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ABSTRACT Virtual machines (VMs) have become the predominant paradigm for deploying applications,
and flash-based caches are widely deployed for VMs to improve their performance. However, due to the
semantics of journaling in the VMs’ file system are transparent to flash caches, traditional flash caching
with journaling induces inefficient logging I/O traffic to the shared storage server and duplicated caching
in flash, which not only underutilizes flash caches but also aggravates their wearout. This paper presents
JCache, a journaling-aware flash caching solution to address these problems. First, JCache proposes the
virtual journal device design to receive and deliver the journaling semantics in the VMs to the cache manager
so as to optimize the VM’s journaling. Second, JCache proposes a cache-only logging mechanism, which
transparently uses the persistent flash caches as the journal area and does cache-only logging to safely
eliminate the logging I/O traffic to the shared storage server. Third, JCache proposes the logical caching
mechanism, which eliminates the duplicated flash caching induced by logging I/Os and in-place updates to
mitigate the wearout of flash caches. Evaluations show that JCache improves the application performance by
up to 11.4× and reduces the flash cache writes by up to 42% compared to traditional flash caching solutions.

INDEX TERMS Cloud computing, virtual machines, journaling file system, flash caching, caching with
journaling.

I. INTRODUCTION
Cloud computing has quickly become the predominant
paradigm inmodern data centers, and virtualmachines (VMs)
are widely used as the basis for application deployment.
To improve resource utilization and to reduce operation costs,
more VMs are consolidated onto the same hosts to run simul-
taneously. As the VMs’ consolidation level continues to grow,
the contention for their shared storage server is more inten-
sive, which becomes a serious bottleneck for performance
[3], [21], [27]. To accelerate the VMs’ storage performance,
flash-based SSDs or non-volatile memory (NVM) are com-
monly deployed as local caches for the VMs [4], [10], [13],
[17], [20]. By caching the VMs’ data in flash, the VMs can
experience low-latency flash cache access instead of high-
latency networked storage access.

Journaling is an important technique widely used in mod-
ern file systems (e.g., EXT4 [18], NTFS [6], and XFS [29]),
including the file systems running in the VMs. By logging
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the file system updates (e.g., dirty metadata or data) to a
journal area (i.e., logging I/Os) before committing them
to their original location in the main file system structure
(i.e., committing I/Os or in-place updates), journaling guar-
antees the file system’s consistency and recoverability in
case of system failures [23]. However, journaling introduces
duplicated writes and more frequent storage access, i.e., the
aforementioned logging I/Os to the journal area beyond the
in-place updates, which usually aggravates the contention of
the shared storage server.

While deploying flash caching for VMs that mostly use
journaling file systems, we observe a three-fold challenge to
fully exert the high performance and persistence properties
of flash caches. First, the cache manager that manages the
shared flash caches for VMs is usually deployed outside of the
VMs for simplicity and flexibility (e.g., in the hypervisor [3],
[4], [8], [13], [20]), such that the semantics of journaling in
the VMs’ file system are transparent to flash caching, which
makes it difficult to optimize the VM’s journaling in the
caching layer. Second, the logging I/Os are just considered as
regular I/O requests by the cache manager, which then will
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write these I/O requests to the VMs’ virtual disk backend
stored in the shared storage server and cache them in flash
as well. This traditional procedure in fact underutilizes the
persistence property of flash caches, which provides a good
opportunity to optimize this I/O flow. Third, although the
logging I/Os and the corresponding in-place updates contain
much identical content, the cache manager will cache both of
them in flash because they are performed on different blocks
in the VMs’ virtual disk backend (i.e., they are completely
different I/O requests from the point of view of the cache
manager), inducing massive duplicated caching. In summary,
traditional flash caching solutions for VMs are inefficient
because of the above challenges induced by the journaling
mechanism of the file system in the VMs.

This paper presents JCache to address the aforementioned
challenges to managing flash-based caches. First, we propose
a virtual journal device design to be aware of the journaling
mechanism of the VMs’ file system, and to be able to dis-
tinguish I/O requests to the journal area and to the main file
system structure from outside the VMs, which enables the
cross-layer optimizations. Second, we propose a cache-only
logging mechanism, which transparently uses the persistent
flash caches as the objective journal area to store the logging
I/Os instead of using the original one in the virtual disk back-
end, and thus safely eliminates writing the logging I/Os to the
shared storage server. Third, we propose a logical caching
mechanism, which semantically eliminates the duplicated
caching for the logging I/Os and the corresponding in-place
updates and thus effectively mitigates the wearout of flash
caches.

