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ABSTRACT In this work, a super-resolution approach based on generative adversary network (GAN) was
used to interpolate (up-sample) ultrasound radio-frequency (RF) echo data along the lateral (perpendicular
to the acoustic beam direction) direction before motion estimation. Our primary objective was to investigate
the feasibility of using a GAN-based super-solution approach to improve lateral resolution in the RF data
as a means of improving strain image quality in quasi-static ultrasound strain elastography (QUSE). Unlike
natural scene photographs, axial (parallel to the acoustic beam direction) resolution is significantly higher
than that of lateral resolution in ultrasound RF data. To better handle RF data, we first modified a super-
resolution generative adversary network (SRGAN) model developed by the computer vision community.
We named the modified SRGAN model as super-resolution radio-frequency neural network (SRRFNN)
model. Our preliminary experiments showed that, compared with axial strain elastograms obtained using
the original ultrasound RF data, axial strain elastograms using ultrasound RF data up-sampled by the
proposed SRRFNN model were improved. Based on the Wilcoxon rank-sum tests, such improvements
were statistically significant (p < 0.05) for large deformation (3-5%). Also, the proposed SRRFNN model
outperformed a commonly-used method (i.e. bi-cubic interpolation used inMATLAB [Mathworks Inc., MA,
USA]) in terms of improving axial strain elastograms. We concluded that applying the proposed (SRRFNN)
model was feasible and good-quality strain elastography data could be obtained in in vivo tumor-bearing
breast ultrasound data.

INDEX TERMS Generative adversarial network, motion tracking, super-resolution, quasi-static ultrasound
strain elastography.

I. INTRODUCTION
Qusai-static ultrasound strain elastography (QUSE) [1], [2],
which mimics manual palpation, has emerged as an use-
ful imaging tool for non-invasive differentiation of breast
and thyroid tumors [3]–[5], assessment of vascular plaques
[6] and monitoring thermal ablation therapies [7], [8].
Recently, developments in QUSE shows potential in 3D
breast and abdominal imaging [9]–[11]. In QUSE, first, one
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pre-compression ultrasound echo frame is acquired and then,
tissues are deformed to acquire a post-compression ultra-
sound echo frame. Motion tracking is performed between
the pair of pre- and post-compression echo frames to obtain
ultrasonically-tracked tissue displacements. Finally, a strain
elastogram representing spatial gradients of tissue displace-
ments is formed to infer the hardness of tissues being imaged.
Consequently, these ultrasonically-estimated displacements
contain fundamental information and relentless efforts have
been devoted to the improvement of displacement tracking
accuracy.
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In the last few years, deep-learning neural network meth-
ods have gained rapid attention in many medical image
applications [12]. Certainly, this trend has influenced tech-
nological developments in ultrasound elastography. Notably,
neural network models [13], [14] have been tested as a
part of QUSE’s image reconstruction process. In the study
by Gao et al. [13], a conventional neural network (CNN)
model with prior information was directly used to produce
strain images. Our group [14] retrained three well-known
CNNmodels (FlowNet 2.0 [15], LiteFlowNet [16], PWC-Net
[17]) developed in the computer vision community. Retrain-
ing enabled more reliable motion tracking for QUSE using
ultrasound images. Both studies showed promising results
and the future of using deep-learning neural network models
in ultrasound elastography is bright. Particularly, the per-
formance of the retrained PWC-Net model is on par with
two well-known motion tracking algorithms [37], [50] used
by QUSE.

Adversarial training can make CNN models more robust
and improve the performance of CNN models. The adoption
of adversarial training has led to developments of another
type of neural network model known as generative adversary
network (GAN) [18]. The use of GAN models has been
extended intomany ultrasound applications including speckle
reduction [19], real-time ultrasound simulation [20], gener-
ation of multi-focused ultrasound image [21], novel beam-
forming [22] andB-mode image segmentation [23]. However,
to our knowledge, GAN models have not been used for any
ultrasound elastography modalities including QUSE.

