furthermore, given a trainable online recognition system, retraining
it with extracted strokes resulted in an offline recognizer with the same level of accuracy. On the other
hand, the speed of the entire pipeline was fast enough to facilitate on-device recognition on mobile phones
with limited resources. To conclude, stroke extraction provides an attractive way to build optical character
recognition software.

INDEX TERMS Character recognition, feature extraction, offline handwritten mathematical expression

recognition, optical character recognition software, stroke extraction.

I. INTRODUCTION

Mathematical expressions appear frequently in engineering
and scientific documents. Since they contain valuable infor-
mation, digitizing them would maximize their usability by
enabling retrieval [1], integration to semantic web [2], and
other automated tasks. Compared with ordinary text, math-
ematical expressions can present some concepts more con-
cisely because of their two-dimensional structure. However,
such compact representations are difficult to be recognized
mechanically.

People are used to writing mathematical expressions on
paper or blackboard, so it is inconvenience to input them by
using another way. Traditional input devices like keyboards
are designed for sequence of characters, although spatial
relations between symbols can be represented by markups
such as TeX or MathML, entering mathematical expressions
by typing in a computer language is not user-friendly at all,

The associate editor coordinating the review of this manuscript and

approving it for publication was Donato Impedovo

VOLUME 8, 2020

as new users are asked to learn a new language, remem-
ber a lot of commands, and deal with miscellaneous errors.
On the other hand, entering mathematical expressions with a
graphical equation editor by choosing structural elements and
symbols from toolboxes is inefficient for frequent users.

A recognition system turns handwritten mathematical
expressions into machine manipulable syntax trees. Online
recognition enables people to take notes or solve equations by
writing on a touch-based device or dragging a mouse. On the
other hand, offline recognition enables people to digitize
existing manuscripts by scanning or record lecture notes on
blackboards by taking photos. The main difference between
two kinds of recognition is that trajectories are available to an
online recognizer, whereas only bitmap images are given to
an offline recognizer.

Online handwriting recognition systems often achieve a
much higher accuracy. For example, the top three online
systems correctly recognized 80.73%, 79.82%, and 79.15%
of the formulas in the Competitions on Recognition of
Online Handwritten Mathematical Expressions (CROHME)

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61565

https://orcid.org/0000-0002-2242-0351
https://orcid.org/0000-0002-9285-2555

IEEE Access

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

2019 [3] respectively, whereas the top three offline systems
only correctly recognized 77.15%, 71.23%, and 65.22% of
them respectively. In fact, an online recognition problem
can be converted to the corresponding offline problem by
simply rendering the strokes. In the opposite direction, if the
sequence of strokes can be recovered from a bitmap image,
an online recognizer can also be applied to do offline recog-
nition [4]. The objective of this paper is to explore the feasi-
bility of offline handwriting recognition via stroke extraction
without designing specialized online recognizers.

The main concern is that recovery of strokes is unlikely to
be perfect, so it may become a single point of failure. For-
tunately, good online recognition systems can tolerate some
input errors, since diversity of writing habits already affected
them. Furthermore, if the underlying online recognition sys-
tem has been retrained with extracted strokes, it should be
able to adapt to them [5]. In this case, accuracy of stroke
extraction needs not be critical to that of offline recognition.

The main contributions of this paper include:

1) We propose a stroke extraction algorithm for handwrit-
ten mathematical expression, which enables reduction
from offline recognition to online recognition.

2) We verify that the accuracy of the proposed system is
comparable to that of other recent offline handwritten
mathematical expression recognition systems, given a
ready-made state-of-the-art online recognizer.

3) We demonstrate that the gap in accuracy between the
proposed offline system and the underlying online sys-
tem can be narrowed significantly by retraining.

The remainder of this paper is divided into four sections.
Section II reviews methods to recognize online and offline
mathematical expressions, as well as methods to recover tra-
jectories. Section III describes the proposed stroke extraction
algorithm for mathematical expression in detail. Section IV
presents experimental results on standard datasets. Section V
concludes the paper.

Il. RELATED WORKS

A. ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION
RECOGNITION

Online handwritten mathematical expression recognition is a
long-standing problem, a lot of works have been done since
Anderson [6]. In the past decade, the problem attracted more
and more attention because of the CROHME [7], which were
held in 2011, 2012, 2013, 2014, 2016, and 2019.

Traditionally, the problem is further divided into sym-
bol recognition and structural analysis [1]. For example,
Alvaro ef al. [8] applied hidden Markov model to recognize
the symbols and parser for a predefined two-dimensional
stochastic context free grammar to analyze the structure.

In order to disambiguate symbols with structural infor-
mation and vice versa, several approaches were proposed to
integrate symbol recognition and structural analysis closely.
Yamamoto et al. [9] suggested parsing handwritten math-
ematical expression directly from strokes by using the

61566

Cocke-Younger-Kasami algorithm, so that symbol segmen-
tation, character recognition, and structural analysis could be
optimized simultaneously. Awal et al. [10] introduced another
global approach that applies a segmentation hypothesis gen-
erator to deal with delayed strokes.

Recently, with the advances in computational power, end-
to-end trainable recurrent neural networks became popular
because of its ability to learn complex relations. For example,
Zhang et al. [11] developed an encoder-decoder framework
for online handwritten mathematical expression recognition
named Track, Attend, and Parse (TAP), which employs a
guided hybrid attention mechanism.

B. OFFLINE HANDWRITTEN MATHEMATICAL EXPRESSION
RECOGNITION

On the contrary, dedicated work on offline handwritten math-
ematical expression recognition was almost blank in litera-
ture until very recently. An offline task was first added to
CROHME in 2019 [3].

In the past, the closest problem addressed was the more
constrained problem of printed mathematical expression
recognition [12]. Again, in a typical system, symbols are first
segmented and recognized, then the structure of the expres-
sion is analyzed [13]. For instance, in the state-of-the-art
system developed by Suzuki et al. [14], symbols are extracted
by connected component analysis and then recognized by a
nearest neighbor classifier, after that, structural analysis is
performed by finding a minimum spanning tree in a directed
graph representing spatial relations between symbols.

Recently, Deng et al. [15] and Zhang et al. [16], [17] devel-
oped end-to-end trainable neural encoder-decoder models to
translate image of mathematical expression into TeX code
directly. They are quite similar to models for online recogni-
tion, except that convolutional neural networks are prepended
to extract features. It should be noted that this method is
so general that it can be applied to any image-to-markup
problem, grammar of neither mathematical expression nor
TeX is required by those systems explicitly because they can
be learned from data.

