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ABSTRACT With the development of computer vision and mobile computing, assistive navigation for
people with visual impairment arouses the attention of research communities. As two key challenges of
assistive navigation, ‘‘Where am I?’’ and ‘‘What are the surroundings?’’ are still to be resolved by taking
advantage of visual information. In this paper, we leverage the prevailing compact network as the backbone
to build a unified network featuring two branches that implement scene description and scene recognition
separately. Based on the unified network, the proposed pipeline performs scene recognition and visual
localization simultaneously in the scenario of assistive navigation. The visual localization pipeline involves
image retrieval and sequence matching. In the experiments, different configurations of the proposed pipeline
are tested on public datasets to search for the optimal parameters. Moreover, on the real-world datasets
captured by the wearable assistive device, the proposed assistive navigation pipeline is proved to achieve
satisfactory performance. On the challenging dataset, the top-5 precision of scene recognition is more than
80%, and the visual localization precision is over 60% under a recall of 60%. The related codes and datasets
are open-source online at https://github.com/chengricky/ScenePlaceRecognition.

INDEX TERMS Visual place recognition, global image descriptor, scene classification, assistive navigation.

I. INTRODUCTION
In the era of artificial intelligence, different kinds of intelli-
gent systems are emerging into the boom, including service
robots, autonomous vehicles, and security surveillance sys-
tems, etc. The inspiring improvements have also occurred
in the field of assistive technology, and various wearable
devices have been developed by both the industrial and the
academia to promote the living level of visually impaired peo-
ple [1], [2]. However, the majority of those devices are aimed
at obstacle avoidance or pathway detection. Indeed, those
demands are the most critical demands for visually impaired
people traveling both outdoors and indoors, whereas there are
more functionalities to be studied for assistive navigation.
In this paper, we focus on the visual localization and scene
perception problems, which have not been deeply researched
among the community of assistive technology. Deep convo-
lutional networks have become powerful approaches to solve
different kinds of computer vision tasks. Based on various
networks, scene recognition (classification), as a classical
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computer vision task, has been studied thoroughly [3], [4].
The deep convolutional networks can also be used as descrip-
tor extractors on the task of visual localization [5]. Therefore,
it is possible to unify scene recognition and scene description
in a single convolutional network, which resolves the two
challenges of assistive navigationWhere am I? andWhat are
the surroundings? simultaneously.

As shown in Figure 1, the proposed convolutional net-
work unifies the functionalities of scene recognition and
visual localization. Specifically, the network consists of a
preceding backbone defined as BaseNet and two subsequent
branches that are represented as a blue branch for scene
recognition and an orange branch for scene description. The
blue branch generates the scene class of the input image,
and the scene recognition result provides with the basic
information of the surroundings. The orange branch extracts
the NetVLAD (network-based vector of locally aggregated
descriptors) descriptor [5] from the input image, and the
global descriptor is used to search the localization result from
the database images. The unified network yields both the
scene class of the input image, which can be conveyed to the
user through interaction approaches, and the scene descriptor
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FIGURE 1. The proposed unified network and visual localization pipeline
for assistive navigation. Branch-1 and Branch-2 share the same network
structure but have different parameters.

of the input image. As shown in Figure 1, the descriptors
of the query images are matched with the database descrip-
tors by the fast retrieval of nearest neighbors. Subsequently,
the proposed online sequence matching utilizes the retrieval
results of consecutive frames to produce the best-matching
database image, which is the result of visual localization.

The visual perception tasks in the scenarios of assistive
navigation are more challenging than those in the fields
of robotics or autonomous vehicles. The wearable camera
is prone to capture images with motion blur and at low
resolution, which causes difficulties for fine-grained scene
understanding. Apart from that, multiple visual variations
between query and database images (e.g. illumination, sea-
son, viewpoint, and dynamic objects) impede the robustness
of visual localization. Taking those factors into consideration,
we collect and label a real-world dataset in the scenario of
assistive navigation to validate the proposed pipeline com-
prehensively.

The contributions of this paper lie in the two-fold aspects.
• The unified network is proposed to achieve both scene
recognition and scene description simultaneously. The
compressed deep descriptors are leveraged in the pro-
posed visual localization pipeline composed of image
retrieval and online sequence matching.

• Based on the real-world scenarios, the configurations
of the unified network and the parameters of the visual
localization pipeline are tuned. Both on the public and
the self-collected datasets, the proposed pipeline is val-
idated for assistive navigation.