As the first feasibility study, our primary objective is to
investigate whether or not a GAN-based super-resolution
model can be used to improve the lateral resolution of ultra-
sound data. As a result, we expect that strain image quality in
QUSE can be improved when laterally-upsampled ultrasound
data are used.

II. RELATED WORK AND OUR CONTRIBUTIONS
We are particularly interested in GAN-based super-solution
methods because they showed superior performance over
similar models based on convolution neural network (CNN)
models and other machine-learning techniques. Interested
readers are referred to two recent survey papers [24], [25] for
detailed assessments. Ledig et al. [26] first proposed a GAN
model named super-resolution GAN (SRGAN) to upscale
natural scene images by a factor of 4. The performance of
the SRGAN model was superior as compared to other state-
of-the-art methods [26].Wang et al. [27] further enhanced the
SRGAN, which resulted in an enhanced SRGAN (ESRGAN)
model. Enhancements proposed by Wang et al. were in the
following three key areas: network architecture, adversarial
loss, and perceptual loss. Due to improvements in those three
major areas, ESRGAN consistently performed better than
SRGAN [24], [25].

Now referring to motion tracking, a critically impor-
tant step in QUSE, motion tracking methods are often
applied to ultrasound radiofrequency (RF) data as opposed

to ultrasound intensity images (i.e. B-mode) [28], [29].
However, the ESRGAN model [27] cannot be directly
applied to ultrasound radiofrequency (RF) data. This is
because RF data contain echo waveforms with signifi-
cant amplitude variations and discrepancies between the
axial and lateral resolution. Significant modification of the
ESRGAN model as detailed in Section III enabled us
to improve lateral resolution for ultrasound RF data. We
named the proposed GAN-based super-resolution method to
super-resolution radio-frequency neural network (SRRFNN)
model.

To show benefits of using our SRRFNN model, elas-
tographic results obtained by our SRRFNN model are
compared to those obtained by a bi-cubic interpola-
tor [44] (i.e. interp2 function in MATLAB [Mathworks Inc.,
MA, USA]) and without any lateral interpolations. The selec-
tion of bi-cubic interpolation in this feasibility study is largely
due to a paucity of alternative interpolators commonly used
in QUSE. Recall that the up-sampling of ultrasound data has
not gained a lot of traction in QUSE. Hence, only a few stud-
ies were found in the literature. Konofagou and Ophir [30]
applied a weighted interpolation scheme onto RF ultrasound
data to improve lateral displacement tracking. Their interpo-
lation scheme was mainly linear. Viola and Walker [31] used
spline functions to represent ultrasound echo data so that the
benefits of improving signal coherence can be gained without
the actual up-sampling. More recently, Liu et al. [32] investi-
gated how interpolations of RF data and correlation function
along the lateral direction could influence motion tracking
accuracy. Although they were interested in lateral displace-
ment estimation, their results did suggest that up-samplingRF
data along the lateral direction should have little effects on the
axial motion tracking accuracy using Cosine interpolation.
Given the fact that only conventional interpolation methods
were used in the QUSE literature, our selection of bi-cubic
interpolator as the baseline for comparison in the study seems
appropriate.

The main contributions of this work are summarized as
follows:
• Compared with the existing super-resolution GAN
methods designed for photographic imagery, a modified
GAN method named super-resolution radio-frequency
neural network (SRRFNN) model is developed to
improve lateral resolution of ultrasound RF data.

• Ultrasound data processed by a GAN-based super-
resolution model are used for motion tracking for
the first time. Neural network-based super-resolution
techniques have not been applied to up-sample ultra-
sound echo data for ultrasound elastography applica-
tions, though a CNN-based model has been applied to
B-mode images for better visualization [33]. Feasibility
demonstrated by this work also opens a new avenue for
applying GAN methods to other ultrasound elastogra-
phy modalities such as shear wave elastography (SWE),
acoustic radiation force imaging (ARFI). This is because
motion tracking is a critically important step for QUSE,
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SWE and ARFI. The definitions of QUSE, SWE and
ARFI can be found in the consensus recommended by
the World Federation of Ultrasound in Medicine and
Biology [2].

