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ABSTRACT An apical four-chamber (A4C) view from early fetal echocardiography is an extremely
significant step in early diagnosis and timely treatment of congenital heart diseases. The objective is to
perform automated segmentation of cardiac structures, namely, the epicardium, left ventricle, left atrium,
descending aorta, right atrium, right ventricle, and thorax, in ultrasound A4C views in one shot in order to
assist clinicians in prenatal examination. However, such a segmentation task is often faced with the following
challenges: 1) low imaging resolution; 2) incomplete tissue boundary; 3) overall contrast of the image.
To address these issues, in this study, we propose a cascaded U-net, named CU-net, with structural similarity
indexmeasure (SSIM) loss. First, the CU-net with two branch supervisions helps gain clear tissue boundaries
and alleviate the gradient vanishing problem caused by increasing network depth. Second, between-net
connections in the CU-net can transmit the prior information from the shallow layer to the deeper layer and
obtain more refined segmentation results. Third, the method leverages on SSIM loss to preserve fine-grained
structural information and obtain clear boundaries. Extensive experiments on a dataset of 1712 A4C views
demonstrate that the proposed method achieves a high dice coefficient of 0.856, Hausdorff distance of 3.33,
and pixel accuracy of 0.929, revealing its effectiveness and potential as a clinical tool.

INDEX TERMS Semantic segmentation, convolutional neural network, apical four-chamber (A4C) view,
fetal echocardiography.

I. INTRODUCTION
Congenital heart diseases (CHDs) are a series of deformi-
ties in the fetal heart structure or function, accounting for
functional heart incapacitation, which may result in severe
physiology defects [1]–[3]. If CHDs cannot be treated in
time, the morbidity and mortality rates of neonates will
be high [4]–[6]. Hence, early diagnosis and screening for
pregnant women is crucial.

Fetal echocardiography is an elementary low-cost method
that does not use radiation and is widely used to detect CHDs
by reflecting real-time structures. An apical four-chamber
(A4C) view is one of the most important ultrasonic views

The associate editor coordinating the review of this manuscript and
approving it for publication was Vishal Srivastava.

in fetal echocardiography [7]–[9], because plenty of CHDs
could be clearly identified in this view. In prenatal ultrasound
examination of CHDs, the diagnostic anatomical structures of
A4C views are epicardium (EP), thorax, left ventricle (LV),
left atrium (LA), descending aorta (DAO), right atrium (RA),
and right ventricle (RV) [2]–[4].

The interpretation of A4C views requires clinicians to have
rich theoretical knowledge and clinical experience [10]–[13].
However, doctors may make incorrect decision due to fatigue
in long-term diagnosis [14]–[16]. With the development
of computer technology, computer-aided diagnosis plays
an indispensable role in medical image enhancement, seg-
mentation, and recognition [17]. Accurate segmentation of
A4C views can provide pathological information and save
clinicians considerable time in observation andmeasurement.
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FIGURE 1. Examples of A4C views and their ground truth. The grids in the
right denote different structures in labels, distinguished by different
colors. The blue arrow indicates the shadow; red arrows indicate the
incomplete boundaries of the septum; the green arrow indicates
tendinous chordae; and the pink arrows indicate the DAO and pulmonary
vein.

For example, from the segmentation of LV and LA, the pres-
ence of left ventricular dysplasia can be detected. Accurate
A4C segmentation can not only help imaging experts and
clinicians avoid medical accidents but also is a key step to
prevent future risks of pregnant women and fetuses.

Convolutional neural network (CNN) approaches have
achieved state-of-the-art performance in the field of medical
image processing. Powered by CNNs, the performance of
segmentation has been largely improved, such as in com-
puted tomography (CT) and magnetic resonance imaging
(MRI) [18]–[20]. In this work, we try to utilize the CNN for
ultrasound image processing to automatically segment RA,
RV, LA, LV, DAO, EP, and thorax from A4C views.