To the best of our knowledge, JCache is the first to use
the journaling semantics of the VM’s file system to improve
the flash caching efficiency. We have implemented a JCache
prototype and evaluated it using various Filebench [19] work-
loads. The results show that for typical application workloads
(i.e., Fileserver, OLTP, and Varmail), by eliminating the log-
ging I/O traffic to the shared storage server and mitigating the
duplicated flash caching, JCache improves the applications’
throughput by up to 11.4× and reduces the amount of flash
cache writes by up to 42%. By co-designing flash caching
with the journaling semantics of theVMs’ file system, JCache
not only fully utilizes the flash caches but also extends the
lifetime of the flash device.

The rest of the paper is organized as follows: Section II
presents the background and motivations of JCache,
Section III describes the design of JCache, Section IV
describes the implementation, Section V presents the eval-
uation of JCache, Section VI examines the related work, and
Section VII concludes the paper.

II. BACKGROUND AND MOTIVATIONS
A. JOURNALING FILE SYSTEM
Journaling file systems, such as EXT3/EXT4 [18], [30],
NTFS [6], and XFS [29], are widely used as local file systems
in the VMs in cloud computing environments. A typical

FIGURE 1. Flash caching for VMs.

journaling file system reserves a special journal area (e.g.,
a file in the file system) to persistently log the file sys-
tem updates (e.g., dirty metadata or data) before writing the
updates to their original location in the complex file system
structure. By forcing the logging I/Os before the in-place
updates, the journaling technique can efficiently recover the
file system to a consistent state through scanning the journal
and redoing any incomplete committed updates after system
failures.

There are typically three journaling modes, i.e., writeback,
ordered, and journal mode. (1) In writeback mode, only
file system metadata updates are logged to the journal, and
data updates are written directly to their original location.
This mode provides guarantees to metadata consistency, but
does not guarantee data consistency. (2) In ordered mode,
again only metadata updates are logged, but these metadata
updates cannot be persisted to the journal until corresponding
data updates have been written to their original location.
This mode provides strong consistency guarantees for both
metadata and data. (3) In journal mode, both metadata and
data updates are logged, and it provides the same consistency
guarantees as ordered mode.

Although the journaling mechanism has different journal-
ing modes to provide different levels of consistency guaran-
tees, all need to write metadata or data updates to the journal
in addition to their in-place updates. In writeback and ordered
modes, only metadata updates are written twice (i.e., once
to the journal, and then to their original location); in journal
mode, data updates are written twice as well as metadata
updates.

B. FLASH CACHING WITH JOURNALING
Flash-based SSDs are being increasingly deployed in cloud
computing environments as shared flash caches for concur-
rently running VMs to accelerate their storage performance
[1], [4], [8], [10], [12], [13], [15], [17], [20], [21], [24].
Due to the easy control for the VMs and sharing the flash
caches, managing flash caches outside of the VMs (e.g.,
in the hypervisor) is a commonplace, as discussed in [4], [8].
As illustrated in Figure 1, after deploying flash caching for
VMs, the cache manager receives all the I/O requests issued
from the VMs, sends them to the virtual disk backend when
necessary, and caches them with various replacement poli-
cies. Take the commonly used write-through caching policy
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FIGURE 2. Traditional flash caching with journaling presented.

as an example. When the cache manager receives an I/O
request from one VM, if it is a read, the cache manager will
read the data from either flash caches (if cached) or the virtual
disk backend (if not cached) and caches the data in flash in
the latter case; if it is a write, the cache manager will write the
data to both flash caches and the virtual disk backend before
returning an acknowledgment to the VM.

Here we revisit the caching I/O flow of traditional flash
caching while considering the journaling mechanism in the
VMs, as illustrated in Figure 2.