The subsequent parts of this paper are arranged as follows.
Section II reviews the state of the art on assistive navigation
and the related convolutional network approaches on scene
recognition and visual localization. Section III presents the
details of the unified network for scene description and scene

recognition and also presents the visual localization pipeline
involving image retrieval and sequence matching. The net-
work training procedures, the real-world datasets, and the
corresponding assistive system and the experimental results
are demonstrated in section IV. Section V concludes this
paper.

II. RELATED WORK
With the booming development of artificial intelligence and
mobile Internet, the research community pays more and more
attention to computer vision-based solutions on different
issues [6], [7]. At the same time, the computer vision-based
assistive navigation for visually impaired people is thriving.
In this section, we focus on the work on scene recognition
and visual localization, which are two of the most important
applications in this field.

A. ASSISTIVE SCENE RECOGNITION
There are plenty of contributions dedicated to object detection
in the field of assistive navigation, such as generic object
detection [8], staircase detection [9], and road barrier recogni-
tion [10]. In order to inform the visually impaired with ambi-
ent objects, Mekhalfi et al. [11] proposed a multi-label scene
recognition algorithm based on compressive sensing, which
works well at those places once visited. Yang et al. [12] seized
pixel-wise semantic segmentation to cover navigation-related
perception needs in a unified way and integrated the approach
in a wearable navigation system by incorporating robust
depth segmentation. Apart from the generic scene percep-
tion, we previously achieved assistive navigation at urban
traffic intersections for visually impaired people [13]. The
AECA (adaptive extraction and consistency analysis) algo-
rithm detects the position and orientation of zebra crosswalks
in real time [14]. The pedestrian crossing lights detection
algorithm leverages candidate extraction, candidate recog-
nition, and temporal-spatial analysis to implement robust
performance in challenging scenarios [15].

In this paper, we concentrate on scene recognition instead
of object detection or semantic segmentation, because
scene recognition features lower computational complexity
and is more suitable for interaction. There are different
datasets used for training the scene recognition network,
e.g. Places dataset [4] and SUN dataset [3]. Based on
those datasets, a series of classical convolutional networks,
such as AlexNet [16], VGGNet [17], GoogLeNet [18] and
ResNet [19], have been proposed successively for scene
recognition task. Moreover, different compact classification
models, such as SqueezeNet [20], MobileNet [21] and Shuf-
fleNet [22], are suitable for the mobile devices with limited
resources. Based on those compact networks, a lot of applica-
tions, such as object detection and image segmentation [23],
have been developed.

B. (ASSISTIVE) VISUAL LOCALIZATION
The retrieval-based visual localization has attracted the atten-
tion of the research community of autonomous systems.
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Retrieval-based methods obtain the best-matching database
image of the query image and take that database image as
the localization result. Localization methods based on image
retrieval are suitable for assistive navigation in large-scale
and dynamic environments, in that it does not require the
precise metric maps.

To solve the cross-season visual changing of place recog-
nition, Neubert et al. [24] proposed an appearance change
prediction method based on the vocabularies of superpixels.
Pepperell et al. [25] augmented the traditional one-dimension
database with a directed graph, and used particle filter
to achieve place recognition in networked environments.
Abdollahyan et al. [26] presented a sequence-based approach
to visual localization using the partial order kernel and the
pre-trained CNN (convolutional neural network) descriptor.
Maddern et al. [27] proposed illumination invariant trans-
formation to improve visual localization performance during
daylight hours. Those methods achieved superior perfor-
mance on the season or illumination changes but did not
pay attention to resolving more challenging visual variations
of place recognition, such as dynamic objects or viewpoint
changes. Ciarfuglia et al. [28] introduced a new bag-of-
words loop closure detection by adopting a set of visual
words weights learned offline accordingly to a discrimina-
tive criterion. Stumm et al. [29] presented a unified frame-
work for defining, modelling and recognizing places in a
way which is directly related to the underlying structure
of features in the environment. Cascianelli et al. [30] uti-
lized the landmark-based CNN descriptor and the covisibility
graph to preserve scene geometric and semantic structure and
to improve appearance invariance. Those methods achieved
satisfactory visual localization performance on real-world
datasets.

