
Received January 28, 2020, accepted March 10, 2020, date of publication March 31, 2020, date of current version April 24, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984500

Fast Deployment of Reliable Distributed Control
Planes With Performance Guarantees
SHAOTENG LIU1, REBECCA STEINERT 1, NATALIA VESSELINOVA 1, (Member, IEEE),
AND DEJAN KOSTIĆ1,2
1Research Institutes of Sweden, RISE AB, 164 40 Kista, Sweden
2Royal Institute of Technology, KTH, 164 40 Kista, Sweden

Corresponding author: Rebecca Steinert (rebecca.steinert@ri.se)

This work was supported in part by the Swedish Foundation for Strategic Research (SSF) Time Critical Clouds under Grant RIT15-0075,
in part by the Commission of the European Union in terms of the 5G-PPP COHERENT project under Grant 671639, and in part by the
Celtic Plus 5G-PERFECTA (Vinnova) under Grant 2018-00735.

ABSTRACT Current trends strongly indicate a transition towards large-scale programmable networks with
virtual network functions. In such a setting, deployment of distributed control planes will be vital for
guaranteed service availability and performance. Moreover, deployment strategies need to be completed
quickly in order to respond flexibly to varying network conditions. We propose an effective optimization
approach that automatically decides on the needed number of controllers, their locations, control regions,
and traffic routes into a plan which fulfills control flow reliability and routability requirements, including
bandwidth and delay bounds. The approach is also fast: the algorithms for bandwidth and delay bounds
can reduce the running time at the level of 50x and 500x, respectively, compared to state-of-the-art and
direct solvers such as CPLEX. Altogether, our results indicate that computing a deployment plan adhering
to predetermined performance requirements over network topologies of various sizes can be produced
in seconds and minutes, rather than hours and days. Such fast allocation of resources that guarantees reliable
connectivity and service quality is fundamental for elastic and efficient use of network resources.

INDEX TERMS Software-defined networking, distributed control plane, controller placement problem,
latency, reliability, routability, optimization.

I. INTRODUCTION
The early definition of the control plane in a software-defined
network (SDN) setting assumes that one controller handles
flow requests over a set of associated switches. More recent
solutions assume a distributed control plane, which consists
of multiple physically distributed but logically centralized
control instances. Deploying multiple control instances can
help to decrease control latency, prevent a single controller
from overloading, and tolerate controller failures.

Although distributing the control instances can enhance
control plane scalability and reliability, this comes at a
cost. Distributed control plane traffic in programmable SDNs
encompasses controller-switch traffic and inter-controller
traffic and is required to keep the shared network state
and information consistent in the control plane [1]–[3].
As the number of deployed controller instances increases,

The associate editor coordinating the review of this manuscript and

approving it for publication was Tiago Cruz .

inter-controller traffic increases dramatically and creates a
significant overhead [2], [4]–[6]. Regardless of the consis-
tency level (strong vs. eventual), updating shared state at one
of the C controllers intuitively requires a one-to-many style
communication to update the (C − 1) remaining instances.
Nonetheless, dealing with the traffic associated with a cer-

tain control plane definition is typically ignored. In addition
to dealing with an increased control traffic volume, control
plane traffic flows have to be forwarded timely and reliably
through the network infrastructure with varying link capac-
ities, availability, and other networking properties. Control
traffic congestion, for example, is especially destructive since
it may degrade control service performance, or worse, cause
availability issues unacceptable in services critical to, e.g.,
human safety or tactile Internet. A highly available con-
trol plane is vital for the correct functioning of today’s and
future programmable networks. Hence, quick autonomous
rescheduling and deployment of distributed control plane for
dynamically reallocating resources is fundamental to ensure

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 70125

https://orcid.org/0000-0002-5893-7774
https://orcid.org/0000-0002-9406-1562
https://orcid.org/0000-0001-9278-6503

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 1. Conceptual overview of the approach and proposed methods for fast optimization.

the availability of critical control services under changing
network conditions, such as, emergency flash-crowds and
network failures.