The following three main challenges exist in A4C view
segmentation: (i) Ultrasound images have low resolution and
noise, which result in large artifacts in the processed images,
leading to great interference in the segmentation task, such
as the blue arrows in Fig. 1. (ii) The boundaries of tissues
are incomplete in echocardiography images. For example,
because of echo dropout, the mitral valve and tricuspid valve
in A4C views may be incomplete, as demonstrated by the red
arrows in the first column of Fig. 1. Moreover, the openness
of the interventricular septum and atrial septum may lead
to incomplete boundaries. The cardiac tendinous chordae in
ventricles of heart will blur the boundary, as demonstrated
by the green arrows in Fig. 1. These phenomena will ren-
der segmentation of the ventricular-atrial boundary difficult.
(iii) A4C view segmentation needs to consider the overall
contrast of the whole image, rather than local or pixel fea-
tures. The DAO and pulmonary vein are shown by the pink
arrows in the third column of Fig. 1. To obtain accurate
segmentation results, the segmentation algorithm must learn
the global structural information of the whole image.

To overcome the aforementioned challenges, we propose
cascaded U-nets (CU-net) with a structural similarity index
measure (SSIM) loss function and achieve automated seman-
tic segmentation of the seven structures of fetal heart simul-
taneously. The proposed CU-net comprises double U-nets
within an integrated end-to-end framework. To obtain clear
tissue boundaries and mitigate the problem of disappear-
ance of gradients due to increased network depth, we add
branch supervision during the training process. To reduce

information loss in deeper layers, we design between-net
connections to help transmit high-resolution information
from shallow layers to the corresponding deeper layers, thus
obtaining more refined segmentation results. Furthermore,
we present an SSIM loss function to model the spatial infor-
mation and help the optimization focus on boundaries.

In this study, we proposed a novel image segmentation
network, CU-net with the SSIM loss function as a method to
achieve automated semantic segmentation. Our experimental
results show that this method performs considerably better
than other methods in terms of Dice score (DSC), Hausdorff
distance (HF), and Pixel accuracy (PA). We improved an end-
to-end network, CU-net, by adding branch supervisions and
between-net connections for accurate segmentation of the
seven structures of fetal heart. Branch supervisions utilize
the strategy of coarse-to-fine segmentation. Between-net con-
nections can transmit the prior information from the shallow
layer to the deeper layer and obtain more refined segmenta-
tion results. Further, we applied the SSIM loss function to
ultrasound fetal multi-tissue segmentation and found that it
can introduce global information and help the optimization
focus on tissue boundaries. This proves the potential and
effectiveness of the SSIM loss function in segmentation.

II. RELATED WORK
A. CNNs FOR MEDICAL IMAGE SEGMENTATION
CNNs have been widely utilized in medical image process-
ing [5]. The U-net has been proposed by O. Ronneberger
in 2015 to solve the segmentation problem in more com-
plicated scenarios by benefitting from the accumulation of
images and higher computational capacity [21].

Since this study, the U-net has been widely used in medi-
cal image segmentation [6], [7]. Many improvements of the
U-net have also been derived, such as the H-DenseUNet
for liver segmentation [22] and the coarse-to-fine U-net for
left atrium segmentation [23]. Furthermore, stacked U-net
with multiple U-nets has been proposed [8], [9], which helps
increase the network depth and the number of trainable
parameters, thereby improving the network performance.

Another improvement of the U-net in medical image seg-
mentation is cascaded U-nets, proposed for brain tumor
segmentation [38], prostate segmentation [39], and glioma
segmentation [40]. For example, [39] proposed two dense
U-nets for prostate MRI segmentation. However, excessive
network length may result in the appearance of grades in
practical training. To address this problem, a skip connection
between two U-nets (from the decoder layer of the first u-net
to the encoder layer of the second one) was proposed [38],
which has also been mentioned in [37]. In this study, we pro-
posed a new between-net connection and compared the two
connections in Section V.

B. LOSS FUNCTION FOR CNNs
In most existing segmentation methods, the model is com-
pletely monitored by local loss functions at the pixel level,
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FIGURE 2. Network structures of CU-net, an end-to-end coarse-to-fine segmentation network.

such as cross-entropy loss and dice loss, without utilizing the
global dependence and structure information of the output
space. Therefore, the global information of prediction results
often does not consist of shape priors of the target. The
SSIM, originally proposed for image quality assessment [24],
measures the similarity between two images. This index
defines structural information as independent of brightness
and contrast from the perspective of image composition,
reflecting the attributes of the object structure in the scene.
Hang Zhao et al. were the first to use the SSIM in natural
image reconstruction [25]. The author believes that the loss
of traditional mean squared error (MSE)-based images cannot
express the intuitive sense of the human visual system about
images. Therefore, because the SSIM combines brightness,
contrast, and structural information of an image, it is designed
as a loss function. Xuebin Qin et al. applied the SSIM
loss function to the second-class segmentation of natural
images [26].