Currently, the research community of assistive technology
tends to solve localization issues in indoor scenarios. Mean-
while, most of the approaches are based on beacon-based
navigation systems [31], [32], where the hardware mainte-
nance at the specific places, even if the maintenance cost
can be controlled, limits the application range of navigation
systems. In our previous work, we proposed a series of visual
localization approaches in the field of assistive navigation.
The key position prediction algorithm [33] uses conventional
image descriptors based on multimodal images and GNSS
(global navigation satellite system) data to localize the users
at the user-defined key positions. Subsequently, we proposed
the improved localization approach OpenMPR [34], where
the off-the-shelf CNN descriptors along with other multi-
modal descriptors are optimized in the sequence matching
pipeline by the genetic algorithm. Hu et al. [35] introduced
the panoramic annular camera to visual odometry so as to
robustify the positioning and mapping performance in the
assistive navigation.

However, the previous work on assistive navigation only
implemented one of scene perception and visual localization.
The scene description and classification are related in terms
of assistive functionality and network structure. Meanwhile,

considering the limited resources of mobile devices, it is
necessary to unify scene recognition and visual localization
in a single network in order to shrink the computational
complexity.

III. METHODOLOGY
In this section, the proposed pipeline for assistive navigation
and the details of the proposed network are illustrated. The
proposed network outputs both scene recognition and scene
description, which are leveraged in scene perception and
visual localization respectively. Utilizing the scene descrip-
tors, the assistive navigation pipeline yields visual localiza-
tion results by fast retrieval and sequence matching.

A. UNIFIED NETWORK
In this paper, the unified convolutional network is proposed
to generate the scene class and the scene descriptor simulta-
neously. In order to make the whole system run smoothly on
mobile devices with limited resources, we leverage the com-
pact convolutional neural network to achieve our goal. In this
paper, we consider two kinds of efficient neural networks:
MobileNet V2 [23] and ShuffleNet V2 [36]. The backbone
structure of MobileNet V2 / ShuffleNet V2 corresponds to
BaseNet and Branch-1 (or Branch-2) in Figure 1. Herein,
we present the characteristics and the structures of the two
networks.

1) BACKBONE NETWORK: MobileNet V2
Based on the preceding MobileNet that utilizes depth-wise
separable convolutions to reduce the computational complex-
ity, MobileNet V2 promotes the network performance and
compresses the network size by (addition operation) short-
cut structures and inverted residuals with linear bottlenecks.
Different from standard convolutions, depth-wise separable
convolutions involve depth-wise convolutions and point-wise
convolutions, thus FLOPs (the number of floating-point
multiplication-adds) shrink to around 1/K 2 of the standard
convolutions assuming the kernel size is K × K .

In Table 1, we list the layer structure of a basic block
(inverted residual with linear bottleneck) in MobileNet V2.
The inverted residual means that the shortcut of adjacent
blocks occurs at the feature maps with small depth, thus
improving memory efficiency. That is to say, the intermediate
feature maps in the block have a large depth width, which
is controlled by the expansion factor E . In those blocks
where E = 1, the layer 1 of Table 1 is omitted. The linear
bottleneck gets rid of the activation layer of the last point-wise

TABLE 1. The inverted residual with linear bottleneck in MobileNet V2.
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FIGURE 2. The backbone structure of MobileNet V2 used in the proposed unified network. The linear
bottleneck with inverted residuals is denoted as ‘‘B n’’, where n is the channel expansion factor of
intermediate layers in the bottleneck block. The shortcuts between the adjacent layers are presented
with arrows.

convolution in the bottleneck, which prevents features from
being disturbed by the nonlinear layer (e.g. ReLU).

As shown in Figure 2, the backbone structure ofMobileNet
V2 is composed of one convolutional layer (with a batch
normalization layer and a ReLU6 activation layer) and suc-
cessive 17 inverted residual blocks. Those blocks feature
different expansion factors, different output depth sizes,
and different convolution strides. Taking the image with
the size of H × W × 3 as input, the backbone part of
MobileNet V2 generates a feature map with the size of
H/32×W/32× 320.

2) BACKBONE NETWORK: ShuffleNet V2
Another choice of the backbone is the prevailing efficient net-
work ShuffleNet V2, which is optimized based on ShuffleNet
according to four guidelines, including equal channel width
for input and output layers, moderate group convolution, less
network fragmentation, and limited element-wise operations.
The basic block of ShuffleNet V2 is presented in Figure 3,
which is similar to the inverted residual blocks of MobileNet
V2, but the intermediate feature maps are not expanded in
channel width. Moreover, the input feature maps are split
in the channel dimension into two branches, which undergo
different operations. Meanwhile, channel shuffle that rear-
ranges the order of channels in feature maps makes the two
branches of the basic block in ShuffleNet V2 communicate
information. As concatenation exists in each basic block,
there are more shortcuts in ShuffleNet V2 compared with
MobileNet V2.