In this work, we advance the state of the art of distributed
control plane deployment by: 1) addressing control traffic
routability with respect to required bandwidth allocations and
control plane reliability; 2) addressing control traffic delay
requirements; 3) outlining a generic black-box optimization
process that outputs a distributed control plane deployment
plan in line with bandwidth, reliability and delay constraints;
and 4) introducing two fast algorithms for bandwidth veri-
fication as well as delay and backlog verification based on
network calculus. The proposed optimization process facili-
tates flexible implementation and deployment of distributed
control planes with bandwidth and reliability requirements,
with or without transmission delay guarantees (Fig. 1).

In the case of routability verification considering only
bandwidth and reliability requirements (excluding delay
bounds), our estλ algorithm runs 50x faster than the state-of-
the-art. In scenarios including delay bounds too, our column
generation heuristic (CGH) algorithm can reduce the running
time at magnitudes of 500x (or even more) while still offer-
ing near optimal routing solutions (Fig. 2). In practice, this
translates to a running time reduction from days to seconds,
thereby enabling elastic distributed control planes.

A. DISTRIBUTED CONTROL PLANE BACKGROUND
Fig. 3 illustrates two typical cases of the distributed control
plane of a programmable network. An aggregator represents
either an OpenFlow switch in an SDN or a radio access
point in a software-defined radio access network (SoftRAN).
In either case, the aggregator acts as a data forwarding
device. A controller represents a distributed control instance,
which is responsible for managing the associated aggregators
and flows. In the out-of-band control setting (Fig. 3, left),

FIGURE 2. Performance of our column generation heuristic (CGH)
algorithm used in a large network Geant2010: (left) speedup ratio of CGH
over CPLEX, (right) performance approximation ratio of CGH relative to
CPLEX. The CGH algorithm is substantially faster and in most cases
produces equally optimal solutions as CPLEX.

all controllers are communicating via a dedicated control
network. This is the case of running the controllers of an
SDN on remote servers connected via dedicated communi-
cation links. In the in-band control setting (Fig. 3, right),
inter-controller and aggregator-controller as well as data traf-
fic share the same network. A control instance in this case can
be co-located with an aggregator in one node.

Distributing the control plane can bring benefits related to
both scalability and reliability. Scalability can be achieved
by offloading across several control instances, where each
instance exclusively controls a subset of aggregators [5] while
propagating state changes related to these aggregators [4], [5]
(Fig. 3). By placing a controller close to the associated
aggregators, the control plane latency can be reduced. Fur-
ther, using more controllers can also improve the relia-
bility of each aggregator. As long as an aggregator can
access at least one operational controller, the aggregator is
said to be operational [7]. Deploying a distributed control
plane can be demanding because of two grand challenges:
1) timely exchange of information for preserving a common
and consistent network view, while 2) ensuring successful
inter-controller messaging. The latter can be achieved by
robust deployment and routing, which we call routability.

70126 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 3. Distributed control plane for programmable networks: (left) out-band setting, where inter-controller traffic is routed in
a dedicated network and (right) in-band setting, where control (inter-controller and controller-aggregator) as well as data traffic
share the same network. The control of the aggregators in the two depicted examples is distributed between controllers C1 and
C2, each responsible for a different subset of the network aggregators.

Coordinating distributed controllers, appearing as one sin-
gle logical control entity, requires that system events and
network state information (such as network topology infor-
mation) can be shared between the controllers with a certain
level of consistency. The behavior of such inter-controller
traffic depends on the control application and varies with
the size and intensity of information transactions, number of
controllers, as well as the communication protocol used for
maintaining consistency. Hence, inter-controller traffic can
become potentially very expensive in terms of communica-
tion overhead in addition to control messages. Different com-
munication/consistency models can be used, synchronous
(for strong consistency), or asynchronous (eventual con-
sistency), but the underlying need for one-to-many style
communication to update the remaining controller instances
remains. In the case of Onix [4], controller coordination
events and network states are shared using ZooKeeper [8] and
a transactional database called NIB to ensure that informa-
tion can be distributed with the required consistency levels.
As observed in the evaluations of [4], a single update of
shared information can generate 4C transactions in the con-
trol plane, where C is the number of controllers. This finding
confirms our intuition behind the required amount of commu-
nication: 1) linear in the number of controller instances, and
2) a source of considerable overhead.