Semantically speaking, the I/O requests sent by the VMs
regarding the journaling mechanism consist of two types:
(1) logging I/Os, which are written to the journal blocks in the
journal area, and (2) in-place updates, which are written to the
original blocks in the main file system structure. According
to the principle of the journaling mechanism, the logging
I/O and in-place update induced by the same file system
modification are different I/O requests, but they have the
same content. However, after these I/O requests are sent out of
the VMs, such journaling semantics of the VM’s file system
have been lost because of the interleaving complex I/O stacks.
What remains are only the I/O requests’ block offset and I/O
size. For example, when a block B in the VM’s file system
needs to be updated, the VMfirst logs the updates to a journal
block J in the journal area and then updates the original block
B in a later time. The underlying cache manager will receive
two I/O requests, one to update block J and one to update
block B. The cache manager does not know that block J
is a journal block and that block J and B contain the same
content, so that it will process and cache both blocks just as
regular different block I/O requests. However, the missing of
the journaling semantics of the VM’s file system to the cache
manager leads to a two-fold caching challenge.

First, the cache manager processes unnecessary logging
I/Os to the virtual disk backend. When a logging I/O is issued
from the VM, the cache manager receives it, caches it in
flash, and writes it to the virtual disk backend in the write-
through caching policy. However, this traditional caching
procedure does not fully utilize the persistence property of
flash caches. As illustrated earlier, the adoption of journal
area is that it provides another persistent location to store the
file system updates other than do in-place updates directly.
The persistent flash caches can also play as such a role,

which is not taken into account by traditional flash caching
solutions. In the write-back caching policy, the logging I/Os
can be acknowledged to the VM once they are written to flash
cache, however, they can be evicted fromflash cache later and
thus need to be written to the virtual disk backend, inducing
unnecessary logging I/Os to the virtual disk backend as well.

Second, the cache manager handles duplicated caching for
file system updates that induce both logging I/Os and in-
place updates. When an update needs to be written to both the
journal area and its original location (e.g., metadata updates
in all the journaling modes, and also data updates in journal
mode), it induces logging I/O request first and then in-place
update I/O request. From the point of view of the cache
manager, they are different I/O requests to different blocks in
the virtual disk backend, and the cache manager caches both
of them to flash without knowing that they actually contain
identical content, inducing duplicated caching for the same
file system updates in both the write-through and write-back
caching policies. Although it is possible to employ cache
deduplication [7], [15], [34], it incurs unnecessary overhead
for the additional management and computation.

Although flash caches are widely deployed for VMs that
mostly run journaling file systems, the aforementioned chal-
lenges of flash caching with journaling have tremendous
impact on the flash caching efficiency in terms of cache
performance and endurance. They are important and unex-
plored problems, which are addressed by this paper’s solu-
tion, JCache.

III. DESIGN
We present JCache, a journaling-aware flash caching solu-
tion. In this section, we first discuss the architecture of
JCache, which adopts a virtual journal device design to
receive and deliver the journaling semantics of the VMs’ file
system to the cachemanager.We then describe the cache-only
logging mechanism, which transparently uses the persistent
flash caches as the objective journal area to safely eliminate
the logging I/O traffic to the shared storage server. Finally,
we present the logical caching mechanism, which semanti-
cally deduplicates the redundant flash caching between log-
ging I/Os and in-place updates to improve the lifetime of flash
caches.

A. JOURNALING-AWARE CACHING ARCHITECTURE
Figure 3 shows the detailed architecture of JCache. It con-
sists of three modules: the Virtual Journal Device module
to be aware of the journaling semantics of the VMs’ file
system; the Cache-only Logging module to receive all (and
only) the I/O requests to the journal area delivered by the
Virtual Journal Device module and to do cache-only logging
to flash (Section III-B); and the Logical Caching module to
logically cache in-place updates, which means caching in-
place updates in flash only if they have not been logged to
flash by the Cache-only Logging module (Section III-C).

To solve the problems of inefficient flash caching with
journaling without sacrificing the caching flexibility, the
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FIGURE 3. Architecture of JCache.

journaling semantics of the VMs’ file system must be effi-
ciently delivered to the cache manager. As discussed ear-
lier, after one I/O request being issued outside of the VMs,
the complex interleaving I/O stacks (e.g., the VM’s kernel
I/O stack) has filtered most semantic information, and only
the request’s block offset and I/O size remain.

