
Received January 21, 2020, accepted February 19, 2020, date of publication March 31, 2020, date of current version April 16, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984535

Combining Cooperative With Non-Cooperative
Game Theory to Model Wi-Fi Congestion
in Apartment Blocks
MARAN VAN HEESCH 1, PASCAL L. J. WISSINK 2, RAMTIN RANJI 3, MEHDI NOBAKHT 3,
AND FRANK DEN HARTOG 3, (Senior Member, IEEE)
1TNO, 2509 JE The Hague, The Netherlands
2School of Business and Economics, Vrije Universiteit Amsterdam, 1081 HV Amsterdam, The Netherlands
3School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600, Australia

Corresponding author: Frank den Hartog (frank.den.hartog@unsw.edu.au)

This work was supported in part by the European Union’s Horizon 2020 Research and Innovation Programme, under Grant 644262.

ABSTRACT The unlicensed spectrum utilized by Wi-Fi can be regarded as an economic commons in many
deployments. Operators of Wi-Fi-enabled devices are usually non-cooperative, vying for spectral resources
when in close range to each other, typically adopting a strategy of maximizing their transmission power.
With an ever-growing number of wireless devices, this will ultimately lead to depletion of the spectrum,
unless players collaborate. Previous studies used cooperative game theory to explore various collaboration
strategies, enabled by the presence of some central authority or controller that executes an agreed-upon
interference mitigation policy. However, the regulatory nature of unlicensed spectrum dictates that players
cannot be forced into such collaboration. Most deployments therefore involve a mix of cooperative and
non-cooperative players. In this paper, we propose a new way of modeling use cases involving a central
authority or controller by combining non-cooperative and cooperative game theory. Our model uses the
non-cooperative concept of Nash equilibriums as well as the cooperative concept of Nash bargaining. To the
best of our knowledge, this paper is the first to propose a hybrid non-cooperative and cooperative game
theoretic model for communication networks that offers the players the opportunity to strategize between
non-cooperative and cooperative natures. It is successfully applied to the case of a densely-populated
apartment block. The results show that, if only a subset of players joins the collaboration, most of the
remaining non-joining players may obtain an SINR that is worse than what they would have obtained in
the fully non-cooperative scenario; they are punished for their uncooperative behavior.

INDEX TERMS Computer network management, game theory, interference suppression, utility theory,
wireless communication.

I. INTRODUCTION
The vast popularity of smart devices is one of the main
contributors to the high density of Wi-Fi Access Points (APs)
in today’s homes, offices and public spaces with an Internet
connection. The drawback of this dense deployment is the
potential for co-channel and adjacent channel interference
with nearby devices. With an ever-growing number of wire-
less devices in urban areas, driven by developments such as
the Internet of Things, this type of spectral congestion will
lead to a significant loss of performance [1].
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Current channel selection procedures have only little
effect, and the deployment of additional repeaters and APs
also fails [2]. This is because Wi-Fi uses unlicensed spec-
trum, which in use cases such as deployments in densely
populated apartment blocks can be regarded as an economic
commons [3]. As Wi-Fi AP operators (often the residents
themselves) are usually non-cooperative, they typically adopt
a strategy in which they maximize their transmission power
for a given transmission frequency (channel). The channel
may be chosen to be a relatively non-congested one but,
nowadays, all available channels are often equally badly con-
gested. Most APs deployed in today’s homes operate at max-
imum power by default. Therefore, users can only achieve
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a higher Signal-to-Interference-and-Noise Ratio (SINR) for
their consumer devices by adding more APs and repeaters
to the home Wi-Fi network. However, this strategy will ulti-
mately lead to the depletion of the spectral resources [1], [2].
AP operators thus need to collaborate to prevent depletion
from happening [4], [5].

Previous studies used cooperative game theory to explore
various collaboration strategies, and assumed the presence
of some central authority or controller that executes an
agreed-upon interference mitigation policy. In the Wi-5
project [6], we developed such a controller. It implements
an integrated set of algorithms and mechanisms to improve
the utilization of the wireless spectrum. More specifically,
it continuously monitors the radio properties and traffic char-
acteristics of the associated APs, and subsequently performs
transmit power control, dynamic channel selection, device
hand-overs, and frame aggregation. The controller thus exe-
cutes the resource distribution policy as agreed upon by the
AP operators.

However, the regulatory nature of unlicensed spectrum
dictates thatWi-Fi users cannot be forced into such collabora-
tion [3]. Realistically speaking, most use cases will thus con-
sist of a mix of both cooperative and non-cooperative players
(users). In this paper, we propose a new way of modeling use
cases involving a controller by combining non-cooperative
and cooperative game theory. This model is then used to
investigate whether users have an incentive to collaborate
with each other via the controller when their objective is to
maximize the SINR.

In the following section, we first provide an overview
of the relevant literature. In sections III and IV, we then
develop a mixed cooperative/non-cooperative model, using
the non-cooperative concept of Nash equilibriums as well as
the cooperative concept of Nash bargaining. It facilitates the
option of considering both Wi-Fi users who join and users
who do not join the controller’s regime simultaneously, while
enabling them to take joint strategic decisions. The model
is subsequently applied to a typical dense apartment block,
as described in [2] and [7].

II. RELATED WORK
A. MODELING SPECTRUM ALLOCATION WITH GAME
THEORY
In the last two decades, extensive research has been per-
formed on Spectrum Allocation (SA) in wireless networks
and transmission power control using game theory. Game
theoretic models describe the interaction among rational,
mutually aware players, where the decisions of a player
may impact the payoff of others. A game is described by
its players, the players’ strategies, and the resulting payoffs
from each outcome. Payoff is often defined by utility, which
represents the satisfaction experienced by the consumer of a
good. For a given player, the utility function then expresses
utility as a function of the amounts of the various goods
consumed.