The rest of this paper is organized as follows. Section III
describes the SRRFNNmodel and related training. The mod-
ified ESRGAN model was applied to in vivo ultrasound
data [3] acquired from 22 human subjects to demonstrate
its ability to generate superior strain images. The highlight
of Section IV is comparing strain images obtained using
up-sampled ultrasound data by the modified GAN model to
those obtained from up-sampled ultrasound data by a con-
ventional bi-cubic interpolation method. Finally, Section V
presents a summary discussion of our major findings and
some limitations of the current study followed by a few
closing remarks.

III. METHODS AND MATERIALS
A. A BRIEF DESCRIPTION OF PROPOSED SRRFNN MODEL
In the study, the original ESRGAN model was selected as
our starting point because its known superior performance
as reported by Wang et al. [27]. Modifications of its origi-
nal architecture were conducted as described below so that
the proposed SRRFNN model (see Fig. 1) can be used to
upscale RF echo data along the lateral (perpendicular to the
acoustic beam direction) direction for strain elastography
applications.

In principle, the input to the generatorG is a low-resolution
RF (LR-RF) field and the output is a super-resolution RF
(SR-RF) field. As shown in Fig. 1, the generator G is trained

to produce an output SR-RF field that cannot be distinguished
by the trained discriminator, D, which is trained to do its best
in terms of detecting ‘‘faked’’ SR-RF fields.

The goal of the proposed SRRFNN model is to obtain
a high-resolution, super-resolved two-dimensional (2D) RF
field RFSR from a low-resolution RF field (i.e. input RFLR),
which is the low-resolution version of its high-resolution
counterpart RFHR. Because RFHR is only available during
training, we use RFSR to represent a computer-generated
super-resolved RF field, which may differ from the true
RFHR. RFLR, RFHR and RFSR are all real-value 2D matrices.
The size of RFLR isW ×H , while both RFHR and RFSR have
identical size of rW × rH , where r (> 1) is a positive integer
and represent a pre-determined up-sampling factor.

Based on the original ESRGAN model proposed by
Ledig et al. [26] and revised by Wang et al. [27], we
redesigned the generator and discriminator networks
(see Fig. 1). More details are provided below in proceeding
Sections III-A1 and III-A2.

1) GENERATOR NETWORK
The proposed generator is a feed-forward CNN GθG (Fig. 1)
which takes a RFLR as input and gives a RFSR which is highly
similar to the actual RFLR as output. θG = {W1,B1} repre-
sents a collection of weights and biases of the CNN model
because, mathematically, a convolution layer with biases can
be described below,

F1(X ) =

{
W1 ? X + B1, if W1 ? X + B1 > 0
α ∗ (W1 ? X + B1), if W1 ? X + B1 ≤ 0

(1)

FIGURE 1. Architecture of Generator and Discriminator Networks with corresponding kernel size (k), number of feature maps (n) and
stride (s) indicated for each convolutional layer. BN, PReLu, LReLu and ES stand for batch normalization [34], parametric ReLu activation
function [35], leaky ReLu activation function and element-wise summation, respectively. Conv denotes a standard convolution operation.
The upsampling in the generator network is done in layers contained in the dashed box.
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where ? represents a conventional convolution operation and
α is a ‘‘learnable’’ parameter ranging from 1 to∞.
GθG has 4 components as shown in Fig. 1. Starting with

a low-resolution RF (LR-RF) signal X , the first component
contains a convolution layer with 9×9 kernels and 64 feature
maps followed by batch-normalization (BN) layers and Para-
metric ReLU (PReLu) [35] as the activation function. The
stride size is 1.

The second component has four residuals blocks; each
block consists of two convolution layers with smaller
3 × 3 kernels and 64 feature maps followed by BN layers,
PReLu units as the activation function and element-wise
summations (ES). Jump connections are used in the second
component to connect the input and output characteristics of
each residual block. The second component is named as resid-
ual networks/blocks because of the presence of jump connec-
tions, which are often used to solve vanishing gradients [36]
to mitigate difficulty during training.