C. STROKE EXTRACTION

Stroke extraction was studied for offline signature verifica-
tion [18] and East Asian character recognition [19]. A typical
stroke extractor detects candidates of sub-strokes first and
then reassembles them into strokes by resolving ambiguities.
Sub-strokes can be detected by breaking down the skele-
ton or approximating the image with geometrical primitives
such as polygonal chains.

Lee and Pan [18] designed a set of heuristic rules to
trace the skeleton. Boccignone et al. [20] tried to reconstruct
strokes by joining the pair of adjoining sub-strokes having
the smallest difference in direction, length, and width repeat-
edly. Doermann et al. [21] proposed a general framework to
integrate various temporal clues.

Jager [22] reconstructed strokes by minimizing total
change in angle between successive segments within a stroke.

VOLUME 8, 2020

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

IEEE Access

Stroke

x Z extraction
ET——

N : Online 2
i A) recognition

BN e P K Y

Io——
-~ -
|4 Preprocessing % 1 Tracing /\/ 2 Postprocessing n
Input image | — — > - — > — — — pp{Ordered strokes Formula
Binarization h Stroke order
) Direction normalization
Skeleton Strokes detection
Thinning l
7) A I) 7 7
x R %
B L]
e) -— e >— e [.
—> . >, —>
Binary image 'chm.ents and Graph Simplified Paths Directed
junctions graph strokes

FIGURE 1. Outline of the proposed method. Boxes represent intermediate results, solid line arrows show the recognition pipeline, and broken line arrows

indicate stages.

Lau et al. [23] selected another cost function taking dis-
tance between successive segments and directions of the
segments into account. Unfortunately, this kind of formu-
lations is essentially traveling salesman problem which is
NP-complete, so computing the optimum efficiently may not
be possible if there are more than a few sub-strokes.

In order to prevent explosion of combinations, Kato
and Yasuhara [24] restricted themselves to single-stroke
script subjecting to certain assumptions on junctions,
so that strokes can be extracted by traversal of graph.
Nagoya and Fujioka [25] extended the technique to multi-
stroke script under assumptions on how strokes are inter-
sected.

Nevertheless, the effectiveness of stroke extraction to
offline recognition has remained largely untested. Evalua-
tions of existing stroke extraction methods were often per-
formed visually or quantitatively with their only metrics on
small private datasets. Resulting accuracy of offline recog-
nition was seldom reported and limited to single character
recognition, where the challenge of symbol segmentation
was not addressed. Moreover, they strongly rely on specially
designed structural matching methods, which can tolerate a
variety of deformations, so they may not work well with
ordinary methods for online recognition.

Ill. OFFLINE TO ONLINE REDUCTION

A. OVERVIEW

Figure 1 outlines the proposed offline handwritten mathe-
matical expression recognition system. In order to bridge

VOLUME 8, 2020

between offline and online recognition, a stroke extrac-
tion algorithm is required to convert a bitmap image to
a sequence of strokes, so that online recognition engines
are applicable afterward. The proposed stroke extraction
method consists of three stages: preprocessing, tracing, and
postprocessing.

In the preprocessing stage, binarization and thinning are
applied to increase the signal-to-noise ratio. Adaptive bina-
rization distinguishes textual components from noisy back-
ground. Thinning reduces the amount of foreground pixels
while roughly preserving the shape of strokes.

In the tracing stage, the set of strokes is reconstructed by
finding a set of paths on a graph based representation of
skeleton, in which vertexes and edges represent junctions and
segments respectively. Ideally, each edge belongs to exactly
one path and strokes are smooth, so a greedy search does the
trick. In reality, some edges should be ignored because they
correspond to artefacts created during thinning. On the other
hand, some edges should be traversed twice because they
belong to double-trace strokes, which are sometimes found
in symbols such as “n”’. Therefore, noise reduction is applied
before the search and restoration of double-traced strokes is
performed after the search.

In the postprocessing stage, stroke direction detection and
stroke order normalization are applied to recover remaining
temporal information. Although mathematical expressions
have more complex spatial structures than ordinary text, peo-
ple usually write from top left to bottom right. Therefore,
heuristic rules often produce acceptable results.

61567

IEEE Access

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

(a) Image (b) Skeleton

FIGURE 2. Example of thinning. The binary image is transformed into the
skeleton with single pixel thickness. They are topologically equivalent to
each other.

B. PREPROCESSING

The input image is often degraded and contains details which
are not important for stroke extraction, so binarization and
thinning are applied successively to normalize it.

The input image is first converted to a grayscale image
by averaging the color channels (possibly weighted), then
it is converted to a binary image by applying Sauvola’s
method [26]. Compared with global thresholding techniques
such as Otsu’s method [27], such a local adaptive approach
addressed commonly seen degradations including uneven
illumination and random background noises. Although bina-
rization has been studied in depth, it cannot separate textual
components of the mathematical expressions from all realistic
images perfectly, so additional steps may be required by the
use cases. For example, mathematical expression localization
can be applied to remove text next to an expression, line
detection can be performed to hide grid lines, and mathemati-
cal morphology can be used to restore connectivity of strokes,
but they are out of the scope of this paper.

Skeleton of the binarized image is obtained by using a
thinning method by Wang and Zhang [28], which is a variant
of the original method by Zhang and Suen [29] but preserves
the shape of diagonal strokes better. Figure 2 compares an
image with its skeleton.

For printed document recognition, skew detection and
correction are often performed. However, they should not
be applied to a single mathematical expression because the
number of symbols may not be enough to estimate the angle
reliably. To make thing worse in the present situation, sym-
bols from a handwritten formula need not stick to a single
baseline, so expressions like “x*"** may fool skew estimators
based on line detection like Hough transformation.

C. DECOMPOSITION OF SKELETON

Graph based representation of skeleton is the key data struc-
ture of the proposed tracing procedure, the graph is con-
structed by decomposing the skeleton into segments and
junctions.

61568

W] ey

(a) Centers of these 3 x 3 windows are segment pixels

o
S Lk

(b) Centers of these 3 x 3 windows are junction pixels

FIGURE 3. Examples of classified foreground pixels. The classification is a
local operator.

T

FIGURE 4. Examples of segments and junctions. Segments are filled with
different colors and junctions are all in black.

A foreground pixel having exactly two other foreground
pixels in its 8-neighborhood where the two pixels are not
4-neighbor of each other is called a segment pixel. Other fore-
ground pixels are called junction pixels. Figure 3 illustrates
the rule.