An overview of the most relevant literature on model-
ing communication networks using game theory can be
found in [8] and [9]. In this paper we focus on the
research using non-cooperative and cooperative game theory.
Non-cooperative games are games in which players self-
ishly try to maximize their utility, conditional on the rational
choices made by the other players who try to do the same.
A stable distribution of utilities can only be enforced through
self-enforcing agreements such as a Nash Equilibrium (NE).
Cooperative games, in contrast, assume that players adhere to
a jointly chosen strategy, which can be externally enforced.

B. NON-COOPERATIVE GAMES
Potential games are a type of non-cooperative strategic game
in which the existence of a NE is guaranteed. They are
popular building blocks to model wireless networks [10].
Potential games are first used in the context of wireless radio
networks in [11], and a framework for transmission Power
Allocation (PA) using this technique is proposed in [12]. The
authors of [12] define the radios as the players, who are
allowed to choose any power level. The utility function of
the radios depends on the SINR and the costs associated with
choosing a certain power level. In [13], the effect of adding a
pricing element to the utility of selfish players is investigated.
In addition to transmission power control, the authors of [14]
take channel allocation into account in their model. They
show that combined management of channel allocation and
transmission power leads to improved normalized achievable
throughput, compared to optimizing channel allocation and
transmit power independently. Potential games are also used
in [15]–[17] for SA. The authors of [15] show how this
technique can optimize the use of spectrum and converge to
NE in a short period of time, while the authors of [16] apply
potential games to mitigate the interference that is caused
by massive deployment of unmanned aerial vehicles. In [17]
internal interference among users and external interference
caused by jammers is considered to propose a distributed
anti-jamming channel selection algorithm.

A recent literature study on resource allocation in wireless
networks is presented in [18]. The authors of [18] consider
a densely deployed AP scenario to propose an adaptive and
distributed spectrum management algorithm. They take each
AP as a rational player, define one AP as the row player,
and group all other interfering APs as the column player
of the game. They eliminate the need for a central resource
manager by using a distributed approach, and their algo-
rithm can handle changes in the wireless channel and in the
number of APs joining to network. The authors of [19] use
non-cooperative game theory to model use cases with Cog-
nitive Radios (CR) to balance the conflicting requirements
of spectrum assignment to Primary Users (PU, i.e. users of
licensed spectrum) and Secondary Users (SU, i.e. users of
unlicensed spectrum). In CR, PUs try to gain financial profit
by leasing their unused spectrum, and SUs try to meet their
Quality of Service (QoS) requirements by using the licensed
spectrum as cost-effective as possible. In [19], a model is

64604 VOLUME 8, 2020



M. van Heesch et al.: Combining Cooperative With NC Game Theory to Model Wi-Fi Congestion in Apartment Blocks

developed for power trading, and Stackelberg games are used
to reach NE where the PUs gain the optimal profit and the
SUs use their optimal transmit power. The problem of their
proposed model lies in the high chance of monopoly behavior
from PUs, because of the freedom they have in adjusting the
price dynamically.

Other types of non-cooperative game theory have also been
used for spectrum allocation. A strategic bargaining game is
used in [20] to find the Nash bargaining solution for spectrum
allocation. Without knowledge about competitors, users of
licensed and unlicensed spectrum (the latter being wireless
sensors, for instance) can choose their best strategy to share
the spectrum, including the possibility to share licensed spec-
trum with unlicensed users. The non-cooperative distributed
model applied in [20] is similar to what is used in [18], and
removes the need for a central operator. In [21], a game-
theoretic solution is investigated for spectrum allocation in
highly mobile vehicular networks. An incentive mechanism
is designed to motivate the macro cell to share its unused
bandwidth with Road Side Units (RSU). While considering
transmission power and interference of RSUs, the authors
of [21] then formulate the resource allocation problem for
moving vehicles as an n-person game and calculate the equi-
librium.

Power control is the main metric in [22] to decrease the
interference and improve the throughput. By using transmis-
sion power as the cost function, non-cooperative game theory
is leveraged to achieve NE.

The major limitation in all the previous work mentioned
is the lack of differentiation between wireless users. In most
realistic use cases, users have different Quality of Ser-
vice (QoS) needs and pay higher fees to the service provider
for higher needs. Different bandwidth requirements have
been considered in [23], but only non-cooperative and selfish
behavior of wireless users has been taken into account, which
is mitigated by assigning a pre-defined channel to each user
and a heavy fine for defiance and occupying another channel.

C. COOPERATIVE GAMES
Two classes of cooperative games are used in modeling
wireless networks: coalition games and bargaining games.
Coalition games can be used to decide on optimal col-
laboration strategies [24], and are applied to unlicensed
spectrum interference modeling for Wi-Fi and Long Term
Evolution-Unlicensed (LTE-U) coexistence in [25]. In this
paper, we do not consider coalition games because they do
not scale: as the non-transferable QoS of individual players
must be considered, and the QoS of a coalition also depends
on all other players in the system, these games require O(nn)
computations in a system with n players.

Bargaining games are cooperative games in which all play-
ers may decide to cooperate while observing a disagreement
point. The disagreement point represents the utility the play-
ers can expect to receive if negotiations break down and they
decide not to cooperate. It can be defined in various ways.
For example, in [26], a bargaining model is proposed for SA

and PA problems in cooperative communication networks.
The authors divide the game into two sub-games, one for
spectrum allocation and another one for power allocation,
to decrease the complexity. The game is solved using Nash
bargaining in which the disagreement point is the capacity
that the selfish node can gain by direct transmission. In [27],
a bargaining model is proposed for throughput sharing or
channel access time sharing. The players are licensed mobile
users who lease their unused spectrum and unlicensed Wi-Fi
users who bargain to occupy it. The disagreement point is
defined as the sum of achievable throughput when there is
no cooperation among players.