The third component is similar to the second component
except for the following differences. First, there is only one
convolution layer following by BN layers, PReLU units and
ESs. Second, jump connections are not included.

The fourth component consists of two convolution layers
and a pixel shuffle layer. More detailed parameters regarding
kernel size, number of feature maps and stride are shown
in Fig. 1. Of note, the pixel shuffle layer performs convolu-
tion at 1/r pixel scale (r is the up-sample factor mentioned
above) and therefore can increase the size of the feature maps
without interpolation. The generator network outputs a super-
resolution RF signal with increased lateral resolution and
leaves axial resolution unchanged.

In order to train N super-resolved RF fields RFSRn ,
n = 1, 2, . . . ,N that are highly similar to known ground
truth (i.e. N known high-resolution RF fields RFHRn ,

n = 1, 2, . . . ,N ), we use N low-resolution RF fields
(RFLRn , n = 1, 2, . . . ,N ) as input to minimize the following
energy function:

θ̂G = argmin
θG

1
N

N∑
n=1

lSR{GθG (RF
LR
n ),RFHRn } (2)

where lSR is a loss function described below and GθG (RF
LR
n )

denotes a super-resolved RF field produced by the generator
network.

In this study, a spatial continuity term C has been added to
the loss function lSR as follows,

lSR = − log{DθD (GθG (RF
LR
n ))}

+ 0.1×
1

rWH

rW∑
x=1

H∑
y=1

(|RFHRx,y − GθG (RF
LR
x,y)|)

+ 2.× 10−8C (3a)

C =
rW∑
x=1

H∑
y=1

{GθG (RF
LR)x,y−1 − GθG (RF

LR)x,y}2

+

rW∑
x=1

H∑
y=1

{GθG (RF
LR)x+1,y − GθG (RF

LR)x,y}2 (3b)

where log is a natural log function, θD is a collection of
parameters associated with the proposed discriminator net-
work (Section III-A2), and DθD (GθG (RF

LR
n )) stands for the

output from the discriminator network by taking a super-
resolved RF field generated by the generator network as the
input. In Eqns. (3a) and (3b), x and y are coordinates, and the
weight (0.1) was empirically chosen to balance contributions
from three terms to the overall loss.

2) DISCRIMINATOR NETWORK
The discriminator network DθD consists of 4 convolution
layers and 2 fully connected layers. The sigmoid function
is adopted as the activation function. The discriminating net-
work is used to determine whether or not the input RFSR sig-
nal produced by the generator network (see Section III-A1)
is a real RFHR signal.

3) OVERALL LOSS FUNCTION
The overall loss function for the proposed SRRFNNmodel is
written as follows:

L(G,D) = ERFHR∼Ptraining(RFHR)[log(DθD (RF
HR))]

+ERFLR∼PG(RFLR)[log(1− DθD (GθG (RF
LR)))]

(4)

where RFLR and RFHR denote the low-resolution and high-
resolution RF signals, respectively, GθG (RF

LR) represents
super-resolution RF signals generated by the generator and
DθD (GθG (RF

LR) is the output of the discriminator network,
which represents its assessment of the super-resolution RF
signal by the generator.

B. TRAINING OF THE PROPOSED SRRFNN MODEL
The training of SRRFNN (see Fig. 1) was to achieve an opti-
mal network Ĝ by solving the following min-max problem as
first developed by Goodfellow et al. [18]:

Ĝ = argmin
θG

max
θD

L(G,D) (5)

More specifically, the entire training process was done by
alternating the training of both the generator (Eqn. 2) and
discriminator (Eqn. 5) networks. In vivo RF ultrasound data
acquired from human subjects were used to train.
From our internal database, ultrasound data acquired from

50 human subjects with pathologically-confirmed breast
lesions were arbitrarily selected. Ultrasound data from each
patients contain 50-90 frames. All in vivo ultrasound data
were acquired using a Siemens Elegra scanner equipped with
a high frequency linear array transducer (7.5 MHz, Siemens
Medical Solution (USA) Inc., CA, USA). Axial sample spac-
ing and lateral line spacing were 0.021 mm and 0.19 mm,
respectively. The detailed protocol for data acquisition was
previously reported by Hall et al. [3]. All data acquisition was
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approved by appropriate oversight institutional review boards
(IRBs) and patient consents were obtained.