C. CARDIAC IMAGE SEGMENTATION
With the continuous development of deep learning, CNN
models have shown significant advantages in computer vision
and image processing problems. Automatic segmentation of
cardiac images by CNNs has attracted increasing attention.

Accurate segmentation of cardiac chambers is crucial for
diagnosis and prognosis of cardiac diseases. In the recent
years, more studies have focused on the segmentation of the
left ventricle to calculate clinical indicators of patients, such
as left ventricular mass and ventricular volume [27]–[29],
while some have also considered right ventricle segmenta-
tion [30], [31] to quantify clinical indicators such as ejection
fraction. In [32], segmentation of two or four chambers of the
heart was performed considering different views. However,
all these studies [27]–[32] focus on MRI segmentation. Fur-
thermore, in another study [33], left ventricle segmentation of
patients was performed using three-dimensional ultrasound
images. As for the segmentation of fetal cardiac structures,

Li Yu et al. only segmented left ventricle in fetal echocar-
diographic sequences [34]. In [37], we proposed a DW-net,
comprising a dilated convolutional chain (DCC) and aW-net,
for A4C segmentation with a dataset of 895 A4C views.
This method has the potential to accurately segment complex
ultrasound multi-structured images when the data are not
large.

III. METHOD
Our proposed method is capable of segmenting seven crucial
anatomical structures in A4C views. The architecture of the
proposed method consists of a CU-net (see Section 3.1),
as illustrated in Fig. 2, and a novel loss function (see
Section 3.2).

A. DESIGN OF THE CU-NET
As Fig. 2 shows, our segmentation network is a novel
end-to-end architecture, mainly composed of two cascaded
U-nets, designed to take advantage of coarse-to-fine segmen-
tation. The first-stage U-net performs a coarse segmentation
and sends the extracted features to the second-stage U-net for
further precise segmentation.

The cascaded structure multiplies the network depth and
enhances the ability of the method to extract semantic fea-
tures. However, deep network may exacerbate the gradient
vanishing problem. This may lead to total loss information
being lost in long-distance propagation. Therefore, to address
this issue, we add an auxiliary supervision of the first U-
net. Each U-net has a loss of output: the first U-net has
a coarse loss, while the second has a fine loss. In addi-
tion, we redesign an inter-network connection. In previ-
ous research [37], as mentioned in Section II, we proposed
between-net connections (as BNC_DE) from the decoder lay-
ers of the first U-net to the encoder layers of the second one.
In this study, for the better use of priors, we build between-net
connections (as BNC_EE) from the encoder layers of the first
U-net to the encoder layers of the second one. We do not
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connect from the first decoder because the BNC_EE enables
prior information of shallow layers to be preserved and trans-
ferred to deeper layers to describe the details of the heart
structure, thereby achieving more accurate segmentation.

Each U-net is a typical encoder–decoder neural network
structure. Every layer of the encoder comprises three con-
volution operations, followed by instance normalization,
a ReLU activation function, and a max-pooling operation of
stride 2. In addition, each encoder layer has 20 convolution
filters of size 3×3 and stride 2. The decoder is symmetrical to
the encoder, and skip connection is used to connect the feature
maps of the encoder with the feature maps of the decoder. The
final outputs of both U-nets are produced by a softmax layer.

B. SSIM LOSS FUNCTION
The CU-net is an end-to-end architecture in which twoU-nets
are trained jointly to ensure the efficiency of data processing.
Our training loss is defined as the summation of the outputs
of both U-nets:

L = α ∗ Lcoarse + β ∗ Lfine (1)

where α and β are the weighted coefficients; Lcoarse is the loss
between the output of the first U-net and the target;Lfine is the
loss between the output of the second U-net and the target.

In [25], [26], the SSIM captures luminance, contrast, and
structural information of images. Therefore, we integrate it
into our training losses to learn the contrast and structural
information of the apparent facts of the object.