As shown in Table 2, the backbone structure of ShuffleNet
V2 is composed of a convolutional layer (with a batch nor-
malization layer and a ReLU activation layer), a max-pooling
layer, and successive 16 basic blocks. Those blocks feature

FIGURE 3. The basic block of ShuffleNet V2. (a) The basic block with the
spatial down-sampling output whose depth is larger than that of the
input. (b) The basic block in which the input and output have the same
size.

different output depth sizes and different convolution strides.
Taking the image with the size of H × W × 3 as input,
the backbone part of ShuffleNet V2 generates a feature map
with the size of H/32×W/32× 464.

3) BRANCH OF SCENE RECOGNITION
In the unified network, the scene recognition branch (shown
as blue in Figure 1), together with the backbone structure,
composes an intact scene recognition pipeline. Based on the
backbone networks presented above, the scene recognition
branch is as Table 3. As we use Places-365 dataset [4] as
the training dataset of scene perception, the number of output
classes is 365.

4) BRANCH OF SCENE DESCRIPTION
Based on the backbone network, the branch of visual local-
ization is proposed to extract the scene descriptors of input
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TABLE 2. The backbone structure of ShuffleNet V2 (In this paper,
D = 116).

TABLE 3. The pooling and FC layers of the scene recognition branch.

images. NetVLAD is an efficient approach to pooling dis-
criminative features from the preceding feature maps. Herein,
we summarize it in brief. Obtained from the backbone struc-
ture (i.e. Branch-2 in Figure 1), the feature maps F0 with the
size ofW×H×D can be viewed as column-like local features,
which are defined as

{F i0 ∈ RD
|i = 1, 2, 3, . . . ,N ;N = W × H}. (1)

After column-wise L2-normalization, the features are
denoted as Fn, and are assigned to the cluster centers {Ck ∈
RD
|k = 1, 2, 3, . . . ,K } proportional to their proximity. This

operation is called soft assignment, the coefficient of soft
assignment is represented as

ak (F in) =
exp(−α||F in − Ck ||

2)∑K
k ′=1 exp(−α||F in − Ck ′ ||2)

(2)

=
exp(2αCkF in − α||Ck ||

2)∑K
k ′=1 exp(2αCk ′F in − α||Ck ′ ||2)

. (3)

In this paper, the cluster number K is set as 64. Apparently,
the soft assignment operation can be implemented by a con-
volutional layer with a softmax layer. Finally, the pooling
results are defined as {Vk ∈ RD

|k = 1, 2, 3, . . . ,K }, where

Vk =
N∑
i=1

ak (F in)(F
i
n − Ck ). (4)

Having L2-normalized each D-dimensional Vk vector,
we concatenate those vectors into a global descriptor, which
is then L2-normalized globally.

B. PIPELINE OF ASSISTIVE NAVIGATION
In this section, the pipeline of visual localization with scene
recognition is demonstrated. For database images, the net-
work inference is executed in prior, and the scene descriptors
are saved. In the online phase, the query image is also fed
into the network to yield the descriptor and the scene class.
The scene recognition is conveyed to the users directly as the
scene perception results, and the scene descriptors are used
in the image retrieval of visual localization. The randomized
k-d forest is utilized to retrieve the top-K candidates of the
query image from database images.

In order to robustify the visual localization further,
sequence matching determines the final result for each query
image. The online sequence matching proposed by our pre-
vious work OpenMPR is modified to adapt to this work.
In our previous work, the sequence matching only considers
the nearest neighbor of the query. In this paper, the similarity
matrix that is formed by the similarity value (the reciprocal of
Euclidean distance) of top-K retrieved neighbors is leveraged
for sequence matching. In Figure 4, each row of the matrix
represents a query image, meanwhile, each column represents
a database image. The similarity matrix is a sparse matrix,
because only the retrieved top-K database images of a query
image are assigned with similarity values and others are
assigned with zero.

FIGURE 4. The online sequence matching strategy used in this paper. The
matching score of a database-query pair is determined by the top-K
nearest neighbors’ distance in its associated cone region.