A connected component of the set of segment pixels is
called a segment. On the other hand, a connected component
of the set of junction pixels is called a junction. The set of seg-
ments and the set of junctions can be computed by using any
standard algorithm for connected component analysis [30].
Figure 4 shows an example of decomposed skeleton.

For each segment S;, its pixels can be listed in a way such
that successive pixels are 8-neighbor of each other, more
formally,

Si=1pi1,...

where p;j is in the 8-neighborhood of p;;_1 for k =
2,...,¢4. If p;i1 is in the 8-neighborhood of p; ¢;, the seg-
ment is topologically a circle and does not touch any other
junction or segment unless ¢; = 1; otherwise, the segment is
topologically a line segment, p; 1 touches exactly one junction
and so do p; ¢,, other pixels in the segment never touch any
other segment or junction.

For the sake of consistency, a “junction” is imposed to
each looped segment to ensure that every segment has a start
pixel and an end pixel, in addition, each touches a junction.

,Pi,e,-}

VOLUME 8, 2020

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

IEEE Access

FIGURE 5. Example of stroke width estimation. Squares represent
foreground pixels and arrows represent directional runs of the solid pixel.
Estimated stroke width of the solid pixel is the length of the red arrow,
which is the shortest one among the four.

Therefore, a junction can be considered as a vertex in the
sense of graph theory, whereas a segment can be considered
as an edge connecting two (possibly the same) vertexes.
Furthermore, a path in this undirected graph corresponds to
a possible trace of ink in the input image, a connected com-
ponent in this graph corresponds to a connected component
of the skeleton. Figure 6a shows the graph coming from the
same example as in Figure 4.

D. NOISE REDUCTION

Subtle features such as salt and pepper noises in the binarized
image can affect the skeleton, salt noises result in really short
segments whereas pepper noises result in isolated junctions.
In addition, thinning may introduce distortions. Since they
can distract stroke extractor and recognition engine, they
should be discarded from the graph. Absolute threshold val-
ues are not used because they do not work in all resolutions.
Observed that stroke width is uniform in a piece of handwrit-
ing, it is chosen to be a reference length.

Stroke width transformation is an image operator that
assigns an estimated stroke width to each foreground pixel.
It was proposed for scene text detection [31], where strokes
are considered as contiguous pixels having approximately
constant stroke width locally. Using a straightforward view-
point, stroke width of a pixel can be estimated by the
minimum length of the four directional runs [32] passing
through it as shown in Figure 5. Under the above definition,
stroke width transformation can be computed in linear time
with respect to the size of binary image by caching the
numbers of successive foreground pixels found in certain
directions.

For each set of pixels, its width is estimated by the max-
imum stroke width among its pixels. Furthermore, the tip
size of the pen is estimated by the average stroke width
over all the segments. Now, the rules to reduce noises can
be stated:

1) For each edge with a length smaller than a multiple of
the average stroke width, remove it from the graph and
merge its end points.

VOLUME 8, 2020

(a) Original graph (b) Simplified graph

FIGURE 6. Example of noise reduction. The original graph contains two
edges coming from short segments, which are draw in green. One of them
is a self-loop, it is removed in the simplified graph. The other one has two
different end points, they are merged in the simplified graph.

2) For each vertex with degree 0 and a width less than a
multiple of the average stroke width, remove it from the
graph.

Figure 6b shows the simplified graph coming from the

same example as in Figure 4.

E. STROKE TRACING

Clearly, an isolated vertex in the graph represents a dot in the
mathematical expression, possibly a decimal point or part of
a character like “i”’. Therefore, a stroke containing a single
point is extracted for each vertex with degree 0. In addition,
a path in the skeleton graph indicates a candidate of stroke.
Although there may be multiple ways to combine the edges
into paths, some combinations are more likely to form strokes
of a mathematical expression written by human being. Here
are some heuristic principles:

o The total number of strokes should be minimal. Since
letting the pen to leave the paper requires additional
time, an unicursal way is preferred.

o The difference in directions between two successive
segments should be as small as possible. Since turning
suddenly requires slowing down, a fluent stroke is better
to be smooth.

Subjecting to these considerations, each edge is assigned
to exactly one path by a bottom up clustering. Initially, each
edge forms a path on its own. While there is a pair of paths
having a common end point, choose a pair such that the angle
between them is the minimum, then merge them into one path.
Repeat the procedure until no path can be merged.

It should be noted that the two principles may not always
agree. If the number of strokes is considered more important,
its minimum can be obtained by merging each path with
circuits that have a common vertex with it, just like the
algorithm that search for an Eulerian path.

F. RESTORATION OF DOUBLE-TRACED STROKES
Sometimes, a segment should be shared by more than one
strokes or appeared in a stroke multiple times due to reentry

61569

IEEE Access

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

> “)\\
"1 —-—
¢ \‘, ° Td ilf, o
| I |
) [
o X_» o ? o
0 © >

(a) Double-traced strokes (b) Simple strokes

FIGURE 7. Examples of double-traced strokes. In a commonly seen way
to write the expression “nx”, the edges between two magenta vertexes
are traversed twice. The simple tracing procedure cannot recover the
strokes correctly.

during writing as shown in Figure 7a. The tracing procedure
above would handle such cases incorrectly by producing too
many strokes as in Figure 7b.

In order to fix the double-traced strokes, a search for shared
segments is needed, so that they can be used to reconnect sep-
arated strokes. Candidates of shared segments should meet
the following criteria:

o The segment has two different end points, which are
vertexes in the graph with an odd degree. Otherwise,
the number of vertexes in the graph having an odd degree
does not decrease when it is doubled.

« Each end point of the segment is also an end point of
a path given by subsection III-E and the angle between
them is not close to 7z /2. This condition can prevent the
two strokes of the symbol “T”” from being merged.

G. POSTPROCESSING

The tracing stage does not determine all dynamic informa-
tion, so stroke direction detection and stroke order normal-
ization are performed afterward. The convention that people
write from left to right and from top to bottom is used to
resolve ambiguities.

Firstly, directions of the strokes should be detected. The
stroke tracing procedure gives rise to an ordering of points
within a stroke naturally, however, the opposite ordering may
also make sense. A simple rule is sufficient to determine the
direction of each stroke in most cases. Let the coordinates
of the first and the last point of a stroke be (Xsqrr, Ystart)
and (Xend, Yena) respectively, then the list of points should be
reversed if

2Xend + 3Vend < 2Xstart + 3Ystart -

Finally, the order that people write down the strokes should
be recovered. Although some mathematical expression recog-
nition systems are stroke order free [8], [10], others use stroke
order to prune the search space, so they are sensitive to stroke
order [33], [34]. In fact, stroke order normalization is a way
to turn a stroke order dependent recognizer into a stroke order
free one [35].