In previous studies [24], because of image reconstruction,
the mean and variance of the whole map often change dra-
matically over its span. Hence, a sliding window is used
to calculate the SSIM of patches under the sliding window
with a step size 1, and then the average value is taken as
the SSIM of the whole map. Let S =

{
Sij : j = 1, . . . ,W2

}
and G =

{
Gij : j = 1, . . . ,W2

}
be corresponding patches

cropped from the segmentation result and the ground truth,
respectively. Here ii is the number of segmented categories,
and W2 is the size of the patch. The SSIM of S and G is
defined as follows:

SSIM (S,G) =
2µSµG + C1

µ2
S + µ

2
G + C1

∗
2δSG + C2

δ2s + δ
2
G + C2

= l (S,G) ∗ cs(S,G) (2)

where µS and µG are the means of S and G, δS and δG are
the standard deviations of S and G, δSG is their covariance,
C1 = 0.012, and C2 = 0.022.

Hence, SSIM loss is defined as follows:

Lssim =
∑C

c=1

[
1
N

N∑
n=1

1− SSIM cn(S,G)

]
(3)

where c is the number of segmented categories and N is the
number of patches.

When the SSIM is used as a measure of image reconstruc-
tion, the Gaussian filter is often used to calculate the mean

and variance of the image. We use mean filtering to calculate
the mean and variance of each patch in SSIM.

Analogous to (3), we may write:

∂Lssim

∂S (x)
=

1
N

C∑
c=1

N∑
n=1

−
∂SSIM cn (S,G)

∂x
=

1
N

∑C

c=1

∑N

n=1

−

(
∂l(S,G)
∂x

∗cs (S,G)+l (S,G)∗
∂cs(S,G)
∂x

)
(4)

l(S,G) and cs (S,G) are the terms of the SSIM (Equation),
and their derivatives are, respectively,

∂l(S,G)
∂S(x)

= 2 ∗

(
µG − µS ∗ l(S,G)

µ2
S + µ

2
G + C1

)
(5)

and
∂cs(S,G)
∂S(x)

=
2

δ2s + δ
2
G + C2

∗ [(G(x)−µG)−cs(S,G) ∗ (S(x)− µS)] (6)

In SSIM loss, the mean, standard deviation, and covariance
are used as the estimate of brightness, contrast, and structural
similarity, respectively.

In our method, the two U-nets use the SSIM loss function
as their loss function, which is defined as follows:

Ltotal = α ∗ Lssim
coarse + β ∗ L

ssim
fine (7)

IV. EXPERIMENT
A. DATASET
The dataset used in this research is provided by the echocar-
diography department of Beijing Anzhen Hospital, Capital
Medical University, Beijing, China. This clinical center spe-
cializes in the detection and treatment of fetal congenital
heart diseases. Because the hospital collects a large number
of data on various complicated cases from all over the coun-
try, the dataset is representative and universal. The dataset
employed in the research comprises 1712 fetal A4C views.
The segmentation ground truth was labeled by experienced
doctors from the echocardiography department of the hospital
according to clinical criteria.

Each label contains seven structures: left atrium (LA), right
atrium (RA), left ventricle (LV), right ventricle (RV), epi-
cardium (EP), descending aorta (DAO), and thorax.We divide
the training set and testing set in a 3:1 ratio. We randomly
selected 1284 fetal A4C views as the training set and the
remaining other 428 images as the testing set, and there is no
overlap between the two sets. Each image is 256× 256 pixels.

B. EVALUATION CRITERIA
We use three measures to evaluate our method: dice coeffi-
cient (DSC), Hausdorff distance (HF), and pixel-level accu-
racy (PA). The DSC of one class is defined as

DSC =
2|Pc ∩ Qc|
|Pc| + |Qc|

(8)

where c is the category of segmentation, Pc is the automated
segmentation map of class c, and Qc is the ground truth of
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class c. The range of DSC is [0,1], with the maximum and
minimum values being 1 and 0, respectively.

The HF of one class is defined as

HF = max{h (Pc,Qc) , h(Qc,Pc)} (9)

where Pc is the pixel set of the automated segmentation map
of class c, Qc is the pixel set of the ground truth of class c,
and h (Pc,Qc) and h (Qc,Pc) are given as

h (Pc,Qc) = max(p∈Pc)min(q∈Qc) ‖p-q‖ (10)

and

h (Qc,Pc) = max(q∈Qc)min(p∈Pc) ‖q-p‖ (11)

where ‖·‖ is the Euclidean distance between points q and p.
Smaller the value of HF, the more accurate the segmentation
results are.