In [28], a bargaining model for channel selection is pro-
posed in which the disagreement point is chosen as the threat
made by individual players to other players. The threats are
defined as the chosen policy of a player, with the other player
not acting in compliance with the former player’s will. The
utility set is based on the SINR. In [29], bargaining is used
to deal with the case in which players only know the fre-
quency channel and transmission power of other players that
are physically close, i.e., only local information is available.
In [30], a centralized platform is described to which state-of-
the-art interest-independent and self-configured Wi-Fi APs
connect, but which does not control the APs directly. It only
provides the APs with information about how they mutually
interfere and entices them to reduce their own power levels
based on the cooperative Nash bargaining rule.

Of course, many papers exist in which bargaining games
are applied to mobile networks such as 5G, as these net-
works are centrally controlled by definition. For instance,
the authors of [31] use cooperative Nash bargaining to
investigate the joint uplink subchannel and power allocation
problem in cognitive small cells.

D. COMBINING COOPERATIVE AND NON-COOPERATIVE
GAMES
The Wi-5 project allows cooperative players to join a
collaborative, overarching system-wide configuration opti-
mization mechanism, i.e., the APs of cooperative players can
be configured by a central controller that globally optimizes
the settings. This allows for coalition formation between the
cooperative players, execution of joint actions, and collective
utility optimization, and should be modelled with cooperative
game theory.

However, Wi-Fi operates in an unlicensed part of the radio
spectrum. Current regulations regarding access to unlicensed
spectrum and anti-trust make it impossible to force Wi-Fi AP
operators to cooperate or collaborate in an overarching Wi-Fi
interference optimization scheme. Participation should thus
be voluntarily, and AP operators should be enticed to cooper-
ate by means of a positive business case [3]. It can therefore
be realistically expected that many apartment blocks will
be home to both players who will join and players who
will not join an interference optimization scheme. Conse-
quently, our case should be modelled using a combination of
non-cooperative and cooperative game theory.
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Models that embed both non-cooperative and cooperative
game theory are relatively scarce in the literature on com-
munication networks. The authors of [32] investigate the
efficiency of radio spectrum utilization when users join in
a cooperative as well as non-cooperative manner, they do
not propose a combined game theoretical model. The authors
just observe that more efficiency is obtained when applying a
cooperative joining strategy, but as there is a lack of incentive
for the users to act cooperatively, they propose to define
an admission fee in the non-cooperative scenario, and show
that a near optimal utilization of spectrum usage can then
be achieved. The main limitation of their approach is the
assumption that all players act selfishly and make strategic
decisions independently. In our case, however, players who
join the interference optimization scheme connect their AP
to the controller and employ strategies that are in the best
interest of the group rather than the individual.

In [33] and [34], the authors apply hierarchical game
theoretic models that consist of a nested combination of
non-cooperative and cooperative games. These games are
solved sequentially for different levels of the system archi-
tecture (e.g., operators and users), where negotiation between
the players of different levels affects the utilities that can be
obtained. In hierarchical games, players do not have the abil-
ity to convert from non-cooperative to cooperative strategies
and vice versa. This is different from our set-up, where users
can be assigned a cooperative strategy if joining the interfer-
ence optimization scheme yields a higher utility. To the best
of our knowledge, this paper is the first to propose a combined
non-cooperative and cooperative game theoretic model for a
communication network that offers the players to strategize
between non-cooperative and cooperative natures.

III. PRELIMINARIES
A. JOINING AND NON-JOINING PLAYERS
In this paper we consider non-cooperative strategic games
with the one-shot solution concept of the mixed Nash equi-
librium, and cooperative bargaining games with the weighted
Nash bargaining solution. We assume that every player has
perfect foresight, that is, each player decides unilaterally on a
strategy conditional on the expected (future) decisions of all
other players. We use the idea of transmission power control
as in [14], but consider a different power control criterion.
We also implement the concept of a pricing element [13] to
prioritize the players that join a collaborative Wi-Fi interfer-
ence optimization scheme. In addition, we adopt the approach
of [28] that sets the disagreement point of a cooperative player
equal to the utility received if onewould act selfishly and non-
cooperatively.

In a mixed cooperative/non-cooperative game there are
two types of players who are not participating in a joined
interference optimization scheme: non-cooperative players,
and cooperative players who do not benefit from joining.
Tomodel this properly, we need tomake a distinction between
cooperative and non-cooperative players, and joining and
non-joining players:

• Cooperative players are capable of joining the optimiza-
tion scheme, but will not do so if it does not benefit them;

• Non-cooperative players are not capable of joining the
optimization scheme, and will not do so even if it would
benefit them;

• Joining players are cooperative players joining the opti-
mization scheme;

• Non-joining players are not joining the optimization
scheme.

A cooperative player will only join a collaborative interfer-
ence optimization scheme if it is beneficial to that player.
Therefore, the set of joining players may constitute only a
subset of the total number of cooperative players, the remain-
ing cooperative players identifying themselves as non-joining
players. Fig. 1 depicts these different sets of players. The
model we developed considers both joining and non-joining
players simultaneously, with only joining players jointly
agreeing on their AP settings.

FIGURE 1. Sets of players.

B. THE MIXED NASH EQUILIBRIUM
Strategic games are non-cooperative games in which all play-
ers make their strategic decisions simultaneously. Strategic
games are of the form

〈N , {Si}i∈N , {ui}i∈N 〉, (1)

where N = {1, . . . , n} defines the finite set of players. The
set of pure strategies of player i ∈ N is given by Si, and
S = ×i∈NSi is the set of pure strategy profiles. A pure
strategy provides a complete definition of how a player acts
in the game. The set of probability distributions over Si is
defined by 1(Si). An element si ∈ 1(Si) is called a mixed
strategy of player i ∈ N , and ×i∈N1(Si) is the set of mixed
strategy profiles. A strategic game is called finite if Si is
finite for all i ∈ N . The utility function ui : S → R of
player i ∈ N imposes a preference relation on the set of
pure strategy profiles. The expected utility function of player
i ∈ N , Ui : ×i∈N1(Si) → R, defines the expected utility of
player i.
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The mixed Nash equilibrium, first introduced in [24], is a
one-shot solution concept of finite strategic games in which
no player has the incentive to deviate.
Definition 1: Consider the strategic game
〈N , {Si}i∈N , {ui}i∈N 〉. Amixed Nash equilibrium of the strate-
gic game is a profile s∗ ∈ ×i∈N1(Si) such that for every
player i ∈ N it holds that

Ui(s∗i , s
∗
−i) ≥ Ui(si, s

∗
−i) (2)

for all si ∈ 1(Si), where s∗−i is the equilibrium strategy profile
of all players in N\{i}.
Theorem 2 (Nash, [35]): Every finite strategic game has

at least one mixed Nash equilibrium.
The proof of Theorem 2 can be found in the Appendix.