There are possibly multiple orders to write down the
same formula. For example, someone prefers to write down
the square root sign first, but the others write down the

61570

1 |
el

FIGURE 8. Example of stroke order normalization. Vertical and horizontal
broken lines separate groups generated by the recursive X-Y cut, the blue
arrow represents a precedence relation being used in the topological
sort, and the red numbers show the estimated order of strokes.

radicand first. Therefore, it is not always possible to recover
the original order, what can be done is to assign a reasonable
order. In some cases, mistakes made by the stroke extractor
can also be viewed as a kind of normalization and may in fact
enhance performance by eliminating unusual stroke order.

A hierarchical approach is applied to sort the strokes.
To begin with, strokes are grouped by recursive projection,
then the groups are sorted in a left to right and top to bottom
manner. However, recursive X-Y cut cannot determine the
order of symbols inside a square root, so strokes inside each
group are sorted by a topological sort afterward. A stroke T;
precedes another stroke 7 if one of the following conditions
holds:

o Tjis on the left of T}, where their projection to the y-axis
(but not the x-axis) intersect;

e T;is on top of T, where their projection to the x-axis
(but not the y-axis) intersect.

Further ambiguities are resolved by using the coordinates of
the top left corner of the bounding boxes. Figure 8 illustrates
how strokes are sorted.

IV. EVALUATION

A. DATASETS AND EVALUATION PROTOCOL

The proposed system was evaluated on CROHME datasets,
which are standard for mathematical expression recognition.
Table 1 summarizes the datasets. For each mathematical
expression in a dataset, list of points in each stroke is provided
together with ground truth. In addition to MathML represen-
tation of the expression, correspondence between symbols
and strokes is also provided. Since a bitmap image of mathe-
matical expression can be obtained by rendering the strokes,
the datasets can be used to evaluate offline recognition sys-
tems as well. Following the settings of task 2 (offline hand-
written formula recognition) in CROHME 2019, formulas
were rendered at resolution of 1000 x 1000 pixels by using the
script provided by the organizers. However, it should be noted
that rendered images are different from scanned or camera
captured mathematical expressions in the level of background
noises, although removing them is another research topic.

VOLUME 8, 2020

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

IEEE Access

TABLE 1. Number of expressions in CROHME datasets.

Year Training Validation Test
2014 8836 671 986
2016 8836 986 1147
2019 9993 986 1199

Aligning with the offline task in CROHME 2019 [3],
expression level metrics computed from the symbol level
label graphs of formulas were used to evaluate the proposed
system. Structure rate measures the percentage of recognized
expressions matching the ground truth if all the labels of sym-
bols are ignored. Expression rate measures the percentage
of recognized expressions matching the ground truth up to
a certain number of labeling mistakes on symbols or spatial
relations. On the other hand, stroke classification rate, symbol
segmentation rate, symbol recognition rate, and metrics based
on stroke level label graph are inapplicable because offline
recognition does not produce correspondence between sym-
bols and strokes.

B. INTEGRATION WITH A READY-MADE ONLINE
RECOGNIZER
In the first experiment, the proposed stroke extractor! was
combined with version 1.3 of MyScript Math recognizer,’
which is a state-of-the-art online handwritten mathematical
expression recognition system, to form an offline recognizer.
The online recognizer was customized with a grammar to
eliminate candidates of symbols and constructs that never
appeared in CROHME datasets. Table 2 shows the cus-
tomized grammar, where “< start >’ is the start symbol.
Table 3 shows experimental results on CROHME 2014 test
set. The first seven are online recognition systems partici-
pated in CROHME 2014 [36]. All of them except MyScript
were only trained on the official training set. The proposed
system outperformed all participated systems in CROHME
2014 except MyScript. Since MyScript Math recognizer itself
has evolved over the past few years, MyScript Interactive
Ink version 1.3, which is up-to-date as of this writing,
was evaluated in the online setting too. On the other hand,
im2markup [15], Watch, Attend, and Parse (WAP) [16],
CNN-BLSTM-LSTM [37], Paired Adversarial Learning
(PAL) [38], and Multi-Scale Attention with Dense Encoder
(MSD) [17] are offline recognition systems, the proposed
procedure achieved a better performance than them. Noted
that the proposed system used additional training data indi-
rectly because it was based on MyScript, im2markup also
relied on a large dataset of printed formulas, other compared
offline recognizers only required the official training data.

IThe proposed stroke extractor is publicly available as a free
software at https://github.com/chungkwong/mathocr-myscript ~ and
https://github.com/chungkwong/mathocr-myscript-android.

2Documents of the recognizer is available at
developer.myscript.com/docs/interactive-ink/1.3/overview/about/.

https://

VOLUME 8, 2020

TABLE 2. Customized grammar for CROHME datasets.

< term >
< operand >
< symbol2 >
< symbold >
< term >< term >
<term>
<term>
< operand > <term>
< operand ><term>
< operand >§§Z,rm;
< symbol3 >
< term >
< term >
< symbold >
< term >
< symboll >
V< term >
<tsT'7nW
< symbolb >< term >< symbol6 >
O 1|2]34 |56 |T]8]9
‘A |‘B|C°|‘E’|‘F|‘G’|‘H" | ‘" | ‘L’
M’ | N’ | ‘P’ | ‘R’ |*S" | “T" | 'V | ‘X" | Y
W |V e e f g ||

‘l’|‘m’|‘n’ ‘O’l‘p’ ‘q"‘T’I‘S’l‘t’ ‘u’

< start >
< term >

< operand >

< symboll >

3B

6@5 I L¢’ I Lﬂ? | S<’ £>!
‘cos’ | ‘tan’ | ‘lim’ | ‘log’
S|t e e |

be’|£#! sSs LZ’

PRI

< symbol2 >

)

oy

< symbol3 >
< symbold >
< symbol5 >
< symbol6 >

TABLE 3. Recognition performance on CROHME 2014 test set.