The average PA is defined as

PA =
1
C

∑C

c=1

pc
qc

(12)

where c is the number of the class, pc denotes the amount
of right classified pixels of class c, and qc denotes all pixels
of class c. The range of PA is [0,1], with the maximum and
minimum values being 1 and 0, respectively.

In addition, we use a paired t-test to compare the per-
formance between the two methods. As the test sample,
the results of seven structure regions obtained from the two
experiments are considered. The null hypothesis is that there
is no statistical difference between the results of two exper-
iments. A p-value of less than 0.05 indicates a significant
difference between the two experiments, while that less than
0.01 indicates a highly significant difference between the two
experiments.

C. IMPLEMENTATION DETAILS
The experiment was implemented using Python 3.5 and Ten-
sorflow framework [36], and the hardware used was NVIDIA
Tesla K80 GPU.

Our method directly handles clinical A4C views without
any data augmentation. We employed the Adam optimiza-
tion strategy in the training process. The initial learning rate
was 0.0004 with a weight decay of 0.1 per 1000 iterations.
We trained 100 epochs. As for the loss function, because
we used the same dice loss or SSIM loss function for both
supervision branches, with the same order of magnitude,
we set an equal weight of 1 for both α and β.

V. RESULTS
A. RESULTS OF SEGMENTATION
We performed the experiments using three different net-
work structures, namely the FCN [35], U-net [21], and
proposed method, CU-net, to segment seven structures in
A4C views, which are EP, LV, LA, DAO, RA, RV, and
thorax. We first trained the three methods with dice loss
and named them FCN+ldice, U-net+ldice, and CU-net+ldice,
respectively. Then, we trained these methods with SSIM loss

TABLE 1. Mean DSC, mean HF, and mean PA between the proposed
method and the competitive methods. ldice denotes that a model is
trained under the dice loss function. lssim denotes that a model is trained
under the SSIM loss function.

and named them FCN+lssim, U-net+lssim, and CU-net+lssim,
respectively. We designed the patch size of SSIM loss to
be 256, and the number of patches for each structure in the
loss function was 1. The reason to adopt this value will be
discussed at the end of this section.

Table 1 presents the PA as well as the mean DSC and
mean HF, which are the means of the corresponding values
for seven structures. Tables 2 and 3 illustrate the DSC and
HF values of seven structures, respectively. The CU-net with
SSIM loss obtained an average DSC of 0.856±0.096, aver-
age HF of 3.311±0.805, and average PA of 0.929±0.037,
indicating high performance in terms of all evaluation
metrics.

As shown in Tables 1, 2, and 3 (from the 2nd row, 4th

row, and 6th row), we can see that with the same dice loss,
the CU-net has a superior segmentation performance. The
CU-net significantly outperforms the FCN by 8.9% aver-
age DSC, 51.6% average HF, and 2.8% PA. In addition,
the CU-net significantly outperforms the U-net by 1.1% aver-
age DSC, 11.2% average HF, and 0.5% PA.

From Tables 1–3 (comparing 2nd row with 3rd row, 4th

row with 5th row, and 6th row with 7th row), we observe that
incorporating SSIM loss into the neural network segmenta-
tion models significantly improves results. The CU-net with
SSIM loss outperforms the CU-net with dice loss by 1.1%
average DSC, 7.9% average HF, and 0.6% PA.

B. VISUALIZATION RESULTS
To further understand the origin of the performance gain,
we visualized the segmentation results of some subjects.
Fig. 3 shows three example cases for comparing segmentation
performances of different networks and application of two
different loss functions. In Fig. 3 (1), the A4C view has
artifacts at the thorax, which leads to vanishing boundaries of
thorax and DAO. In addition, its atrial septum is open, which
may influence the boundary between LA and LV. In Fig. 3 (2),
cardiac valves are open and RV has artifacts, which is chordae
tendineae. Further, in Fig. (3), the boundaries of the four
chambers are obscure. The result of the CU-net with SSIM
loss shows a robust performance against the above challenges
and exhibits better boundaries. Comparison of the 1st column
of each group indicates that the CU-net is considerably better
than the U-net and FCN. Comparison between the different
loss functions indicate that although the performances of the
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TABLE 2. DSC for seven structures compared between the proposed method and the competitive methods. ldice denotes that a model is trained under
the dice loss function. lssim denotes that a model is trained under the SSIM loss function.