We propose to create a virtual journal device for each
VM, and it appears as a regular storage device in the guest
VM. The guest operating system (OS) can use this device as
its external journal device for the file system. Because the
backend of the virtual journal device is managed by JCache,
so that when the guest OS issues the logging I/O requests to
this device, JCache is able to receive all the logging I/Os and
knows clearly that these I/O requests are sent to the journal
area by this specific VM. By checking the beginning bytes
of each logging I/O block, JCache can easily identify if the
block is a descriptor block or commit block. And by analyzing
the descriptor block, JCache is able to identify the logged
blocks’ original location (i.e., block offset) in the main file
system structure. Note that the logged blocks can be the file
system’s metadata blocks or data blocks, which depends on
the journaling mode used by the file system, but JCache can
do the following optimizations of cache-only logging and
logical caching for both metadata and data updates. Besides,
all the other I/O requests that JCache receives not through
the virtual journal device will be in-place I/O requests to the
VMs’ file system.

B. CACHE-ONLY LOGGING
As introduced in Section III-A, JCache can distinguish all the
logging I/Os from in-place updates through the virtual journal
device. In traditional caching I/O flow, the logging I/Os sent
to the cache manager will be cached in flash and also written
to the journal area in the virtual disk backend.

For the journaling mechanism, its essence is that when
the file system is updated, journaling stores the updates to
a persistent location before doing in-place updates. If we
revisit the existence of flash caches, we can observe that when
the logging I/Os are cached in flash, the file system updates
are already persistently stored because of the persistence

property of the flash device, regardless of whether the logging
I/Os have been written to the virtual disk backend or not.

Based on the above observation, we propose a cache-
only logging mechanism. This mechanism means that, when
JCache receives a logging I/O request, it only caches the
logging I/O in flash, and it will not write the logging I/O
to the virtual disk backend in any case. The essence of this
mechanism is that JCache uses the persistent flash caches as
the objective journal area to store the logging I/Os, instead
of using the original journal area in the virtual disk backend.
Note that the caching I/O flow changes have no impact on
how the guest OS uses journaling in the VM, and how JCache
manages the logging I/Os is also transparent to the guest
OS. Because the journal area is originally designed to be a
small circular buffer, the large flash cache space can easily
handle such space requirements. Besides, if in rare cases flash
caches cannot provide enough space for the required journal
area, JCache can simply reissues the logging I/O requests to
the virtual disk backend, which will become the traditional
caching I/O flow.

By using cache-only logging to persist the logging I/Os
to only flash caches, JCache provides efficient flash caching
for the journaling mechanism of the VMs’ file system, and
it can safely eliminate all the I/O traffic to the virtual disk
backend used for logging purpose. It not only improves the
cache performance but also mitigates the VMs’ contention
for the shared storage server.

C. LOGICAL CACHING
As discussed in Section II-B, in traditional caching I/O flow,
when the cache manager receives logging I/O requests and
in-place update I/O requests induced by the same file system
updates, it caches both of them in flash since they are different
I/O requests that write different blocks in the virtual disk
backend. However, if we consider the journaling semantics,
the same updates are actually written for twice, and also
cached for twice in flash.

Based on the above observation, we propose the logical
caching mechanism. The mechanism refers to that after one
modified file system block has been logged (i.e., cached) into
the cache-based journal area in flash by processing the log-
ging I/O request, JCache will do a logical caching operation
for its latter in-place update I/O request. It means that JCache
only logically maps the original block to the cache block
in flash that is already mapped to the corresponding journal
block without really writing the same content again to flash
cache. For the in-place update I/O request, JCache does not
cache the same content again to flash, but still issues it to
the virtual disk backend, i.e., write the modified block to its
original location in the virtual disk backend.

As shown in Figure 4, say the guest OS needs to update
block B. To ensure file system consistency, the guest OS will
first log the updated content of block B to a journal block
(say block J) in the journal area (in addition to writing the
descriptor block and commit block), and then does in-place
update for block B. So that JCache will first receive a logging
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FIGURE 4. Logical caching for in-place updates.

I/O request to write block J, and then receive an in-place
update I/O request to write block B. And the two I/O requests
to block J and block B are writing the same content (i.e.,
block B’s updated content) according to the principle of the
journaling mechanism.

Upon receiving the logging I/O request to write block J,
JCache caches block J to a cache block (say block C) in flash,
and then cache block C is mapped to block J. JCache will
not issue this logging I/O request to the virtual disk backend
according to the cache-only logging mechanism. JCache then
receives the in-place update I/O request to write block B
in the virtual disk backend. With the journaling semantic
information delivered to JCache, JCache knows that block J
is the journal block where block B is logged to and they have
the same content, and that block J has already been cached
in flash. Then JCache does a logical caching operation for
block B, i.e., it maps block B to block J’s cache block C as
its own cache block as well and does not really write block B
into flash. Now cache block C is mapped to both block J and
block B. Then JCache issues an in-place update I/O request
to write block B to the virtual disk backend.