System Expression rate Structure
Exact <1 <2 rate
label label

error errors

Online recognizer

Sao Paulo 15.01 2231 2657 -
RIT, CIS 1897 2637 30.83 -
RIT, DRPL 1897 2819 3235 -
Tokyo 25.66 33.16 35.90 -
Nantes 26.06 3387 38.54 -
Politecnica de Valencia 3722 4422 47.26 -
MyScript 62.68 7231 75.15 -
MyScript 1.3 69.47 7830 81.03 82.86
Offline recognizer

Harvard, im2markup 39.96 - - -
USTC, WAP 444 58.4 62.2 -
CAS, PAL 47.06 6349 7231 -
TDTU, CNN-BLSTM-LSTM 4878 63.39 70.18 -
USTC, MSD 52.8 68.1 72.0 -
Proposed+MyScript 1.3 5822 71.60 75.15 77.38

Table 4 shows experimental results on CROHME 2016 test
set. The first five are online recognition systems partici-
pated in CROHME 2016 [39]. MyScript was trained on
about 30,000 extra handwritten expressions, Wiris included
a language model which was trained on the Wikipedia for-
mula corpus, the others only used the official training set.
As expected, MyScript had a higher accuracy than the pro-
posed system in all the metrics because the later was based
on the former. The proposed system significantly outper-
formed all the remaining participated systems in CROHME

61571

IEEE Access

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

TABLE 4. Recognition performance on CROHME 2016 test set.

System Expression rate Structure
Exact <1 <2 rate
label label

error errors

Online recognizer

Nantes 13.34 21.02 28.33 21.45
Sdo Paolo 33.39 4350 49.17 57.02
Tokyo 4394 5091 53.70 61.55
Wiris 49.61 6042 64.69 74.28
MyScript 67.65 75.59 79.86 88.14
MyScript 1.3 73.06 8230 87.10 88.58
Offline recognizer

USTC, WAP 42.0 55.1 59.3 -
TDTU, CNN-BLSTM-LSTM 45.60 59.29 65.65 -
USTC, MSD 50.1 63.8 67.4 -
Proposed+MyScript 1.3 65.65 77.68 82.56 85.00

TABLE 5. Recognition performance on CROHME 2019 test set.

System Expression rate Structure
Exact <1 <2 rate
label label

error errors

Online recognizer

TUAT 3995 5221 5654 58.22
MathType 60.13 7440 78.57 79.15
PAL-v2 62.55 7498 78.40 79.15
Samsung R&D 2 6597 77.81 81.73 82.82
MyScript 1.3 7740 8582 87.99 88.82
MyScript 79.15 86.82 89.82 90.66
Samsung R&D 1 79.82 87.82 89.15 89.32
USTC-iFLYTEK 80.73 88.99 90.74 91.49
Offline recognizer

TUAT 24.10 3553 43.12 43.70
Univ. Linz 4149 5413 58.88 60.02
SCST-USTC 62.14 75.06 78.23 78.32
PAL-v2 62.89 7498 78.40 79.32
Proposed+MyScript 1.3 6522 7848 83.07 84.90
PAL 7123 8031 82.65 83.82
USTC-iFLYTEK 77.15 86.82 88.99 89.49

2016 without access to original strokes. On the other hand,
WAP [16], CNN-BLSTM-LSTM [37], and MSD [17] are
also offline recognition systems, the proposed system outper-
formed them. Although the indirect use of additional training
data may contribute to that, good performance was obtained
with a less powerful online recognizer which used the official
data only, the details are presented in the next subsection.

The proposed system participated in CROHME 2019 [3].
Table 5 shows the final results of the competition. The
proposed system was ranked the third place in the offline
task. Noted that Samsung R&D 1, PAL, MyScript 1.3, and
MathType used additional training data, USTC-iFLYTEK
included a language model which was trained on an external
dataset.

Although the accuracy of the proposed offline recognizer
was good compared with other offline recognizers, it was still
much lower than that of the underlying online recognizer.
If the stroke extractor worked perfectly, the two should be the
same. The gap in expression rate was much larger than the

61572

gap in structure rate, the observation indicates that structural
analysis is less sensitive to errors in stroke extraction than
symbol recognition.

In order to narrow the gap, one should bring output of the
stroke extractor and expected input of the online recognizer
closer. There are two ways to achieve that. The first way
is to improve the stroke extractor, so that it can recover
written strokes exactly. The second way is to retrain the online
recognition engine, so that it can adapt to the artificial strokes.

Improving the stroke extractor seems to be the most obvi-
ous choice, but it is hard. Adding more heuristic rules would
lead to serious maintainability issues, whereas marginal ben-
efit is diminishing. Therefore, many researchers had given
up in this direction. Developing data driven stroke extrac-
tors is possible, but it would defeat the purpose. If heavy
models such as convolutional and recurrent neural networks
are applied, it is pointless to predict trajectories instead of
formulas themselves.

Retraining the online recognition engine is a realistic
choice. If the recognizer has seen artificial strokes given
by the stroke extractor during training, it should be able to
learn what they mean. By applying this technique, the sense
of stroke extracted is decoupled from the way written by
human beings, thus the stroke extractor needs not worry
too much about corner cases. Unfortunately, MyScript Math
recognizer was not trainable by user, so the next experiment
was switched to another online recognizer.

C. INTEGRATION WITH A TRAINABLE ONLINE
RECOGNIZER
In the second experiment, the proposed stroke extractor was
combined with TAP,® which s a published online handwritten
mathematical expression recognition system [11], to form
an offline recognizer. The paper introducing TAP combined
three online models, three offline models, and three language
models to get the best results, but ensemble modeling was
not used in this experiment, since the objective is to check if
a pure online model can adapt to the artificial strokes.
Evaluation was performed on the CROHME 2016 dataset,
only the official training set and validation set were used to
train and validate the models respectively. The encoder of
TAP consumes an 8-dimensional feature vector for a point
at each time step, the decoder of TAP predicts a TeX token at
each time step, the loss function involves alignment between
points and TeX tokens. When trained on written strokes, trace
points and alignment were available from the dataset directly.
When trained on artificial strokes, trace points were extracted
from rendered images and alignment were estimated with
Hausdorff distance. In both cases, TeX code for each for-
mula was converted from annotation in MathML. Since a
trained model may depend on initialization, three models
were trained on the same training set with different initial

3The original version of TAP is available at https://github.com/
JianshuZhang/TAP. Our version of programs, datasets, and pretrained mod-
els are available at https://github.com/chungkwong/mathocr-tap.

VOLUME 8, 2020

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

IEEE Access

TABLE 6. Recognition performance on CROHME 2016 test set given
different training data.

Training/validation — Test Expression rate Structure
Exact <1 <2 rate
label label

error errors

Written Written 43.68 5588 61.29 62.60
Written Extracted 23.63 38.71 47.17 51.79
Extracted Extracted 43.07 56.67 62.95 64.95

weights, then the one resulting in the highest expression
rate on the validation set was selected to be tested on the
test set.