TABLE 3. HF for seven structures compared between the proposed and the previous methods. ldice denotes that a model is trained under the dice loss
function. lssim denotes that a model is trained under the SSIM loss function.

FIGURE 3. Visualization results. Segmentation results on three images are displayed. GT means ground
truth.

same network with dice loss and SSIM loss are comparable
to each other, SSIM loss results are relatively better.

C. ABLATION EXPERIMENT
In this part, we validate the effectiveness of each key com-
ponents used in our model. The ablation study involved two
parts: ablation experiment on the structure of the CU-net
and that on the loss function. All ablation experiments were
conducted on the same dataset.

To prove the effectiveness of our CU-net, we report the
quantitative comparison results of our model with other
related architectures. The results are presented in Table 4. The
U-net2 is a cascaded network of two U-nets. The U-net +
BNC_DE [37] connects intermediate layers in the decoder
of the first U-net to the encoder of the second U-net based
on the U-net2. The BNC_EE connects the intermediate lay-
ers in the encoder of the first U-net to the encoder of
the second U-net based on the U-net2. The Sup appends the
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TABLE 4. Ablation study on different architectures.

FIGURE 4. Visualization result of two branches for CU-net trained with
SSIM loss function. GT means ground truth.

FIGURE 5. DSC and HF values of RV, LV, LA, RA, and EP of two branches
for CU-net trained with SSIM loss function.

middle output supervision to the conjunction of two U-nets.
Table 4 indicates that the two cascaded U-nets with BNC_EE
and supervision architecture achieves the best performance
among these configurations. The training time and segmen-
tation time for the four experiments listed in Table 4 are
similar, where the training time is approximately 9 h and the
processing time for each A4C view is approximately 0.528 s.

For the analysis of the architecture, the results of super-
vision branch 1 and branch 2 of CU-net trained with SSIM
loss are shown in Fig. 4 (3rd and 4th columns, respectively).
Fig. 4 (a) presents the images with artifacts generated in
RV and thorax. The results of branch 2 show comparatively
clearer boundaries than branch 1. Similarly, in Fig. 4 (b),
the mitral valve and tricuspid valve of the A4C view are
open, whichmakes segmentation of the boundaries of LA and
LV and RA and RV difficult. Through visualization, we can
observe that the boundary of branch 2 was better than that of
branch 1; then, we compared the DSC of four chambers and
epicardium. The DSC and HF values of RV, LV, LA, RA, and
EP are presented in Fig. 5. We can observe that all the values
of branch 2 are better than those of branch 1.

For loss function analysis, the CU-net with SSIM loss is
trained for different values of W, which is the kernel width,
and the observations are summarized in Fig. 6. The mean
values of DSC and HF, which are useful evaluation metrics

to measure segmentation accuracy, are considered. We can
observe that the best performance is observed for W = 256.
When W increases, the value of DSC increases, whereas that
of HF decreases.

D. STATISTICAL ANALYSIS
To further explore whether our method is significantly differ-
ent from other methods and whether it is effective for improv-
ing automated segmentation of A4C views, we conducted a
paired sample t-test. The results of the statistical analysis are
presented in Table 5.

The statistical results show the effectiveness of ourmethod,
and the following three conclusions can be drawn. In the first
part (2nd and 3rd rows), compared with the FCN and U-net,
the CU-net shows significant differences in terms of the two
indexes, HF and DSC.

In the second part (4th to 6th row), the U-net2+BNC+Sup
has a significant effect on improving the performance. Signif-
icant differences exist between the U-net2 and U-net2+BNC
and between U-net2+BNC+Sup and U-net2+BNC in terms
of DSC and HF. This indicates that the between-net connec-
tions and auxiliary supervision are effective.

In the third part (7th to 9th row), significant differences are
observed between the different network incorporating SSIM
loss and that incorporating dice loss with the p-value being
less than 0.05 for both DSC and HF, except for the DSC for
U-net incorporating two different loss.