For the above procedure, two things need to be noted.
First, JCache recognizes that block J is the journal block
where block B is logged to by reading the descriptor block
within the journal transaction that contains block J, because
the descriptor block stores the offset of block B for block J.
Second, since block J is the journal for block B, as mentioned
earlier, they will always have the same content, which is the
working basis of the journaling mechanism. Even so, JCache
still calculates a checksum value for both block J and block B,
and compares their checksum values before doing logical
caching for block B to make additional verification that they
indeed have the same content.

For the update or replacement regarding the cache blocks
that map to more than one block (e.g., the cache block C
in flash which maps to both block J and block B), they are
different from traditional caching I/O flows as follows.

When the guest OS needs to update block B again, JCache
cannot update its mapped cache block C directly. Before
issuing the in-place update I/O request for block B, the guest
OS will again issue a logging I/O request to log the new
content of block B to the journal area first, which is most

likely not block J but a different journal block (say block J1).
Then on the new logging I/O request to write block J1,
JCache caches block J1 to a newly allocated cache block
(say block C1) in flash, and unmaps block B from cache
block C, which then will be mapped to only block J.
After JCache receives the new in-place update I/O request
for block B, it again does logical caching for block B to map
block B to cache block C1 without really writing the new
block B in flash. If by coincidence block J and block J1 are the
same journal block, then JCache can still use cache block C
and directly update it instead of allocating a new cache
block C1.

When the guest OS needs to journal another updated
block A to the journal offset of block J, JCache will check
if cache block C is still mapped to block B. If so, JCache
will unmap block J from cache block C, which then will be
mapped to only block B, and allocate another cache block
to cache the new journal block J which contains the content
of block A. If not, JCache can directly update cache block C.
Then JCache will do logical caching for block A accordingly.

When block B is selected to be evicted out of cache, JCache
will check if cache block C is still mapped to block J. If not,
JCache can evict block B from flash cache and use cache
block C to cache new blocks. If so, JCache typically does
not evict journal blocks because in the cache-only logging
mechanism, the journal blocks are stored only in flash caches
and they do not occupy much space, so that JCache will not
evict block B but look for other available blocks to evict.
If the flash cache space is even too small for the circularly
used journal area, then JCache just uses the journal area in
the virtual disk backend as discussed earlier.

Note that the guest OS manages its journaling mechanism
without any changes in the VM, and the above caching I/O
flows are only operated by JCache and they are transparent to
the guest OS.

D. RECOVERY
In this section, we discuss how JCache recovers the file
system in the VMs to a consistent state in case of guest
OS or host failures. Although there are other failure recovery
issues related to flash caching as introduced in [8], [12], [24],
they are out of the scope of this paper, and here we mainly
concentrate on the journaling part. The general recovery pro-
cedure for the file system in the guest OS does not need any
changes, and JCache can correctly process all the journal I/O
requests sent by the VMs.

In case of failures of either guest OS or host, the blocks
cached in flash have been persistently stored and they can
be recovered. For the VMs’ journal blocks, although they are
not written to the virtual disk backend in the optimization of
cache-only logging, they have been stored in flash cache and
can be recovered and accessed as well, so that JCache does
not relax the caching system’s reliability. The guest OS can
perform regular recovery procedure to read its journal, and
JCache will handle all the journal I/O requests correctly to
the cache-based journal area, so as to redo all the incomplete
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committed updates and recover the VMs’ file system to a
consistent state. If the VM is migrated or restarted in a
different host, JCache can forward all the journal I/O requests
to flash caches of the host where the VM lastly run like the
mechanism proposed in [1]. If the flash device encounters
destructive failures that cannot be recovered, to provide better
reliability, JCache can employ the peer-replication caching
technique as introduced in [3] to solve such problems, which
has been demonstrated to be effective.

IV. IMPLEMENTATION
We implemented a JCache prototype based on the QEMU [2]
emulator with KVM [11] enabled.

We modified the VM initialization procedure of QEMU to
create a virtual journal device for the VM, and the virtual jour-
nal device is not backed by any file or volume but completely
managed by JCache. The virtual journal device appears as a
regular block device in the guest OS. The guest OS can format
the virtual journal device as an external journal device for its
file system, so that JCache can receives all the journal I/O
requests through the virtual journal device.