1130 RF frames randomly selected from 28 human sub-
jects (among 50 human subjects) were pre-processed before
being used for training. In the first pre-processing step, the
lateral resolution of those RF frames was interpolated up by
a factor 10 using bi-cubic interpolation method. After this
up-sampling, one RF frame contains 1920 × 2000 samples.
In the second pre-processing step, the interpolated ultrasound
data were divided into smaller patches (200× 200 samples).
Thus, each RF field can produce 50 non-overlapping patches.
Those 200 × 200 patches are used as high-resolution RF
(i.e. HR−RF) and their down-sampled versions (200× 100)
are used as low-resolution RF (i.e. LR− RF). In the last pre-
processing step, all data were normalized between -1 and 1.

Totally, we obtained 56,500 patches after all pre-
processing steps mentioned above. Among them, 53,709
and 2,791 patches were used for training and validation,
respectively.

The SRRFNN was trained on a computer workstation
equipped with dual Intel CPUs (E2650, Intel, CA, USA) and
a Graphic Processing Unit (GPU) card (TITAN, Nividia Inc.,
CA, USA). The implementation was done under the well-
known open-source PyTorch framework1 and Adam opti-
mizer was used to perform the training with the following
parameters: up-sampling factor r = 2, β1 = 0.5, β2 = 0.999,
batch size=16, and initial learning rate =0.0002.

C. EVALUATION OF THE PROPOSED UP-SAMPLING
STRATEGY
After the completion of up-sampling of RF data, motion
tracking was performed on those up-sampled RF data
using a GPU-accelerated coupled speckle tracking algorithm
[9], [37]. The tracking kernel size is approximately 2.1 mm
(6 wavelengths long along the axial direction) × 1 mm
(approximately 1 beam width along the lateral direction).
More details of the motion tracking algorithm can be found
in our prior publications [9], [37]. In order to demonstrate
the effect of using the proposed SRRFNN model, motion
tracking using the above-mentioned GPU-accelerated cou-
pled algorithm was also performed on original RF data and
(2X) up-sampled RF data using a bi-cubic interpolator [44].

Using a single-inclusion two-dimensional (2D) numerical
phantom (40 mm × 40 mm; plane stress condition) in the
first test, displacement estimation was performed at 7 defor-
mation levels (0.1%, 0.5%, 1%, 2%, 3%, 4% and 5%) to
obtain displacements at a 200 × 200 grid. The simulated
inclusion was 5 times stiffer than its background. Computer-
simulated ultrasound data were created using the combination
of finite element (FE; ANSYS Inc., PA, USA) and Field II
ultrasound simulations [38], [39]. Field II simulations were
done to mimic a 7.5 MHz linear array transducer. Then, esti-
mated displacements were decimated by a factor of 5 in each
dimension to reduce statistical dependence. The remaining

1www.pytorch.org

1600 displacement estimates were used to calculate tracking
errors along the axial and lateral directions as follows:

Errora,l = dispt − dispe (6)

where dispt and dispe are true and estimated displacements,
respectively. In Eqn. (6), subscripts a and l stand for axial
and lateral directions, respectively. Error variances were cal-
culated at each deformation level to assess motion tracking
accuracy.