As shown in Figure 4, an online cone-based searching
is carried out upon every query-database pair. Taking the
query-database pair (i, j) as the vertex, the corresponding
cone-like searching region is limited by sequential length nq,
maximal velocity vmax and minimal velocity vmin. Differ-
ent from the offline searching algorithm in SeqSLAM [37],
the online one only makes use of the past query images,
regardless of the future query images. Within the cone region,
the sum of similarity values is defined as summatch. Then,
the score si,j of any query-database pair (i, j) is defined as

si,j =
summatch

nq
. (5)
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For each query image, the latent best-matching result is the
database image with the highest score. Finally, the matching
score of the latent pair is evaluated by windowed uniqueness
thresholding [37] to remove low-confidencematching results.
The sequence matching parameters follow those optimized
parameters in [34]. The parameters of cone region boundaries
vmin and vmax are set as 0.4 and 2.5 respectively. The length of
the matching sequence nq is set as 10, and the window width
of uniqueness thresholding is also set as 10.

IV. EXPERIMENTS
In this section, we present the dataset configurations,
the training procedures of the unified network and the exper-
imental results of assistive navigation.

A. TRAINING OF THE UNIFIED NETWORK
The training of the unified network was carried on NVIDIA
GeForce RTX 2080 Ti.

1) SCENE RECOGNITION
The scene recognition branch is composed of the backbone
part (BaseNet and Branch-1), pooling and fully connected
layers. All of the layers in the branch are trained for scene
recognition. The input size of images is set to 224 × 224.
Different data augmentation approaches are applied to the
training images, including random cropping and random flip.
Cross entropy loss serves as the loss function during training.

a: DATASET
In the first training phase, the branch of scene recognition is
trained on Places-365 dataset, which is a widely-used dataset
for scene classification and scene features extraction. There
are 1.8 million training images from 365 scene categories.
Moreover, there are also 50 images per category in the valida-
tion set. In Figure 5, some instances of dataset images reveal
that the dataset features a broad scale of real-world scene
categories.

FIGURE 5. Several image instances with scene label in Places-365.

b: PARAMETERS
During training, SGD (stochastic gradient descending) is
leveraged as the optimizer of the scene recognition branch.
The learning rate is set as 0.01, the momentum is set as 0.9,
and the weight decay is set as 10−4. The learning rate decays
to 0.1 times of original value for every 30 epochs. The training
of the scene recognition branch starts from the pre-trained
results trained by the other task, so we use a larger learning
rate to reach the optimal region of parameter space faster.

c: METRICS
The top-1 precision and top-5 precision, denoted as P@1 and
P@5 respectively, are used as the performance criterion of
scene recognition. If one of the top-K predictions hits the
ground truth, the prediction is defined as a true positive. Then,
top-K precision is defined as the number ratio of true positives
to all of the testing samples.

d: RESULTS
In Table 4, we list the scene recognition performance of
different convolutional networks on the validation set of
Places-365. The computational complexity criterion (FLOPs)
is given when the input images are with the size of 224 ×
224×3. The trained models of other networks (i.e., VGGNet,
GoogLeNet and ResNets) are provided by Zhou et al. [4]. It is
clear that the classification performance of the two efficient
models surpasses that of Resnet-18. Although the efficient
networks achieve lower precision compared with other base-
lines, the computational efficiency of the two efficient net-
works is much more superior, considering they feature much
fewer FLOPs. As for the two efficient models, ShuffleNet
V2 is superior to MobileNet V2 in performance slightly.

TABLE 4. The performance of the scene recognition branch.

2) SCENE DESCRIPTION
As shown in Figure 1, the scene description branch is com-
posed of the backbone part (BaseNet and Branch-2) and the
NetVLADmodule. In the proposed unified network, BaseNet
is the common part that is shared with the scene recognition
branch. The initial weights of the scene description branch
are set as the trained parameters of the scene recognition
branch. Different from the case of scene recognition train-
ing, parameters in BaseNet are fixed, and only the layers in
Branch-2 and NetVLAD are trained for scene description.
Naturally, the number of trainable layers is adjustable, which
means that the separation point of BaseNet and Branch-
1/Branch-2 can be at different positions in the backbone
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network. The weakly-supervised triplet ranking loss [5] is
used to train the scene description branch.

a: DATASET
The branch of scene description is subsequently trained on
Pittsburgh dataset [5]. As shown in Table 5, the dataset is
composed of training subset, validation subset and testing
subset. The discriminate ability of NetVLAD descriptors
is obtained from the training phase, when the images with
diverse appearances (e.g. different illumination, viewpoint
and dynamic objects) but captured at the same place are
leveraged as training data.