Flash cache is managed as fixed-size blocks, which is 4KB
by default, and LRU is the default replacement policy. The
whole flash space is split into two regions: cache header and
data area. The cache header consists of the superblock and
the address mapping information. The latter is used not only
for caching the file system metadata and data, but also as
the cache-based journal area to cache the journal blocks in
the VMs’ file system according to the cache-only logging
mechanism.

V. EVALUATION
A. EXPERIMENTAL SETUP
The evaluation environment includes two nodes, one as
the VMs’ backend storage server and the other as the
client to run VMs. Each node has two eight-core 2.4GHz
Xeon E5-2630 CPUs and 64GB of RAM. The host runs
Ubuntu 14.04, and the VM runs CentOS 7. Each VM is
configured with 1 vCPU, 2GB RAM, and two virtual disks:
one is the guest OS and the other is a 1TB virtual disk,
which is formatted as an EXT4 file system in the VM to
conduct experiments. The 1TB virtual disk is stored in an
NFSv4 datastore, backed by a 1TB 7.2K RPM hard disk in
the storage server and connected via a 10 Gigabit Ethernet.
The guest OS virtual disk is stored in the client’s local hard
disk to mitigate its impact on the experimental 1TB virtual
disk.

In JCache, because the journal of the VMs’ file system is
actually backed by flash caches which usually have relatively
large cache space, we set the default journal size as 1GB,
although it can be configured as any size.We name traditional
flash caching solutions that are not aware of the journaling
semantics of the VMs’ file system as Baseline, and it has
a default journal size of 128MB as used by EXT4. To see
how the journal size affects performance and to make fair
comparisons between Baseline and JCache in terms of the

TABLE 1. I/O characteristics of the micro-benchmarks.

FIGURE 5. Makedirs (in ordered mode).

journal size, we added two more baselines, i.e., Baseline-
Large (Baseline-L), which is the same as Baseline but with
a larger journal size of 1GB, and JCache-Small (JCache-S),
which is the same as JCache but with a smaller journal size
of 128MB. So that Baseline and JCache-S have the same
journal size of 128MB, and Baseline-L and JCache have
the same journal size of 1GB. We mainly tested the ordered
and journal modes, because the former logs only metadata
updates and the latter logs both metadata and data updates,
as illustrated in Section II-A. We will illustrate the journaling
mode that is used in each evaluation.

B. MICRO-BENCHMARK EVALUATION
Filebench [19] is a commonly used file system and stor-
age benchmark that can generate a large variety of micro-
benchmark and real-world application workloads. In this
section, we evaluated JCache with four basic micro-
benchmarks, i.e., Makedirs, Createfiles, Seqwrite, and Ran-
domwrite from Filebench. The micro-benchmarks are run in
the VM against the aforementioned EXT4 file system in the
guest OS. The I/O characteristics of the micro-benchmarks,
i.e., the operations to the EXT4 file system, are shown
in Table 1.

Figure 5 shows the performance comparison for Makedirs
in ordered mode. Because Makedirs mainly generates meta-
data updates and has little data updates, there is little dif-
ference between using ordered mode or journal mode (both
log metadata updates to journal), so that we only present
the results under ordered mode. Because the journal size
has little impact on flash writes, we only present the flash
write results of Baseline and JCache for Makedirs and all
the following evaluations. As the results show, compared
to Baseline, JCache improves the throughput by 5× and
reduces the flash writes by 48.8%. And the reason is that
JCache uses flash caches as the journal area and reduces
about 50% networked I/O traffic by eliminating the logging
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FIGURE 6. Createfiles (in ordered mode).

FIGURE 7. Createfiles (in journal mode).

I/O requests to the virtual disk backend, and mitigates the
duplicated caching. For Baseline-L that has the same journal
size as JCache, JCache has better throughput than it by 51%.
For JCache-S that has the same journal size as Baseline,
JCache-S still has better throughput by 10%. JCache is bet-
ter than the baselines at different journal sizes, which also
demonstrates the effectiveness of JCache’s optimizations.