After a displacement field had been obtained, local strains
were calculated by using a low-pass strain estimation method
[40]. All strain elastograms were formed on an isotropic grid
of 0.2 mm. In addition to visual evaluations, area-weighted
contrast-to-noise ratio (CNR) was used to assess the quality
of strain elastograms [41]:

CNR =
|It − Ib|√

wtσt2 + wbσb2
(7)

where I and σ denote means and variances of signals, and
subscripts b and t represent the background and target,
respectively. The CNR (Eqn. (7)) is weighted by areas of the
background wb and the target wt , respectively. Manual image
segmentation was perform for each strain elastogram to dif-
ferentiate the target from the rest of the strain image, referred
to hereafter as the background. All manual lesion segmenta-
tion tasks were done by an engineer who has approximately
10-year experience in SE including algorithm development
and image analysis. Eqn. (7) was adopted to account for the
fact that the background and target usually have different
numbers of pixels. Song et al. [41] demonstrated that consid-
eration of the weighted area is necessary in such a situation.

In the second test, remaining twenty-two (22) data sets
from the above-mentioned 50 selected human subjects were
used for testing. Thus, our training and testing ultrasound data
sets have no overlap.

Axial and lateral strain elastograms were reconstructed
and CNR values were calculated using Eqn. (7) for all in
vivo ultrasound data. In this study, we also investigated the
performance of the proposed SRRFNN model under vary-
ing deformation (1% to 5%). In order to track large tissue
deformation (3-5%), motion tracking was first performed
at the level of (roughly) 1% frame-to-frame and then, a
multiple-compression technique [37], [42], [43] was used to
accumulate axial and lateral displacements/strains to reach
3-5% large deformation using the GPU-accelerated coupled
tracking method.

All data analyses were performed using the computer
workstation mentioned above for training of the proposed
SRRFNN model.

IV. RESULTS
A. NUMERICAL PHANTOM RESULTS
By comparing ultrasonically-tracked displacements to
FEA-simulated displacements (i.e. the ground truth in this
case; see Eqn. (6)), error variances were obtained and are
plotted in Figs. 2a-b. Fig. 2. Generally, both the proposed
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FIGURE 2. Comparisons of error variances for (a) lateral and (b) axial displacements at different axial compressions (0.1%-5%).

SRRFNN model and the bi-cubic interpolation approach
improved motion tracking as compared to motion tracking
performed on the original ultrasound RF data. The improve-
ments were greater by using the SRRFNN model than those
obtained by the bi-cubic interpolation approach except at the
small deformation (i.e. < 0.5%)
We also estimated CNR values by using the computer-

simulated single-inclusion phantom from 0.1-5% compres-
sion. Those estimated CNR values are shown in Fig. 3.
Clearly, CNR values obtained from axial strain images were
improved when the proposed SRRFNN model was used
to up-sample RF data. The bi-cubic interpolation approach
did not improve axial CNR values. However, the pro-
posed SRRFNN model yielded slightly reduced CNR values
obtained from lateral strain elastograms, though all lateral
CNR values were low (see Fig. 3).

B. IN VIVO RESULTS
One representative example of tracking results (axial and
lateral displacements, and axial and lateral strains) obtained
from a breast invasive ductal carcinoma (IDC) is shown
in Fig. 4. Visually, large motion tracking errors exist when
original RF data or up-sampled RF data using the bi-cubic
interpolation method are used (see arrows in Fig. 4a and b).
However, no large tracking errors are visible in the axial
displacements obtained using up-sampled RF data using
the proposed SRRFNN model (Fig. 4b). That explains why

the corresponding axial strain elastogram obtained using
up-sampled RF data using the proposed SRRFNN model is
smoother, as compared to its counterparts.

In another IDC example shown in Fig. 5, there are no
large tracking errors for any of the three methods. However,
using up-sampled RF data by the proposed SRRFNN model
resulted in a ‘‘cleaner’’ axial strain elastogram. We observed
that lateral displacements and strains were not improved.
Particularly, the correspondence between axial and lateral
displacement images was not improved and the IDC contours
were not visible for any of three methods. As a result, the IDC
cannot be seen from the lateral strain elastograms generated
using original and upsampled RF data.