TABLE 5. The number of images of the Pittsburgh dataset.

b: PARAMETERS
Same with the other branch, SGD is also leveraged as the
optimizer of this branch. The learning rate is set as 10−4,
the momentum is set as 0.9, and the weight decay is set as
10−3. The learning rate decays to 0.5 times of original value
for every 5 epochs. The scene description branch is fine-tuned
based on the trained parameters derived from scene recogni-
tion, so we use a smaller learning rate.

c: METRICS
Faiss [38] is used to retrieve the nearest database descriptors
for each query descriptor. If one of the retrieved top-K results
falls within the range (25m) of the query image, it is defined
as a correct retrieval. The ratio of correct retrievals to all the
retrievals is denoted as precision.

d: RESULTS
In Table 6, the retrieval precisions at top-1, top-5 and top-10
of NetVLAD based on different backbones with different
Branch-2 volume are presented. In the table, the Branch-
2 volume is actually the number of blocks in Branch-2 for
MobileNet V2 and ShuffleNet V2. That is to say, the trained n
layers are the last n blocks of the backbone shown in Figure 2
and Table 2. For the case of Wide ResNet-18, the volume
denotes the number of block groups that are defined in [39].
For VGG-based NetVLAD, the Branch-2 volume denotes the
number of convolutional (pooling) layers, and is set as 5,
which is the optimal training configuration presented in [5].

Obviously, the high-complexity networks (Wide
ResNet-18 and VGG-16) yield higher precision. Fortunately,
the network based on MobileNet V2 achieves the precision
that is close to those high-complexity networks and is accept-
able. It is worthwhile to note that ShuffleNet V2 is inferior
to MobileNet V2 on the task of scene description although
the last feature maps of the ShuffleNet V2 backbone have

deeper channels (464 dimensions) than that of the MobileNet
V2 backbone (320 dimensions). Considering that ShuffleNet
V2 performs better than MobileNet V2 on scene recognition,
it reveals that the network performing superior on scene
recognition does not necessarily feature the superior perfor-
mance on scene description. In view of the balance between
precision and efficiency, we choose MobileNet V2 with
11 trained layers as the optimal configuration and use it in
the following experiments.

Furthermore, we conducted an ablation study on the per-
formance boost of scene description by training from scene
recognition models. In this work, the joint training of scene
recognition and scene description is actually the common part
of two network branches, i.e. BaseNet. Therefore, the sep-
arate training means that the BaseNet part of NetVLAD
network has nothing to do with the scene recognition training
results. Therefore, the branch of scene description is trained
based on the classification results on ImageNet dataset [40],
and the training parameters are the same with those men-
tioned above. The image retrieval performance is also pre-
sented in Table 6, from which we can see that the NetVLAD
descriptor based on ImageNet is obviously inferior to that
trained based on the scene recognition branch. Thereby, train-
ing firstly on scene recognition does improve the performance
of scene description.

The final scene descriptor features the dimensions of
K×D, and the dimension forMobileNet V2-basedNetVLAD
is 20, 480, which is large for image retrieval. The extracted
descriptor is compressed to a lower scale for computational
efficiency. Therefore, PCA (principal component analysis)
with whitening [41] and L2-normalization are used to com-
press the dimensions of global descriptor and to speed up
image retrieval.

The description performance of different reduced dimen-
sions are tested on the Pittsburgh dataset, and the results are
presented in Table 7. For each kind of compressed descriptor,
the retrieval time per query on Pittsburgh-Test set is also
presented. According to the results, the NetVLADdescriptors
should be compressed to 2, 560 dimensions, where the top-1
precision drops only by about 3% (we think it is acceptable)
compared with the original descriptors and the descriptor
matching time is dramatically reduced. If we continue to
compress dimensions, the matching time is no longer reduced
significantly, and the recall is reduced largely. Therefore,
we find a balanced trade-off between the descriptor matching
time and localization precision at 2, 560 dimensions.

B. ASSISTIVE DEVICES AND REAL-WORLD DATASETS
We have developed a wearable assistive device Intoer [42] for
navigational assistance. The device has been used in differ-
ent assistive applications, including obstacle avoidance [12],
[43], traffic intersection assistance [13]–[15], and visual
localization [33], [34], [44], etc. As shown in Figure 6, Intoer
is composed of the multi-modal camera RealSense [45],
a customized portable processor with GNSS module, and a
pair of bone-conduction earphones [46].
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TABLE 6. The performance of the scene description branch.

TABLE 7. The dimension reduction performance of NetVLAD descriptor.