We evaluated Createfiles in both ordered mode and journal
mode, as shown in Figure 6 and 7 respectively. Because Cre-
atefiles is not metadata-intensive, the performance is similar
for Baseline and JCache in ordered mode. But JCache still
has the best throughput, which is 11% and 9% better than
Baseline and Baseline-L respectively. JCache reduces the
flash writes by 4.5% than Baseline. In journal mode, the per-
formance of JCache is better than Baseline and Baseline-L by
172% and 95% respectively, and it reduces the flash writes
by 49.9%. JCache again has significantly better performance
than Baseline because it eliminates massive logging I/O traf-
fic to the virtual disk backend and mitigates the flash cache
writes.

Because both the Seqwrite and Randomwrite workloads
are data-intensive and have little metadata updates, we only
present their results in journal mode, as shown in Figure 8 and
9 respectively. For Seqwrite, JCache has better throughput
than Baseline and Baseline-L by 157% and 94% respectively,
and it reduces the flash writes by 49.9%. For Randomwrite,
JCache has better throughput than Baseline and Baseline-L
by 3.5× and 14% respectively, and it reduces the flash writes
by 48.3%. In the Randomwrite workload, because the jour-
naling mechanism can transfer random writes to the virtual
disk backend to sequential writes by sequentially logging

FIGURE 8. Seqwrite (in journal mode).

FIGURE 9. Randomwrite (in journal mode).

TABLE 2. I/O characteristics of the applications.

the writes to the journal area [23], and JCache only logs the
updates to flash caches without networked logging I/O traffic,
so that JCache performs much better than Baseline.

C. APPLICATION EVALUATION
We evaluated JCache using typical application workloads,
i.e., Fileserver, OLTP, and Varmail from Filebench. Fileserver
emulates a file server, OLTP emulates an online transaction
processing service, and Varmail emulates a mail server. Each
application’s main operations are shown in Table 2. Because
all the application workloads have both metadata and data
updates, they are evaluated in both ordered mode and journal
mode respectively.

Figure 10, 11, and 12 show the performance comparison
for Fileserver, OLTP, and Varmail respectively in ordered
mode, and Figure 13, 14, and 15 show the performance
comparison for these applications in journal mode.

For Fileserver in orderedmode, the throughput of JCache is
better than Baseline and Baseline-L by 10% and 6% respec-
tively. Because only metadata updates are logged and File-
server is not metadata-intensive, JCache induces less flash
writes than Baseline by 3.4%. In journal mode, JCache has
better throughput than Baseline and Baseline-L by 126% and
44% respectively, and it reduces the flash writes by 43%.
And the improvement comes from that JCache mitigates
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FIGURE 10. Fileserver (in ordered mode).

FIGURE 11. OLTP (in ordered mode).

FIGURE 12. Varmail (in ordered mode).

much logging I/O traffic to the virtual disk backend and
massive redundant flash caching, which demonstrates the
effectiveness of JCache’s optimized mechanisms of cache-
only logging and logical caching. Besides, JCache has better
throughput than JCache-S by 72%, which also demonstrates
the advantage of using large journal space enabled by using
flash cache-only logging.

For OLTP in ordered mode, JCache is better than both
Baseline and Baseline-L by about 42%, and it reduces the
flash writes by 24.9%. For Baseline or JCache, the perfor-
mance difference of changing the journal size is less than
1%, which is because that OLTP is sync-intensive and every
update needs to be persisted and the journal space can store
much updates before fully filled. In journal mode, JCache
increases the throughput by about 1.7× than both Baseline
and Baseline-L, and it reduces the flash writes by 34.4%.

For Varmail in ordered mode, JCache improves the
throughput than Baseline and Baseline-L by 2.9× and 2.5×
respectively, and it induces less flash writes by 28.3%.

FIGURE 13. Fileserver (in journal mode).

FIGURE 14. OLTP (in journal mode).

FIGURE 15. Varmail (in journal mode).

In journal mode, JCache has better throughput than both
Baseline and Baseline-L by about 11.4×, and it induces less
flash writes by 8.5%. The reduction of flash writes compared
to that in ordered mode is because most I/O requests are
processed to the cache-based journal area and the in-place
update I/O requests will be handled later by checkpointing
the blocks in the journal.