C. THE WEIGHTED NASH BARGAINING SOLUTION
Bargaining games are cooperative games in which either all
players agree on an alternative or no agreement is reached
at all. In the latter case, all players agree to disagree and
a disagreement point is the chosen alternative. An n-person
bargaining game Bn is of the form

Bn = (A, d), (3)

where A ⊆ Rn is the convex set of alternatives that can
be achieved by the players and the vector d ∈ A is their
disagreement point.

A well-known solution concept for bargaining games is
the Nash Bargaining rule, proposed in [36]. In this paper we
consider the weighted Nash bargaining rule proposed in [37].
Definition 3: The weighted Nash bargaining rule W

assigns to each bargaining game Bn = (A, d) an alternative
W(A, d) ∈ A such that

W(A, d) = argmax
a∈A

n∏
i=1

(ai − di)wi , (4)

such that ai ≥ di ≥ 0 for i ∈ {1, . . . , n} and
∑n

i=1 wi = 1.
Note that the Nash bargaining rule is obtained for wi = 1/n
for all i ∈ {1, . . . , n}.

IV. THE MIXED-COOPERATIVE MODEL
A. ASSUMPTIONS
We consider three different scenarios to research whether
Wi-Fi users benefit from joining a collaborative interfer-
ence optimization scheme: the non-cooperative scenario,
the cooperative scenario, and the mixed scenario. The
mixed-cooperative model provides a one-shot solution for
each of the three scenarios, i.e. the solution is found without
prior iterative learning procedures.

First we introduce the model’s players, parameters, and
functions. Then, we describe the three scenarios. We consider
a fixed set N = {1, . . . , n} of Wi-Fi users who are the players
in our model. Each player owns a Wi-Fi receiver (station)
and a transmitter (AP) node which are interconnected. The
location of the nodes is given by (xi, yi, zi) coordinates in the
Euclidean space R3, i ∈ N , where two nodes cannot have

the same coordinates. All receivers are equal, and the same
holds for the transmitters.

To be able to prioritize between various players, we con-
sider the players’ individual monthly broadband contract fees
mi ≥ 0 for i ∈ N . In other words, we assume that the
controller can prioritize the access of some players to the
Wi-Fi network, for instance because they run a business from
home (and pay a higher broadband subscription fee in return
for prioritized access). Such a model may be controversial but
is not illegal [3].

Each player has to make two strategic choices, namely (i)
on which channel to transmit and (ii) the transmission power
level. There is a fixed finite set of non-overlapping frequency
channels C , which are the same for each player, from which
a player can select a channel. It is realistic to assume that
non-overlapping channels are selectedwhenever possible. So,
for instance, if 3 non-overlapping channels are available (as
is the case in the 2.45 GHz frequency band), and there are
3 players, they will all choose a different channel. If there are
4 players, one player has to select an already occupied chan-
nel. In a collaborative scheme, players may then, e.g., agree
upon a rotation schedule regarding which players have to
share a channel at any given time. Furthermore, the transmis-
sion power of the players has an upper bound pmax , imposed
by regulations [38].

We assume that we know in advance which of the coop-
erative players are willing to join the collaborative Wi-Fi
interference optimization scheme (joining players) and which
players are not willing or able to join (non-joining players).
Furthermore, we also have perfect information about the
nature of the cooperative players in the current scenario: at
any given time we know a priori who has (already) joined
the interference optimization scheme (is a joining player),
and who has not (yet) joined the scheme (is a non-joining
player).

B. THE UTILITY FUNCTION
Determining the utility of aWi-Fi network is not a trivial task.
Ideally, the utility is the Quality-of-Experience (QoE) that
players observe when consuming a service that is supported
by aWi-Fi network, taking external factors into account, such
as display quality, processing capabilities of the end device,
and various subjective parameters. It is close to impossible to
mathematically relate QoE to low-level Wi-Fi configuration
settings in a practical way. Taking network throughput as a
proxy for QoE seems to make more sense, but also here a
simple mathematical expression is hard to obtain, as through-
put also depends on switching capacity, link-layer protocol
details, and the packet sizes being transported (which depends
on the service consumed). In this paper we take the SINR
observed by each player’s receiver as utility. The SINR is
expressed as follows.

Let pi be the transmission power of player i, and ci ∈ C the
frequency channel selected by player i, i ∈ N . The path loss
between the transmitter of player j and the receiver of player
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i is given by [39], [40]:

Gij =

(
4π
(

300
f · 103

)−1)2

D−αkij ,

where Dij is the Euclidean distance between the transmitter
and receiver under consideration, and f is the frequency
in GHz at which the signal is transmitted.

The path loss exponent αk depends on whether the received
signal originates from a player’s own transmitter (k = 1 if
i = j) or not (k = 2 if i 6= j). This way, the effect of
indoor propagation is taken into account, albeit in a simplified
manner: when the receiver and the transmitter are in the same
apartment (i = j), the attenuation is smaller than when the
receiver and transmitter are in different apartments (i 6= j).
Here we assume that the attenuation is equal for every i, jwith
i 6= j.