FIGURE 6. The assistive device Intoer is used to achieve the proposed
assistive navigation pipeline.

TABLE 8. The detailed information of the west lake dataset.

In this paper, we use Intoer to capture image datasets for
visual localization and scene recognition. The West Lake
dataset was collected in the scenic area of the West Lake, and
was previously leveraged to validate Visual Localizer [44]
qualitatively. As shown in Table 8, this dataset includes three
routes, on which the camera records images with an interval

of three seconds. In view of the walking speed, the interval
distance of consecutive images is estimated as 3-4 meters.
We labeled each query image with several scene classes
and no more than one corresponding database image, so as
to evaluate the proposed pipeline quantitatively. Apart from
that, we also labeled each database image with several scene
classes. In view of the semantic ambiguity of the scene recog-
nition, the ground truths of each image are multiple scene
categories.

The route schematic of the West Lake dataset is shown
in Figure 7. It is worth noting that the query images and the
database images were captured in a winter afternoon and a
summer morning respectively, which results in the illumi-
nation and vegetation variations. Moreover, the dataset was
collected in the open area (the West Lake scenic area) where
pedestrians occurred in images frequently and object lay-
outs also vary between the query and the database. Thereby,
the dynamic objects compose one portion of real-world sce-
narios and interfere with the stability of visual localization.
As images are captured by the wearable camera, the view-
point of the query and that of the database is different and
some images suffer from motion blur. In summary, there are
significant appearance variations between the queries and the
databases in the real-world dataset, which is important to
validate the robustness of visual localization.

C. EXPERIMENTAL RESULTS AND VISUALIZATION
In this section, the experimental results of the proposed
pipeline on the real-world dataset are presented and analyzed.
Firstly, the performance test of scene recognition is carried
out on the West Lake dataset. Then, we evaluate the utility
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FIGURE 7. The route schematic and some instances of the West Lake dataset.

TABLE 9. The scene recognition performance of the west lake dataset.

of visual localization on the West Lake dataset and Gardens
Point Walking dataset [47].

As mentioned before, MobileNet V2 is chosen as the
backbone of the proposed network. For both branches of the
unified network, the layer volume of Branch-1 / Branch-2
is 11, and the NetVLAD descriptors are compressed to
2,560 dimensions. All of the input images are resized to
224 (smaller edge) with the respect ratio invariant, and then
cropped to the size of 224× 224.

1) SCENE RECOGNITION
In view of the scenes overlap between database images and
query images, we performed the scene recognition exper-
iment on the database portion of the West Lake dataset.
As mentioned before, top-K precision is used as the accuracy
indicator of scene recognition. The scene recognition preci-
sion on the West Lake dataset is presented as Table 9.
As we can see, the scene recognition of the unified network

achieves satisfactory performance in the real-world assistive
scenarios, though the network is only trained on the public
Places dataset. On the challenging dataset, the top-5 precision
of scene recognition is more than 80%. Some top-1 predic-
tions of scene recognition are presented in Figure 8. Fortu-
nately, it is concluded from the results that some negative
predictions (i.e. Yellow-40 and Yellow-50 in Figure 8) are not
irrelevant to the actual scenes in images.

2) VISUAL LOCALIZATION
To quantitatively evaluate the performance of visual localiza-
tion, we use a more rigorous criterion than top-K precision

used in the previous scene description validation. Considering
the query and database images are sequential in the dataset,
the localization result of a query image is represented as the
sequence index of the best-matching database image. If the
index difference between the place recognition result and
the ground truth (denoted as Error) is less than or equal to the
tolerance (denoted as tol), the result is correct. Based on that,
the true positive (TP), true negative (TN), false positive (FP)
and false negative (FN) are defined in Table 10. Precision is
defined as the proportion of true positives out of all predicted
positives, and recall is defined as the proportion of true pos-
itives to all of the ground-truth positives. Based on precision
and recall, F1 score is defined as

F1 = 2×
Recall × Precision
Recall + Precision

. (6)

Using different windowed uniqueness thresholds, a series
of precision and recall is obtained and plotted in Figure 9.
Generally speaking, the utility of visual localization achieves
superior performance under the circumstances of assistive
navigation. The yellow route of the dataset is relatively easy,
because the places in the yellow route have more diverse
appearances than the other routes. Therefore, the perfor-
mance of the yellow route is perfect, and is the best among
the three routes. There are plenty of aliasing places, which
resemble each other in terms of visual appearance but differ
in terms of spatial position existing in the red and blue route.
Moreover, the two routes contain the new queries that do not
appear in database. On those hard scenarios, the performance
of the proposed pipeline is also acceptable.