VI. RELATED WORK
Deploying flash-based caching for virtual machines in cloud
computing environments has been extensively researched in
the literatures. Mercury [4] makes a comprehensive discus-
sion on how to deploy flash caches for the VMs and presents
the effectiveness of using flash caches. In [10], the authors
also discuss the various design space (e.g., regarding write-
back policies, cache space) for flash caching. Flashtier [25]
combines flash caching with the internal management of
SSD to solve the caching limitations of using traditional
SSDs. S-CAVE [17] proposes a rECS metric to guide cache
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space allocation among the VMs according to their relative
cache demands. vCacheShare [20] makes dynamic cache
space allocation based on a cache utility model that con-
siders the VMs’ I/O access characteristics. Centaur [13]
uses the VMs’ miss ratio curves for cache sizing to achieve
the VMs’ Quality-of-Service requirements. CloudCache [1]
designs a new cache demand model, Reuse Working Set,
to predict a VM’s cache space requirement and to make
cache space allocation. CacheDedup [15] and [7] employ
cache deduplication to improve the VMs’ I/O performance.
COWCache [8] co-designs flash caching with the manage-
ment of Copy-on-Write virtual disks to improve the VMs’
caching performance. In [12], [24], the authors optimize the
cache writeback policies for flash caching. Flash caching
is also widely used in the industries. Flashcache [28] is
a general-purpose block-level caching solution, which has
been deployed in the production environments in Facebook.
Bcache [22] and Dm-cache [31] are block-level caching solu-
tions supported in the Linux kernel as well. VMWare has its
caching solution, VAIO [32], for its enterprise virtualization
products. However, although the previous works focus on
different aspects of flash caching, e.g., caching architecture,
space allocation, cache replacement, or writeback policies,
none of them specially considered the caching challenges
brought by the journaling mechanism of the VMs’ file sys-
tem, which has been presented in detail and also addressed
by JCache.

Journaling is a traditional consistency mechanism which
is widely used in both local file systems (e.g., EXT4 [18],
XFS [29]) and distributed file systems (e.g., Ceph [33],
Lustre [26]). In local file systems, the journaling overhead
mainly comes from the duplicated writes. JBD2 [18] in
the Linux kernel supports deploying the journal on high-
performance storage device such as SSD. However, it needs
exclusive storage device and still does not solve the problem
of duplicated writes. Some existing works co-design local
file systems with non-volatile memory (NVM) to reduce the
overhead of journaling. In [5] and [35], the authors pro-
pose to use NVM as a journal device and present a fine-
grained approach to reduce the write amplification induced
by journaling. HasFS [16] considers NVM as a journal device
and page cache, and combines the techniques of journaling
and Copy-on-Write to reduce the overhead of consistency
guarantee. UBJ [14] reduces the duplicated writes by using an
in-place checkpointing mechanism. In studies of journaling
in distributed file systems, similar to local file systems, some
mainstream distributed file systems, e.g., Ceph [33], reduce
the journaling overhead by simply deploying it on high-
performance storage device.

Different from all the previous works, to the best of our
knowledge, JCache presents some new flash caching chal-
lenges, i.e., inefficient logging I/O traffic to the shared storage
server and duplicated caching in flash, induced by the seman-
tics of journaling in the VMs’ file system. It observes the
opportunity to use the high-performance and persistent flash
caches to reduce the overhead of caching with journaling,

and proposes the virtual journal device design, the mecha-
nisms of cache-only logging and logical caching to address
the challenges. The evaluation results for typical application
workloads demonstrate the effectiveness of JCache’s opti-
mizations. Although the discussion in the paper focuses on
flash-based caches, the general JCache approach is also appli-
cable to new NVM technologies (e.g., 3DXpoint [9]), which
will likely be used as caches for the VMs in cloud computing
environments. While NVM has better performance than flash
devices, it will benefit more from JCache’s optimizations to
improve the VMs’ performance.

VII. CONCLUSION
As flash caching is widely deployed for the VMs in
cloud computing environments to improve their performance,
we uncover that the semantics of journaling in the VMs’
file system bring severe challenges of inefficient logging I/O
requests to the shared storage server and duplicated flash
caching of logging I/Os and in-place updates. We propose
JCache, a journaling-aware flash caching solution to address
the challenges. JCache first proposes a virtual journal device
design to bridge the semantic gap between themanagement of
journaling in the VMs and flash caching. With the journaling
knowledge in the VMs, JCache then presents the cache-only
logging mechanism to fully utilize the persistence property
of flash caches. It uses the persistent flash cache as the
journal area to store the logging I/Os and to safely eliminate
the logging I/O traffic to the shared storage server. Finally,
JCache presents the logical caching mechanism to eliminate
the duplicated flash caching induced by the duplicated writes
in the VMs, which not only improves the cache performance
but also extents the lifetime of flash caches.
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