The utility function ui is the SINR (in decibels) as a func-
tion of all transmission powers p1, . . . , pN and all channel
selections c1, . . . , cN :

ui(p1, . . . , pN , c1, . . . , cN )

= 10 log10

(
Giipi

n0 +
∑

j∈N ,j 6=i GijpjI(ci, cj)

)
, (5)

where n0 is a constant representing background noise from
other sources, and the indicator I(ci, cj) equals 1 if players i
and j transmit on the same channel (i.e., ci = cj) and 0 other-
wise. So, as stated previously, we only take co-channel inter-
ference into account, and assume that players actively avoid
adjacent channel interference by selecting non-overlapping
channels.

C. THE NON-COOPERATIVE SCENARIO
In the non-cooperative scenario, we assume that all players
are non-cooperative, and therefore will never join the inter-
ference optimization scheme. To determine an equilibrium
strategy profile we model this scenario as a strategic game.
We assume that it is in a player’s best (self-)interest to trans-
mit with maximal transmission power. This is a direct result
of the fact that, for many use cases, the Wi-Fi spectrum can
be regarded as an economic commons to which the so-called
Tragedy of the Commons applies [3], [41]. The authors
of [41] and [42] argue that the Tragedy of the Commons is
equivalent to a multi-player prisoner’s dilemma, in which the
single stable dominant strategy for all players is to defect
(or free-ride). Since transmitting with less than maximal
transmission power is the equivalent cooperative strategy of
the multi-player prisoner’s dilemma, non-cooperative players
do not have an incentive to deviate from their maximal trans-
mission power strategy.

This implies that there are |C|n pure strategy profiles in
total, since the only strategic decision that has to be made
is the channel on which to transmit, and because the strategic
game is finite. An equilibrium strategy profile is then a mixed
Nash equilibrium as given by Definition 1, and always exists
(Theorem 2). For every pure strategy profile, the equilibriums

can be computed using the utility profiles of the players
provided by the utility function (5).

D. THE COOPERATIVE SCENARIO
In the cooperative scenario, we assume that all players are
cooperative players. We model this scenario as an n-person
bargaining game (3). In each of the |C|n channel allocations,
a central controller determines the transmission power of
the joining players. We assume that it tries to find a ‘‘fair’’
utility profile, i.e. a stable state in which all players obtain the
maximum ‘‘fair’’ utility level. It does so by tuning the power
settings such that whenever a particular player’s utility level
is smaller than the others’, it is maximized:

max
p1,...,pN

min
i∈N

ui(p1, . . . , pN ),

with 0 < pi ≤ pmax . (6)

An example of an algorithm that provides such a stable state
can be found in [43].

We define the alternative set A as the convex hull of these
utility levels, and define the disagreement point d ∈ Rn as
the minimal utility a player requires to join the collaborative
Wi-Fi interference optimization scheme. It can be obtained by
calculating the player’s utility as if he would decide not to join
the collaborative optimization scheme, which follows from
the fully non-cooperative scenario described in the previous
section. It is therefore possible that d /∈ A, as d corresponds to
a solution in which all players transmit with maximal trans-
mission power, and A follows from optimized transmission
powers which could all be less than the maximal powers.

If {a ∈ A|a ≥ d} 6= ∅, individually rational alter-
natives exist in A in which all players obtain a higher (or
equal) expected utility compared to the disagreement point.
In such a case, all players have an incentive to continue
their participation in the collaborative optimization scheme.
If {a ∈ A|a ≥ d} = ∅, there is no individually rational
alternative, and one or more players have an incentive to
discontinue the collaboration.

We use the weighted Nash bargaining rule
(Definition 3, (4)) to find a solution for the previously
described bargaining game. The weights wi, i ∈ {1, . . . , n}
are used to prioritize players, and relate to the mi of the
cooperative players as follows:

wi =
mi∑n
i=1 mi

.

If the solution that optimizes (6) is an alternative in A other
than d , the cooperative players have an incentive to join the
interference optimization scheme.

E. THE MIXED SCENARIO
In the mixed scenario there are both joining and non-joining
players. The joining players are all cooperative players. The
non-joining players comprise all non-cooperative players
plus the subset of cooperative players for whom cooperation
would not be beneficial.
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FIGURE 2. Layout of the apartment building.

Let Nc be the set of cooperative players, |Nc| = nc, and
Nnc = N\Nc the set of non-cooperative players. The players
inNc only become joining players if their individual expected
utility does not deteriorate. We model this scenario using
nc-person bargaining games, Bnc = (Ac, dc), and strategic
games for the players in Nnc. Let the disagreement point
dc ⊆ d , dc ∈ Rnc , be the sub-vector of d ∈ Rn with indices
in Nc, where d represents the utilities obtained from a mixed
scenario with fewer joining players (which may be a fully
non-cooperative scenario). This is a feasible choice for the
disagreement point, since the non-joining cooperative players
act as if they were non-cooperative players.

We compute the expected utilities (SINRs) of both the
cooperative and non-cooperative players as follows:
Step 1 Determine the optimized transmission power and the

SINRs for each of the channel allocations of the coop-
erative players for all possible channel allocations of
the non-cooperative players. Determine the SINRs for
the non-cooperative players in each of their channel
allocations for all possible channel allocations and for
the previously determined optimal transmission powers
of the cooperative players.

Step 2 Determine the mixed Nash equilibriums of the
non-cooperative players for each of the possible channel
allocations of the cooperative players.

Step 3 Determine the probability that the non-cooperative
players select a particular channel, given the mixed Nash

equilibriums computed in Step 2 and the imperfect infor-
mation regarding the channel selection of the coopera-
tive players.

Step 4 Determine the weighted Nash bargaining solutions
for the cooperative players for each of the channel selec-
tions of the non-cooperative players.

Step 5 Determine the SINRs of the cooperative players,
combining the results of Step 3 and Step 4.

Step 6 Determine the SINRs of the non-cooperative players,
combining results from Step 2 and Step 4. (From Step 4
we obtain the probabilities that the cooperative players
use a certain channel allocation.)