CNR values of axial and lateral strain elastograms
(Fig. 6) were calculated. Both up-sampling methods did not
improve the quality of lateral strain elastograms as shown in
Fig. 6a. However, using upsampled RF data by the proposed
SRRFNN model improved CNR values obtained from axial
strain elastograms, as compared to results using up-sampled
RF data via the bi-cubic interpolation method and original
ultrasound data. Particularly, CNR values of axial strain elas-
tograms using ultrasound RF data up-sampled by the pro-
posed SRRFNN model were improved as compared to those
obtained using original ultrasound data (see Fig. 6b). Based
on Wilcoxon rank-sum tests, such improvements in terms of
CNR values were statistically significant (p < 0.05) for large
deformation (3-5%) as shown in Table 1. Furthermore, the

FIGURE 3. A plot showing calculated CNRs with respect to varying deformation levels from 0.1-5.0%. The CNR values were calculated from the
single-inclusion numerical phantom whose error variances are displayed in Fig. 2.
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FIGURE 4. Resultant images obtained from up-sampled RF echo data using (a) original RF data without any interpolation
(b) bicubic-interpolation and (c) the proposed SRRFNN model. Ultrasound RF data were acquired from a human subject
containing an IDC. All axial and lateral displacement images are in mm. The frame-average axial strain is approximately 1%.

FIGURE 5. Resultant images obtained from up-sampled RF echo data using (a) original RF data without any interpolation
(b) bicubic-interpolation and (c) the proposed SRRFNN model. Ultrasound RF data were acquired from a human subject
containing another IDC. All axial and lateral displacement images are in mm. The frame-average axial strain is approximately 1%.

trend of gaining statistical significance from low compres-
sion to high compression is clearly seen in Table 1. In con-
trast, using RF data up-sampled by the bi-cubic interpolation
approach did not improve the CNR values estimated from any
of the axial strain elastograms based on Wilcoxon rank-sum
tests.

V. DISCUSSION AND SUMMARY
In this paper, we applied the proposed SRRFNN model to
up-sample RF data along the lateral direction and subse-
quently, used those up-sampled RF data to track motion and
form strain images. To the best of our knowledge, this is
the first study of this kind, in which a neural network-based
up-sampling strategy was compared to bi-cubic interpolation
for elastographic applications. The bi-cubic interpolation was
a convolution-based interpolation algorithm [44] and our

results remain unchanged if a bi-cubic spline interpolator
is used.

Given the data investigated, we found that using the pro-
posed SRRFNN model to up-sample ultrasound data along
the lateral direction can improve axial motion tracking accu-
racy and therefore lead to better axial strain elastograms.
When the bi-cubic interpolation along the lateral direction
was used, our results were comparable to those reported
by Liu et al. [32].

As shown in Fig. 1, the generator network is indeed a CNN
model that first uses a series of convolution operations to
extract features and then upsamples all extract features to
a high-resolution ‘‘image’’ by a pixel shuffle layer (see the
dashed box in Fig. 1). We stipulate that convolution opera-
tions remove noise contained in the image data and that will
benefit subsequent motion tracking. We think this stipulation
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FIGURE 6. Clustered box-plot charts of CNR values obtained from 22 in vivo (a) lateral and (b) axial strain elastograms.
The top and bottom of the boxes indicate 75 and 25 percentiles, respectively. The line and hollow circle through the
middle of each box represent the median and the average, respectively. The error bars show the minimum and maximum
values. Solid dots are outliers. RF ultrasound data were originally acquired from 22 human subjects with
biologically-confirmed breast tumors. Those ultrasound data were upsampled using a bi-cubic interpolation method and
the proposed SRRFNN model. P-values comparing CNN values among three groups can be found in Table 1.