Table 6 shows experimental results on CROHME 2016 test
set. The model which had been trained on written strokes
performed much better on written strokes than on extracted
strokes, the same phenomenon was already observed with
MyScript. However, the model which had been trained on
extracted strokes leaded to a much better offline recognizer,
its accuracy almost caught up the online recognizer. The gap
in expression rate between them was only 0.61%, noted that
the gap in expression rate between the best online system and
the best offline system participated in CROHME 2019 was
3.58%. The results verify that an online recognition sys-
tem can adapted to the artificial strokes well by retraining.
Another implication is that the essential difficulty between
online recognition and offline recognition may be smaller
than it was thought.

Although the offline recognizer built upon TAP was not
as good as the one built upon MyScript, there is room
for improvement. For example, language models, ensem-
ble models, augmented datasets, and expanded datasets
were not applied in this experiment, whereas they were
commonly used by other state-of-the-art mathematical
expression recognition systems [3] to boost the accuracy
significantly [11], [37].

D. EFFICIENCY
In the third experiment, efficiency of the proposed system was
examined on devices ranging from low-end mobile phones to
powerful GPU server. Table 7 shows details of those devices.
Table 8 shows the averaged time used to recognize
1147 rendered mathematical expressions in the test set of
CROHME 2016. Although the stroke extraction algorithm
was implemented on CPU and not optimized for speed,
it was still much faster than online recognition on all the
devices tested. A modern low-end mobile phone (Phone 2)
took about one second to recognize an image on average,
whereas a clearly outdated mobile phone (Phone 1) took
about two seconds. Although it is noticeable, the speed should
be acceptable for on-device offline handwritten mathematical
expression recognition, if users feel that online recognition is
already fast enough.

VOLUME 8, 2020

TABLE 7. Specifications of tested devices.

Device Component Specification

Phone 1 CPU Cortex-A7 4 cores @ 1.3 GHz

RAM 512MB
Phone 2 CPU Cortex-AS53 2 cores @ 2.0 GHz + 6 cores
@ 1.45 GHz
RAM 3GB
Ultrabook CPU Intel® Core™ m3-6Y30 4 cores @
0.90GHz
RAM 4GB
Desktop CPU Intel® Core™ i5-7500 4 cores @ 3.40GHz
RAM 8GB
Server CPU Intel® Xeon® Gold 6271C 2 cores @
2.60GHz
RAM 32GB
GPU NVIDIA® Tesla® V100 16GB

TABLE 8. Time used to recognize 1147 expressions in CROHME
2016 dataset.

Device Recognizer Execution time per expression (s)
Stroke Online Total
extraction recognition

Phone 1 MyScript 0.894 1.441 2335
Phone 2 MyScript 0.222 0979 1.201
Ultrabook ~ TAP 0.019 6.023 6.042
Desktop TAP 0.009 0466 0.475
WAP - - 6.839

Server TAP 0.029 0.132 0.162
WAP - - 0.364

WAP,* which is a native offline recognizer [16], was slower
than the proposed procedure on all the device tested. Like
other modern optical character recognition systems, WAP
uses a convolutional neural network which is computationally
intensive [40] to extract features, so the speed relies heavily
on the availability of powerful GPU. Since online recognition
engines are usually less resource-hogging than native offline
recognition engines, on-device online recognition is already
integrated into various note-taking applications and input
methods nowadays, whereas optical character recognition
functionality usually relies on cloud based services. There-
fore, stroke extraction provides an attractive way to improve
user experience by avoiding unpredictable network latency
and privacy issues.

E. ANALYSIS OF THE STROKE EXTRACTION METHOD

In the last experiment, the proposed stroke extraction method
was analyzed. To evaluate the necessity of the optional com-
ponents, each of them was removed from the proposed sys-
tem, resulting accuracy was compared to that of the complete
system, the decrease in expression rate measured the impor-
tance of the removed component.

Table 9 shows recognition performance of the modi-
fied systems on CROHME 2016 test set, where MyScript
Math recognizer was applied to recognize extracted strokes.
Despite the simplicity of the rule for stroke direction detec-

4WAP is available at https://github.com/JianshuZhang/WAP.

61573

IEEE Access

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

TABLE 9. Recognition performance of the modified systems on CROHME
2016 test set.

The only component removed Expression rate Structure
from the proposed system Exact <1 <2 rate
label label
error errors

Stroke direction detection 46.56 63.64 70.53 74.63
Restoration of double-traced 53.97 66.87 7193 73.76
strokes

Noise reduction 5894 7236 79.51 80.91
Stroke order normalization 5998 7350 78.38 81.34
Customized grammar 61.99 7472 79.69 82.65
- 65.65 77.68 82.56 85.00

tion, it greatly boosted the accuracy of offline recognition by
allowing a more accurate classification of symbols. Noted
that the symbol recognizer of MyScript employed both static
and dynamic features, so it could recognize some strokes even
if their directions are wrong. Restoration of double-traced
strokes was quite important because it enabled a more reliable
symbol segmentation, where broken strokes might lead to
oversegmentation. Noise reduction, stroke order normaliza-
tion, and customized grammar also contributed to the overall
accuracy.

The evaluation may inspire the development of other stroke
extraction methods. Although handcrafted rules are used in
several steps and they are probably not the best ones, experi-
mental results indicate that the steps tackled problems which
matter the accuracy of recognition. Therefore, stroke extrac-
tion methods designed for offline recognition in the future
should address those problems too, especially if retraining of
the underlying online recognizer is not allowed.

V. CONCLUSION

In this paper, a stroke extraction algorithm is proposed for
handwritten mathematical expression, so that an offline rec-
ognizer can be built upon an online one. A proof-of-concept
implementation of the proposed stroke extractor is publicly
available as a free software. Given a ready-made state-of-
the-art online recognition engine, good offline accuracy was
achieved on CROHME datasets. Given a trainable online
recognition system, an offline recognizer with the same level
of accuracy was constructed by retraining it with extracted
strokes. Noted that the underlying online recognizers are not
specially designed for extracted strokes.

The proposed approach is especially preferable for real-
time use cases on devices with limited resources. Since online
recognizers generally occupy less memory and run faster
than native offline recognizers, stroke extraction provides an
efficient way to implement on-device offline recognition on
mobile phones and tablets.