VI. DISCUSSION
In the study, we introduced cascaded U-net with the SSIM
loss function for the segmentation of LA, LV, RA, RV, DAO,
EP, and thorax from ultrasound A4C views for further extrac-
tion of useful clinical indicators. An ultrasound A4C view
has three shortcomings: low imaging resolution, obscure tis-
sue boundary, and learning of global structural information.
Herein, the proposedmodel for A4C segmentation focuses on
two of these problems, namely, boundary segmentation and
utilization of global information.

From Tables 1–3, the following two conclusions can be
derived. First, the CU-net performs the best comparing to the
FCN and U-net, thus proving its successful design. Second,
the SSIM loss function performs better than the dice loss
function. The performances of the FCN, U-net, and CU-net
are all improved under the constraints of SSIM loss, which
demonstrates that SSIM is effective for improving the seg-
mentation performance.

From the experimental results comparing the morphology
obtained by the model trained with dice loss and SSIM loss,
we observed that the FCN and U-net with SSIM loss are
better than the FCN and U-net with dice loss. By constraining
the global shape of the target and capturing the global infor-
mation, a more rounded shape and better segmentation are
achieved. Further, visualization of the results indicates that
the boundaries of the three subjects are smoother and more
accurate, thus confirming that SSIM loss is effective.
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FIGURE 6. Observations of the experiments performed with the CU-net trained with SSIM loss for
different W values. The baseline is the CU-net trained with dice loss.

TABLE 5. Results of paired t-test. Bold results indicates the significant
differences (p value <0.05). The BNC means the BNC_EE.

Furthermore, the segmentation obtained by the CU-net is
more anatomically reasonable than that by the U-net and
FCN.Aswe can see in the first column of each group in Fig. 3,
the shape of the chamber segmented by SSIM resembles a
circle, with a rough surface. In sum, these results suggest that
the proposed CU-net with the SSIM loss function is effective.

To further understand whether the CU-net works in the
way it has been designed, we demonstrate the intermediate
results of the CU-net. Table 4 confirms that by leveraging
the two-branch supervision and the between-net connections
from the first encoder to the second encoder, the CU-net can
obtain more refined segmentation results. This proves that the
BNC_EE is more suitable than BNC_DE [37], [38] for fetal
ultrasound multi-tissue segmentation.

In Figs. 4 and 5, we observe that the output of branch 1 is
coarser than that of branch 2. The feature output by branch 1 is
processed by branch 2, which results in a robust performance
as more accurate boundaries are yielded compared to those in
branch 1 results.

Our CU-net is more concise compared with other cas-
caded U-net methods, because of residual blocks in [38], and
dense blocks in [39]. As for other fetal echocardiography
segmentation methods [37], our CU-net is more less time-
consuming. [37] has dilated convolution and highly complex
networks and require more segmentation time.

Further, we explored the effect of different kernel widths
(W) in SSIM on the performance measured by the dice
coefficient and HF. The experimental results confirm that the
performance improves with increasing W probably because

of the model’s ability to grasp global information. Moreover,
when W is 256, equal to the size of image, the results are
optimum.

The results of the statistical analysis suggest that our
method achieved more accurate segmentation compared with
two existing methods and the performance improvement due
to the use of between-net connections and auxiliary super-
vision is statistically significant. The results also prove that
the CU-net with the SSIM loss significantly outperforms that
with the dice loss in fetal ultrasound A4C view segmentation.

Even though the proposed method has been shown to pro-
vide good generalization capabilities across the segmentation
of images, our work has the following limitation. There is
further scope to improve the proposed method, particularly in
terms of incorporating clinical prior knowledge into the A4C
view segmentation; this will be explored in future.

VII. CONCLUSION
We proposed a novel end-to-end cascaded U-net model,
that is, CU-net with SSIM loss, for accurate seven struc-
tures segmentation in A4C view. The proposed CU-net is a
predict-refine architecture, which consists of two U-nets with
branch supervisions and between-net connections. Combined
with the SSIM loss function, this method can capture both
global information and clear tissue boundaries. Experimental
results on A4C view datasets showed that our proposed could
achieve 85.6% DSC, 3.311 HF, and 92.9% PA, and per-
formed better than some mainstream methods. Thus, it was
demonstrated that our method can assist in early prenatal
diagnosis of CHDs. This method can be adapted to semantic
segmentation of other organs, and has the potential to be
applied to solve segmentation problems in other views of fetal
cardiac ultrasound, such as the left ventricular outflow tract
view.
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