V. RESULTS
A. USE CASE
To illustrate the effectiveness of the mixed-cooperative
model, we consider an apartment building with Wi-Fi users.
The layout of a typical floor, with five apartments, is illus-
trated in Fig.2. For a more elaborate description of the build-
ing considered we refer to [2].

The location and dimensions of apartment i are determined
by four (xi, yi) coordinates in the Euclidean space R2, each
coordinate specifying the position of a corner of the apart-
ment. The coordinates are given in Table 1, with respect to
origin (0,0) in the bottom left corner of Fig. 2.

We assume that each apartment owner is a Wi-Fi user,
and therefore a player in the context of our simulations,
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TABLE 1. (xi , yi ) coordinates of the corners of the five apartments.

and operates one Wi-Fi AP i, for i ∈ {1, . . . , 5}. The APs
are placed in the little grey hallways between the red-white
cupboard and the apartments’ front doors (opening toward
the long hallway running through the center of the plan),
and the receivers are placed in the middle of the apartments
at a height of 2.0 m. The middle of the apartments is the
Euclidean average of the corners of each apartment using the
coordinates in Table 1.

Table 2 shows the coordinates (xi, yi, zi) of the APs and
the receivers. By default, the monthly contract fee of the
individual players is set to be equal, so no player is prioritized.

TABLE 2. Location of the transmitters (APs) and the receivers (users’
devices).

B. SIMULATION SET-UP
We used MATLAB R2016a on a computer with an Intel
i5-4310M 2.70GHz processor and 8GB of Random Access
Memory (RAM). We used the functions fminimax and fmin-
con from MATLAB’s optimization toolbox to compute the
transmission powers (6) and the weighted Nash Bargaining
solution respectively. To compute a mixed Nash equilibrium
we used the method proposed in [44] and the corresponding
implementation [45].

We set n0 = 10−9 mW and α1 = 2 as suggested
in [46], and α2 = 4 for inter-apartment propagation loss. The
frequency f is chosen to be either 2.45 GHz or 5.21 GHz,
and |C| is chosen between 1 and 3. (Although the 5.21 GHz
band allows for many more channels, it was recently found
that most of the current implementations do not use these
additional channels [3].) The maximum transmission power
pmax = 100 mW and the distances Dij are expressed in
meters.

All simulations start with the non-cooperative scenario.
The disagreement point thus obtained serves as input for the
cooperative scenario and the mixed scenarios.

C. THE FULLY COOPERATIVE SCENARIO
We first investigate if the scenario where all five players
join the interference optimization scheme is beneficial to all

of them, given the placement of their equipment as shown
in Table 2. The players are considered to have access to
channels 1, 2 or 3 in the 2.45 GHz frequency band. Table 3
and Fig. 3 show per player the SINR obtained for different
numbers of available channels in the non-cooperative (NC)
and cooperative (C) scenarios. The results in the NC column
of the table represent the mixed Nash equilibrium, and pro-
vide the disagreement point used as input to obtain the values
in the C column. The highest of the two values (C or NC)
is printed bold, and the 1 column represents the difference
between the values (C minus NC).

FIGURE 3. SINR per player in the non-cooperative (NC) and
cooperative (C) scenario, for different numbers of available channels.

1 is always equal to or greater than zero, indicating that
joining the optimization scheme is always advantageous to
the players, or at least not disadvantageous. In this case,
the only reason for a player to defect cooperation is (within
the scope of this paper) a non-rational one. The effect of such
a situation is studied in the mixed scenario (see section V-E).

The channel allocation algorithm applied by the con-
troller is bound from below by the disagreement points of
each player (see (4), with the disagreement point equal to
the SINRs of the fully non-cooperative scenario). It there-
fore aims to include as many players as possible first,
before improving the expected individual SINRs. This pro-
vides players the incentive to join the interference opti-
mization scheme rather than to act on their own. In other
words, the controller applies an include-first, maximize-last
principle.

If only one channel is available, the controller simply
copies the settings from the non-cooperative players: con-
sequently, the expected SINR of the cooperative players
in Table 3 is identical to the SINR of the non-cooperative
players. In this case, the choice between joining or not joining
appears to be irrelevant. This can be understood by observing
that, with only one channel available, the controller has only
one parameter left to vary to improve the SINR of a player,
namely the transmission power. But once all players have
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TABLE 3. SINR (dB) in the non-cooperative (NC) and cooperative (C) scenario with five players.

joined, the controller can only increase the SINR of a player
by lowering the transmission power of another player. Since
this will effectively deteriorate that other player’s SINR, any
such action will lead to a solution that is no longer Pareto
optimal.

If multiple non-overlapping channels are available,
the controller can improve the SINR levels for all joining
players relative to the disagreement points following from
the non-cooperative scenario. Therefore, all players have an
incentive to join the interference optimization scheme. Even
higher SINRs can be achieved with more channels available.
With 3 non-overlapping channels available, as is the case in
normal 2.45 GHz Wi-Fi operation, cooperative players can
achieve a total increase in SINR ofmore than 100% compared
to a situation with only non-cooperative players using only
1 channel. This is similar to what is found by the authors
of [47] by means of applying a coalition game and taking
airtime as utility.

Obviously, the controller has more spectral capacity avail-
able in such case and can allocate a lower number of players to
each channel, leading to a higher SINR per player. This obser-
vation holds true for both cooperative and non-cooperative
players. But in the cooperative scenario, the effect is larger
than in the non-cooperative scenario. In the cooperative
scenario, the controller can apply settings to the APs that
would not represent a stable state of the system if the
players would act selfishly and non-cooperative. That is,
non-equilibrium strategies that would normally lead players
to deviate (defect) from the global optimum owing to selfish
and non-cooperative behavior (e.g. choosing a transmission
lower than the maximum), can now be maintained in stable
equilibrium conditions by a central authority. Players volun-
tary give up control over their AP settings but obtain a higher
SINR in return.