Stroke extraction is a general methodology to offline
handwriting recognition. Besides handwritten mathematical
expression, the same approach can be applied to other types of
handwriting such as chemical expression, musical notation,
and diagram in principle. Examining if specialized stroke

61574

extractors are needed for different types of handwriting is a
future work.

Developing independent recognition systems for online
and offline handwriting may no longer be necessary, since
stroke extraction allows advances on online recognition to be
propagated immediately to the offline case. Instead, online
recognition system makers can enter the offline market with-
out abandoning existing investments. Therefore, the potential
of reduction from offline recognition to online recognition is
justified.

REFERENCES

[1] R. Zanibbi and D. Blostein, “Recognition and retrieval of mathematical
expressions,” Int. J. Document Anal. Recognit., vol. 15, no. 4, pp. 331-357,
Dec. 2012.

[2] M. Marchiori, “The mathematical semantic Web,” in Proc. Int. Conf.
Math. Knowl. Manage., Bertinoro, Italy, Feb. 2003, pp. 216-224.

[3] M. Mahdavi, R. Zanibbi, H. Moucheére, C. Viard-Gaudin, and U. Garain,
“ICDAR 2019 CROHME + TFD: Competition on recognition of hand-
written mathematical expressions and typeset formula detection,” in Proc.
Int. Conf. Document Anal. Recognit. (ICDAR), Sydney, NSW, Australia:
IEEE, Sep. 2019, pp. 1533-1538.

[4] H.Nishida, “An approach to integration of off-line and on-line recognition
of handwriting,” Pattern Recognit. Lett., vol. 16, no. 11, pp. 1213-1219,
Nov. 1995.

[5] P. M. Lallican, C. Viard-Gaudin, and S. Knerr, “From off-line to
on-line handwriting recognition,” in Proc. 7th Int. Workshop Fron-
tiers Handwriting Recognit., L. Schomaker and L. Vuurpijl, Eds. Ams-
terdam, The Netherlands: International Unipen Foundation, Sep. 2000,
pp. 303-312.

[6] R. H. Anderson, ‘““Syntax-directed recognition of hand-printed two-
dimensional mathematics,” in Proc. Interact. Symp. Syst. Experim. Appl.
Math., 1968, pp. 436-459.

[71 H. Mouchere, R. Zanibbi, U. Garain, and C. Viard-Gaudin, “Advancing
the state of the art for handwritten math recognition: The CROHME
competitions, 2011-2014,” Int. J. Document Anal. Recognit., vol. 19, no. 2,
pp. 173-189, Jun. 2016.

[8] E Alvaro, J.-A. Sanchez, and J.-M. Benedi, “Recognition of on-line
handwritten mathematical expressions using 2D stochastic context-free
grammars and hidden Markov models,” Pattern Recognit. Lett., vol. 35,
pp. 58-67, Jan. 2014.

[9] R. Yamamoto, S. Sako, T. Nishimoto, and S. Sagayama, “On-line recog-
nition of handwritten mathematical expressions based on stroke-based
stochastic context-free grammar,” in Proc. 10th Int. Workshop Fron-
tiers Handwriting Recognit., G. Lorette, Ed. La Baule, France: Suvisoft,
Oct. 2006, pp. 249-254.

[10] A.-M. Awal, H. Mouchere, and C. Viard-Gaudin, “A global learning
approach for an online handwritten mathematical expression recognition
system,” Pattern Recognit. Lett., vol. 35, pp. 68-77, Jan. 2014.

[11] J.Zhang,]J. Du, and L. Dai, “Track, attend, and parse (TAP): An end-to-end
framework for online handwritten mathematical expression recognition,”
IEEE Trans. Multimedia, vol. 21, no. 1, pp. 221-233, Jan. 2019.

[12] U. Garain and B. B. Chaudhuri, OCR Printed Math. Expressions. London,
U.K.: Springer, 2007, pp. 235-259.

[13] K.-F. Chan and D.-Y. Yeung, ‘“Mathematical expression recognition:
A survey,” Int. J. Document Anal. Recognit., vol. 3, no. 1, pp.3-15,
Aug. 2000.

[14] M. Suzuki, F. Tamari, R. Fukuda, S. Uchida, and T. Kanahori, “INFTY:
An integrated ocr system for mathematical documents,” in Proc. Acm
Symp. Document Eng., C. Roisin and E. V. Munson, Eds. Grenoble, France:
ACM, Nov. 2003, pp. 95-104.

[15] Y. Deng, A. Kanervisto, J. Ling, and A. M. Rush, “Image-to-markup
generation with coarse-to-fine attention,” in Proc. 34th Int. Conf. Mach.
Learn. D. Precup and Y. W. Teh, Eds. Sydney, NSW, Australia: PMLR,
Aug. 2017, pp. 980-989.

[16] J. Zhang, J. Du, S. Zhang, D. Liu, Y. Hu, J. Hu, S. Wei, and L. Dai,
“Watch, attend and parse: An end-to-end neural network based approach
to handwritten mathematical expression recognition,” Pattern Recognit.,
vol. 71, pp. 196-206, Nov. 2017.

VOLUME 8, 2020

C. Chan: Stroke Extraction for Offline Handwritten Mathematical Expression Recognition

IEEE Access

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

[32]

[33]

J. Zhang, J. Du, and L. Dai, “Multi-scale attention with dense encoder for
handwritten mathematical expression recognition,” in Proc. 24th Int. Conf.
Pattern Recognit. (ICPR), D. Lopresti and R. He, Eds. Beijing, China:
IEEE, Aug. 2018, pp. 2245-2250.

S. Lee and J. C. Pan, “Offline tracing and representation of signatures,”
IEEE Trans. Syst., Man, Cybern., vol. 22, no. 4, pp. 755-771, Jul. 1992.
C.-L. Liu, I.-J. Kim, and J. H. Kim, “Model-based stroke extraction and
matching for handwritten Chinese character recognition,” Pattern Recog-
nit., vol. 34, no. 12, pp. 2339-2352, Dec. 2001.

G. Boccignone, A. Chianese, L. P. Cordella, and A. Marcelli, “‘Recovering
dynamic information from static handwriting,” Pattern Recognit., vol. 26,
no. 3, pp. 409-418, Mar. 1993.

D. S. Doermann and A. Rosenfeld, “Recovery of temporal information
from static images of handwriting,” Int. J. Comput. Vis., vol. 15, nos. 1-2,
pp. 143-164, Jun. 1995.