TABLE 1. A summary of p-values obtained by comparing CNR values of axial and lateral strain elastograms from three groups: Original, Bicubic Sampling
and SRRFNN as shown in Figs. 6a-b. The red fonts denote statistical significance (p < 0.05) has been achieved.

is reasonable for two reasons. First, convolution operations
result in ‘‘local smoothing’’ of imaging data and this aspect
is known in image processing field. We used in vivo RF data

acquired from standard clinical scanners to train the proposed
SRRFNN model. When we applied the trained SRRFNN
model by in vivo RF data to computer-simulated RF data.
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Motion tracking using simulated RF data interpolated by the
proposed SRRFNN model yielded better results, as com-
pared to those obtained by using un-interpolated simulated
data and simulated data interpolated by a bic-cubic method
(see Fig. 2). The improved NCC values are implicit indica-
tions of ‘‘local smoothing’’. Second, we also found support-
ive results in the literature. For instance, in a noise-removing
CNN model [45] reported by Ding et al., they started with
a published super-resolution CNN model [46] and then
replaced the last upsampling deconvolution layer in the super-
solution CNN model with a dimension-enlargement layer
without upsampling capabilities. Their new noise-removing
CNN model was able to remove noise without upsampling.
In short, we think the generator network inherited noise-
removing capabilities intrinsic to CNN models.

In the literature, motion tracking in QUSE has been per-
formed either on the raw RF/B-mode data [47]–[51] or fea-
tures extracted from B-mode data [14], [52]. Motion tracking
in this study was performed on upsampled features extracted
fromRF data using a CNNmodel. Hence, our approach could
be considered as an alternative to existing methods.

Improvements shown in this study appeared to be subtle
(See Figs. 4 and 5). One might think that regularized tracking
algorithms [48]–[51] can also be effectively used to remove
those tracking errors. This is certainly a valid point. However,
the proposed approach offers an alternative. Although
impressive regularized tracking algorithms [50], [51] from
Prof. Rivaz’s group have demonstrated that high-quality
strain images can be obtained, regularized motion tracking in
general could lead to biased tracking results. Visibly pleasing
but biased displacements may pose challenges to modulus
inversion algorithms [53]–[55]. Now, since the feasibility has
been established, we expect that better results can be achieved
by further optimizing the proposed SRRFNN model. In the
future, we plan to do more testing our method, particularly
using modulus inversion algorithms. This is because the qual-
ity of displacements is critically important for the success of
modulus inversion and the outcome of modulus inversion is
likely sensitive to the displacement quality when there is no
regularization or weak regularization [53].

Lastly, in this study, our goal was to verify the performance
of improving motion estimation by using the up-sampling of
RF data along the lateral direction. During the training of
the proposed SRRFNN model, the up-sampled in vivo RF
signals were treated as the gold standard. When we applied
the trained SRRFNN model to computer simulated data, the
improvements measured by NCC values (Fig. 2) could be
sub-optimal because the SRRFNN model was not trained
using similar data. Overall, our training should still be con-
sidered as appropriate for this feasibility study.

In the future, we should consider the true ‘‘high-
resolution’’ ultrasound data, e.g. high-frequency ultrasound
data using novel beam-forming technology for training.
Given the availability of an advanced ultrasound elastogra-
phy simulation platform [38], [39], computer-simulated but
realistic data of this kind can be used for training purposes.

Nowwe have a better understanding the relationship between
CNN-based super-resolution and noise removal [45], novel
CNN models can be designed to improve the generator
network accordingly.

In summary, we compared the displacements and strains
obtained by two up-sampling strategies: (1) bi-cubic interpo-
lation approach and (2) the proposed SRRFNN model. The
elastographic results obtained using the original ultrasound
data were used as a baseline in this study. We found that
using laterally up-sampled RF data by the proposed SRRFNN
model improved the tracking accuracy by a greater rate, as
compared to the bi-cubic interpolation method. The mean
CNR values of axial strain using bicubic-interpolated RF
signals and the proposed SRRFNN model among 22 in vivo
cases were 0.79 [bicubic] and 0.92 [the proposed] at 1%
frame-average compression, respectively. If the original ultra-
sound RF data were used, the mean CNR value of axial strain
elastograms at 1% frame-average compression was 0.72.
Such improvement was consistent from 1-5% and reached
statistical significance when the compression exceeded 2%
(See Table 1). Improved motion tracking accuracy at large
compression is important to nonlinear QUSE [56], particu-
larly nonlinear modulus inversion [55].
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