D. PRIORITIZING PLAYERS
We now consider the scenario with only three players active
(using their Wi-Fi), namely players 1, 2, and 4, who share
2 available channels. Player 2 has a varying monthly contract
fee m2, and we assume that a higher contract fee gives this
player the right on higher prioritization and vice versa. Both
player 1 and player 3 have a fixed contract feem1 = m3 = 40.
The results are illustrated in Fig. 4. The dotted lines indi-

cate each player’s individual indifference levels, determined
by the disagreement values of fully non-cooperative behavior.
The solid lines indicate each player’s expected SINR as a
function of the monthly fee paid by player 2. Values below
the dotted lines correspond to preferred non-cooperative

behavior, i.e. the player will defect, whereas values above the
dotted lines correspond to preferred cooperative behavior.

With m2 = 0 we find that player 2 receives his dis-
agreement value, while the SINR of the other two players is
relatively high. With m2 = 40 the SINRs of all players are of
the same order. At higherm2, the SINRs of both player 1 and 3
converge to their respective disagreement values. We never
found that a player had an incentive to defect the cooperation.

Fig. 4 shows that it is indeed possible to prioritize players
effectively, i.e. spectral resources can be redistributed among
players depending on an inter-player negotiation outcome.
This can be understood in the sameway as the result for coop-
erative behavior with multiple available channels (Fig. 3)
without prioritization: the controller can apply settings to the
APs that would not represent a stable state of the system if the
players would act selfishly and non-cooperative. The idea that
cooperative players can negotiate amongst each other how
much unlicensed spectrum each gets is a completely newway
of looking at the use and valuation of unlicensed spectrum.

E. THE INFLUENCE OF NON-JOINING PLAYERS
As stated previously, our results so far indicate that the
only reason for a player to defect cooperation is (within the
scope of this paper) an irrational one. But since players may
cherish values that are not captured by our game theoretic
model, players defecting or not joining the cooperation in
the first place is a realistic scenario that needs to be studied.
To study the influence of non-joining players on the SINR
of the joining players, we gradually decrease the number of
cooperative players in ourmodel by considering the following
six scenarios:
Scenario 1. The fully cooperative scenario: players 1–5 are

cooperative players;
Scenario 2. A mixed scenario: players 1–4 are cooperative

players, player 5 is a non-cooperative player;
Scenario 3. A mixed scenario: players 1–3 are cooperative

players, players 4 and 5 are non-cooperative players;
Scenario 4. A mixed scenario: players 1 and 2 are coopera-

tive players, players 3–5 are non-cooperative players;
Scenario 5. A mixed scenario: player 1 is a cooperative

player, players 2–5 are non-cooperative players;
Scenario 6. The fully non-cooperative scenario: players 1–5

are non-cooperative players.
Fig. 4 shows the results of the expected SINR per player for
every scenario. A player’s bar is green if for that scenario the
player is a cooperative player. The bar is orange if the player is
non-cooperative. The results are obtained while considering
the (sub)vector of the solution of the fully non-cooperative
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FIGURE 4. Varying m for player AP2.

scenario as disagreement setting. The disagreement point is
the outcome of Scenario 6, and is represented with a hori-
zontal red line. We have taken this as a given, but in reality,
when a player decides to join or leave the collaboration,
the controller may opt to reevaluate its disagreement settings
to reflect the newmix of joining and non-joining players. The
players are as described in Table 2.

In Fig. 5a, we assumed that there are only 2 channels
available in the 2.45 GHz frequency band. These results
suggest that it is always beneficial for all non-cooperative
players except player 4 to join the interference optimization
scheme, as their SINR will increase compared with what they
obtain in Scenario 6. We found this to be independent of the
subset of players who decide to cooperate.

The results for player 4 show that he obtains the highest
SINR in scenario 5, in which the only joining player is player
1. This can be understood by looking at the relative AP posi-
tions of players 1 and 4 in Fig. 2. Since the AP of player 1 is
relatively close to the AP of player 4, these APs experience
most interference from each other. Therefore, in the scenario
that only player 1 is joining, the controller ensures that player
1 always transmits on a different channel than player 4. Both
player 1 and player 4 therefore take advantage of Scenario 5.
If also player 2 is joining (Scenario 4), the controller assigns
the two available channels to the two cooperating players, and
player 4’s SINRwill decrease to a level that is not particularly
beneficial anymore.

There does not appear to be a correlation between the
expected SINR of any individual player and the number of
non-cooperative players. The exception seems to be player 1,
for whom it seems beneficial that as few as possible other
players cooperate. This suggests that any correlation largely
depends on player-specific attributes, such as location.

Fig. 5b presents the results for 3 available channels in
the 2.45 GHz frequency band. They are similar to what
we found for 2 available channels. We conclude that our
combination of cooperative and non-cooperative game theory
can be effectively used to model scenarios with a mixed
group of joining and non-joining players. We find that joining
a collaborative interference optimization scheme is always
beneficial to players, compared to the fully non-cooperative
scenario. If only a subset of players joins the collaboration,
the remaining non-joining players may obtain an SINR that
is even worse than the disagreement point: they are punished
for their uncooperative behavior. But they may also be lucky
and benefit anyway, though generally not as much as when
they would have joined. That is, the outcomes achieved in
scenarios 2–6 are all unstable if all players would be rational.

F. APPLYING OUR MODEL TO THE 5.21 GHz BAND
It is a popular belief that migrating Wi-Fi systems to the
5.21 GHz frequency band will solve all congestion prob-
lems, as that band has, in theory, tens of channels available.
However, as [3] shows, most current implementations only
operate on the lowest four channels, and the first indications
of congestion in this band are already observed. Therefore,
we also applied our model to the 5.21 GHz band, considering
the fully non-cooperative and the fully cooperative scenario,
in the same apartment block and with all five players. As with
the 2.45 GHz band we assume that there are only three
channels available. This could be a scenario in which two
of the four channels in the 5.21 GHz band are occupied
by a system that applies channel bonding. Fig. 6 presents
the results, together with the results we presented earlier
concerning the 3 available non-overlapping channels in the
2.45 GHz band.
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FIGURE 5. Expected SINR for 6 different scenarios (S1. . . S6) with
cooperative and non-cooperative players. The red lines are the SINRs
expected in a fully non-cooperative scenario.