In order to inspect visual localization performance deeply,
we visualize those image matching results by assigning the
window uniqueness threshold to be 1.2, at which the precision
is relatively high meanwhile the recall does not drop heavily.
For all of the three routes, the visual localization precision is
over 60% under a recall of 60%. In this condition, the visual-
ization results of visual localization are shown in Figure 10,
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FIGURE 8. The top-1 predictions of the West Lake dataset. Green denotes correct result, and red denotes incorrect result.

TABLE 10. The definitions of prediction attribute for visual localization.

FIGURE 9. The precision-recall curve of visual localization on the West
Lake dataset.

where the images are sampled uniformly from the query
sequence. As we mention ahead, the localization results of
yellow routes match well also in terms of visual intuition.
As for the other hard routes, some localization failures are
caused by false negative predictions, such as query 10 and

query 20 in the red route as well as query 30 and query 50 in
the blue route. The false negatives result in less hazardous
than false positives in localization applications.

In order to illustrate the generalization of the proposed
pipeline, we carried out the experiment on the Gardens
Point Walking dataset, which was collected in a cam-
pus using a portable camera. The scenario of the pub-
lic dataset is close to the assistive navigation, though it
is less challenging compared with our West Lake dataset.
We choose ‘‘day-left’’ and ‘‘day-right’’sequence as the query
and the database respectively. In Table 11, we present the
visual localization performance of three approaches: the pro-
posed pipeline, the approach using an off-the-shelf AlexNet
layer as the image descriptor [47], and multi-level algo-
rithm [48], which uses global descriptors (GoogLeNet [18])
and landmark-based local descriptors (GeoDesc [49]) to
achieve coarse-to-fine visual localization. For the multi-level
algorithm, we choose the configuration with the best local-
ization performance, i.e. using Fundamental Matrix to verify
geometric transformation. Similarly, we choose the optimal
configuration (using FC6 as the descriptor) of Sünderhauf’s
method [47] as the comparison baseline of our method.

Despite the fact that we use a much simpler backbone
network and do not use local feature-based geometric veri-
fication at all, the proposed pipeline achieves superior per-
formance when tol = 5. The index difference tolerances
of 3 and 5 correspond to around 10 meters and 18 meters
in real-world space respectively. It is worthwhile to note
that Sünderhauf’s method achieves the optimal performance
when using Conv3 layer on any other datasets except Gar-
dens Point Walking dataset [47]. Under that configuration,
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FIGURE 10. The visualization of some results in visual localization on (a) the red route, (b) the yellow route, and (c) the blue route of the West Lake
dataset. The correct matching results are denoted with green, and the incorrect ones are denoted as red.

TABLE 11. The visual localization performance of the gardens point
dataset.

Sünderhauf’s method yields a F1 score of 0.89, which illus-
trates that the proposed pipeline outperforms Sünderhauf’s
method in terms of performance stability against algorithm
configurations.

Finally, we discuss computational efficiency perfor-
mance of the proposed pipeline for assistive navigation.
As presented in [36], the inference speed of the back-
bone network (MobileNet V2) used in this paper achieves
8.9 frames/second on ARM processors. Meanwhile, we have
previously presented in [34] that the sequence matching
achieves a speed of around 40 frames/second on a portable
x86 CPU. Considering that the image sampling interval of
the dataset is 3 seconds, the proposed pipeline is able to run
in real time.

V. CONCLUSION
Aiming to resolve the two key issues of assistive navigation
‘‘Where am I?’’ and ‘‘What are the surroundings?’’, we pro-
pose a new unified network combining scene description and
scene recognition in this paper. The unified network is based
on the compact convolutional networks MobileNet V2. The
proposed pipeline leverages image retrieval and sequence

matching to yield the final results of visual localization.
During the training phase, the network configurations are
tuned on the public datasets to search for the optimal network
structure.

In view of the challenging scenario of assistive navigation,
the real-world datasets are proposed to evaluate the proposed
pipeline comprehensively. The proposed assistive navigation
pipeline is proved to achieve satisfactory performance on the
real-world datasets. The top-5 precision of scene recognition
is more than 80%, and the visual localization precision is over
60% under a recall of 60%.

In the future, we plan to extend this work to 6-DoF local-
ization based on the unified network, where both the global
descriptors and the local descriptors are implemented in a
single deep network.
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