S. Jager, “Recovering writing traces in off-line handwriting recognition:
Using a global optimization technique,” in Proc. 13th Int. Conf. Pattern
Recognit., M. E. Kavanaugh and B. Werner, Eds. Vienna, Austria: IEEE,
Aug. 1996, pp. 150-154.

K. K. Lau, P. C. Yuen, and Y. Y. Tang, “Stroke extraction and stroke
sequence estimation on signatures,” in Proc. Object Recognit. Interact.
Service Robots, R. Kasturi, D. Laurendeau, and C. Suen, Eds. Quebec City,
QC, Canada: IEEE, Aug. 2002, pp. 119-122.

Y. Kato and M. Yasuhara, ‘“Recovery of drawing order from single-stroke
handwriting images,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 22,
no. 9, pp. 938-949, Sep. 2000.

T. Nagoya and H. Fujioka, “Recovering dynamic stroke information of
multi-stroke handwritten characters with complex patterns,” in Proc. Int.
Conf. Frontiers Handwriting Recognit., J. E. Guerrero, Ed. Bari, Italy:
IEEE, Sep. 2012, pp. 722-727.

J. Sauvola and M. Pietikidinen, “Adaptive document image binarization,”
Pattern Recognit., vol. 33, no. 2, pp. 225-236, Feb. 2000.

N. Otsu, “A threshold selection method from gray-level histograms,”
IEEE Trans. Syst, Man, Cybern., vol. SMC-9, no. 1, pp.62-66,
Jan. 1979.

P. S. P. Wang and Y. Y. Zhang, “A fast and flexible thinning algorithm,”
IEEE Trans. Comput., vol. 38, no. 5, pp. 741-745, May 1989.

T. Y. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns,” Commun. ACM, vol. 27, no. 3, pp. 236-239, Mar. 1984.

L. He, X. Ren, Q. Gao, X. Zhao, B. Yao, and Y. Chao, “The connected-
component labeling problem: A review of state-of-the-art algorithms,”
Pattern Recognit., vol. 70, pp. 25-43, Oct. 2017.

B. Epshtein, E. Ofek, and Y. Wexler, “Detecting text in natural scenes
with stroke width transform,” in Proc. IEEE Comput. Soc. Conf. Com-
put. Vis. Pattern Recognit. San Francisco, CA, USA: IEEE, Jun. 2010,
pp. 2963-2970.

K.-C. Fan and W.-H. Wu, “A run-length-coding-based approach to stroke
extraction of Chinese characters,” Pattern Recognit., vol. 33, no. 11,
pp. 1881-1895, Nov. 2000.

F. Simistira, V. Katsouros, and G. Carayannis, ‘“Recognition of online
handwritten mathematical formulas using probabilistic SVMs and stochas-
tic context free grammars,” Pattern Recognit. Lett., vol. 53, pp. 85-92,
Feb. 2015.

VOLUME 8, 2020

(34]

(35]

(36]

(371

(38]

(39]

(40]

A.D. Le and M. Nakagawa, ““A system for recognizing online handwritten
mathematical expressions by using improved structural analysis,” Int. J.
Document Anal. Recognit., vol. 19, no. 4, pp. 305-319, Dec. 2016.

A.D. Le, H. D. Nguyen, B. Indurkhya, and M. Nakagawa, ‘“Stroke order
normalization for improving recognition of online handwritten mathe-
matical expressions,” Int. J. Document Anal. Recognit., vol. 22, no. 1,
pp- 29-39, Mar. 2019.

H. Mouchere, C. Viard-Gaudin, R. Zanibbi, and U. Garain, “ICFHR 2014
competition on recognition of on-line handwritten mathematical expres-
sions (CROHME 2014),” in Proc. 14th Int. Conf. Frontiers Handwrit-
ing Recognit., J. E. Guerrero, Ed. Heraklion, Greece: IEEE, Sep. 2014,
pp. 791-796.

A.D. Le, B. Indurkhya, and M. Nakagawa, ‘‘Pattern generation strategies
for improving recognition of handwritten mathematical expressions,” Pat-
tern Recognit. Lett., vol. 128, pp. 255-262, Dec. 2019.

J.-W. Wu, E Yin, Y.-M. Zhang, X.-Y. Zhang, and C.-L. Liu, “Image-
to-markup generation via paired adversarial learning,” in Proc. Joint
Eur. Conf. Mach. Learn. Knowl. Discovery Databases, M. Berlingerio,
F. Bonchi, T. Girtner, N. Hurley, and G. Ifrim, Eds. Dublin, Ireland:
Springer, Sep. 2018, pp. 18-34.

H. Mouchere, C. Viard-Gaudin, R. Zanibbi, and U. Garain, “ICFHR2016
CROHME: Competition on recognition of online handwritten mathemati-
cal expressions,” in Proc. 15th Int. Conf. Frontiers Handwriting Recog-
nit. (ICFHR), J. E. Guerrero, Ed. Shenzhen, China: IEEE, Oct. 2016,
pp. 607-612.

D. Zhelezniakov, V. Zaytsev, and O. Radyvonenko, “Acceleration of online
recognition of 2D sequences using deep bidirectional LSTM and dynamic
programming,” in Proc. 15th Int. Work-Conf. Artif. Neural Netw., 1. Rojas,
G. Joya, and A. Catala, Eds. Gran Canaria, Spain: Springer, Jun. 2019,
pp. 438-449.

CHUNGKWONG CHAN was born in Hong Kong,
in 1992. He received the B.S. degree in mathe-
matics and applied mathematics from Sun Yat-Sen
University, Guangzhou, China, in 2015, where he
is currently pursuing the Ph.D. degree in math-
ematics. His current research interests include
mathematical expression recognition, information
retrieval, and natural language processing.

61575

	INTRODUCTION
	RELATED WORKS
	ONLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION
	OFFLINE HANDWRITTEN MATHEMATICAL EXPRESSION RECOGNITION
	STROKE EXTRACTION

	OFFLINE TO ONLINE REDUCTION
	OVERVIEW
	PREPROCESSING
	DECOMPOSITION OF SKELETON
	NOISE REDUCTION
	STROKE TRACING
	RESTORATION OF DOUBLE-TRACED STROKES
	POSTPROCESSING

	EVALUATION
	DATASETS AND EVALUATION PROTOCOL
	INTEGRATION WITH A READY-MADE ONLINE RECOGNIZER
	INTEGRATION WITH A TRAINABLE ONLINE RECOGNIZER
	EFFICIENCY
	ANALYSIS OF THE STROKE EXTRACTION METHOD

	CONCLUSION
	REFERENCES
	Biographies
	CHUNGKWONG CHAN