FIGURE 6. The non-cooperative and cooperative scenario for five players
and three channels, f = 2.45 GHz and f = 5.21 GHz.

The results for the 5.21 GHz band appear to be very
similar to those of the 2.45 GHz band. This contrasts with
the common belief that systems in the 5.21 GHz band are

thought to cause less interference between players because
of the reduced range that generally comes with higher carrier
frequencies, especially indoors. Indeed, the expected SINRs
in the non-cooperative case are similar to the ones found
in 2.45 GHz: although the 5.21 GHz devices receive a lower
signal, they also receive less interference and noise. Neverthe-
less, the increase in SINRwhen players decide to cooperate is
still significant, evidencing that also in this case collaboration
can be highly beneficial to all players.

VI. CONCLUSIONS AND FUTURE WORK
Many private wireless networks involving networking tech-
nologies such as Wi-Fi use unlicensed spectrum in a
self-destructive way. With an ever-growing number of wire-
less devices being actively used in densely populated areas,
driven by developments such as the Internet of Things,
the spectral resources are being depleted, leading to a sig-
nificant loss of network performance. Wi-Fi users need to
collaborate to avoid this from happening. They need to share
the resources in a mutually accepted and enforced way.

Various current technological developments facilitate the
making and execution of intelligent spectrum sharing poli-
cies. However, players cannot be forced to enter interference
optimization schemes. We modeled these Wi-Fi use cases
with game theory involving a mixed inclusion of cooperative
and non-cooperative players which, to our knowledge, has not
been done before. The model allows us to research whether
neighboringWi-Fi users benefit from cooperation or not, tak-
ing into account their free choice. Put differently, it facilitates
users to opt for non-cooperation regardless of whether it could
be beneficial.

Furthermore, our model incorporates a way to prioritize
different Wi-Fi users, based on their mutual agreement, e.g.,
given their differences in monthly Internet subscription fees.
The concept of cooperative players negotiating on the amount
of spectral resources that each player gets, possibly involving
monetary transactions, is a novel way of looking at the use
of unlicensed spectrum, and opens a new field of systems
engineering research.

The unique properties of our model made it possible to
create realistic results for the use case of a typical floor in
an apartment block, consisting of 5 apartments. For such
a configuration, we demonstrated that joining a collabo-
rative AP channel allocation and transmission power opti-
mization scheme leads to improved Wi-Fi performance for
all individual users in terms of SINR, compared to a fully
non-cooperative setting. Our results indicate that cooperation
is also beneficial even if some users choose not to join the
collaboration. Besides, most of these defectors are punished
for their behavior as they obtain an SINR that is even worse
than the disagreement point. As such, they are enticed to join
the collaboration anyway. Our results are largely independent
of the chosen frequency band (2.45 GHz or 5.21 GHz).

Future work includes the extension of the simulations
to different and larger apartment blocks (and more floors)
with multiple APs per apartment, and to different networks
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possibly using different frequency bands (such as Zigbee,
Bluetooth, LTE-U, LoRa, and some varieties of 5G). We are
also considering to use secure multi-party computation to
address potential privacy concerns regarding the exchange of
personal data (e.g., monetary information and location) that
may prevent Wi-Fi users from joining the interference opti-
mization scheme. Furthermore, we are considering the design
of a brokering platform that contains agents representing the
demand and offer of the individual players’ resources, and
then automates the negotiation. As the players are untrusted
parties, the automated negotiation may be facilitated using
blockchain and smart contracts. The platform then generates
an agreed-upon policy, to be executed by the controller and
the APs [30], [48]. We can subsequently validate our simula-
tion results by measurements in real apartment blocks.

APPENDIX
PROOF OF THEOREM 2
The proof of Theorem 2 is analogous to the proof in [35]. Let
us first introduce the following preliminaries.
Definition 4 (Fixed Point): Let f : X → X be a mapping.

x ∈ X is a fixed point of f if and only if f (x) = x.
Theorem 5 (Brouwer, [49]): For any continuous function

f mapping a convex set to itself there is a point x such that
f (x) = x.

Proof (Theorem 2, [35]): Let s = (s1, · · · , sn) ∈
×i∈N1(Si) be an n−tuple and let pi(s) be the pay-off of s
to player i ∈ N . We have that si is an affine combination of
πi,α’s, πi,α ∈ Si, and let pi,α(s) be the pay-off of player i if he
selects πi,α instead of si when all other players do not deviate
from s. The set of functions φi,α is defined as

φi,α(s) = max(0, pi,α(s)− pi(s)).

To improve pay-off, player i can deviate from si to s′i by
increasing the selection probabilities of pure strategies with a
pay-off higher than pi(s),

s′i =
si +

∑
α φi,α(s)πiα

1+
∑
α φi,α(s)

for α ∈ {1, |Si|},

where s′ = (s′1, · · · , s
′
n). Let T : ×i∈N1(Si) → ×i∈N1(Si)

be the mapping T (s) = s′. Note that ×i∈N1(Si) is a convex
set. It follows from Theorem A5 that T has a fixed point.

Let s∗ be amixed equilibrium point. It follows fromDefini-
tion 1 that φi,α(s∗) = 0 for all α ∈ {1, |Si|}, hence T (s∗) = s∗.
Let s∗ now be a fixed point of T and let πi,β ∈ Si be the

least profitable pure strategy considered in s∗ of player i ∈ N .
We have that pi,β (s) ≤ pi(s) and therefore φi,β = 0. Since
s∗ is fixed, T must not decrease the proportion of πi,β ∈ Si
in T (s∗). It follows that all φi,α(s∗) = 0 for α ∈ {1, |Si|} to
ensure that the denominator of T equals 1, hence s∗ is a mixed
equilibrium point.
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