Note that from the perspective of a typical SDN setting of
today, the inter-control messaging for managing flow tables
in OpenFlow switches is relatively modest, varying from a
few Mbit/s to a few hundred Mbit/s [2], [6]. However, in the
context of the next generation of SDNs, we envision that
the inter-controller traffic will vary much more in intensity
and size with the deployment of service-specific controller
applications, where some control services will generate more
inter-controller traffic than others depending on the appli-
cation and requirements (dynamic control of heterogeneous

wireless networks, service chain coordination, control plane
offloading in dense systems, etc.).

Moreover, we cannot always assume that the controllers are
deployed in a single data warehouse environment and con-
nected with dedicated ultra-fast networks and homogeneous
networking equipment. The diversity of future networks and
network applications may require the controllers to reside
in highly geo-distributed locations, connected by links of
different conditions. Therefore, a deployment strategy of a
distributed control plane has to account for the network topol-
ogy and connectivity in order to ensure robust and reliable
inter-controller communication.

B. CHALLENGES IN DISTRIBUTED CONTROL
Control plane deployment here refers to the planning of the
controller placement as well as associated control traffic in
the distributed control plane. There are two kinds of control
traffic: between switches and controllers, and inter-controller
traffic [1]–[3]. The traffic routability problem definition
depends on applications and QoS requirements. We flexibly
address two primary scenarios of the considered problem:
1) with bandwidth and reliability requirements and 2) with
bandwidth and reliability plus delay and backlog require-
ments. Finding a feasible distributed control plane solution
is a hard problem mainly due to two major challenges.

First, the control instances must be placed in a way that sat-
isfies the given constraints, such as those related to reliability
and scalability. This includes decisions on how many control
instances to use, where to place them and how to define
their control regions. The controller placement problem in
general is NP-hard [9]. Consider a network topology with
V nodes. Then, there are V possible choices of the number
of controllers to use. When K controllers are used, there are(V
K

)
possible ways tomap them on the network. For eachmap-

ping, there are KV possible ways of defining control regions.

VOLUME 8, 2020 70127

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

The size of the entire solution space
∑K=V

K=1
(V
K

)
KV is huge.

To solve the problem, existing work [3], [9]–[15] generally
resorts to heuristics to reduce the search space.

Second, it must be verified that the control traffic intro-
duced by a placement solution can be scheduled and routed
in the underlying network. The routability problem itself
constitutes another major design challenge for the following
reasons:

• If we only consider bandwidth constraints, namely
whether the flows can be scheduled without overload-
ing any link, such verification can be modeled as a
multi-commodity flow problem [16]. Depending on the
underlying routing mechanisms of the infrastructure,
if flows are splittable [17] the problem can be formu-
lated as a Linear Programming LP) problem; otherwise,
it is a Mixed Integer Linear Programming (MILP) prob-
lem [18], which is known to be NP-hard [19]. Moreover,
the number of decision variables inside the problem
increases exponentially with the networks size. Thus,
even if it is an LP problem, it is still challenging to solve
it in polynomial time [20].

• If we consider both bandwidth constraints as well as
delay and backlog constraints, the problem becomes
even more demanding. First, we have to find pertinent
ways to model the network elements and flows in order
to calculate the delays and backlogs of flows. Second,
we need to design an algorithm for finding out a routing
plan that satisfies the bandwidth, delay and backlog
requirements too. The algorithm must be fast in order
to prevent delay and congestion of control traffic and to
allow for adapting to real-time network changes (in node
and link state, or traffic pattern, for instance).

C. CONTRIBUTIONS
Today, the main shortcoming of existing control plane
deployment approaches is the general inability to solve
advanced combinatorial problems within reasonable time
frames (seconds or minutes). In combination with this
drawback, many solutions only consider limited aspects of
placement and network performance. Therefore, existing
approaches have limited application in practice to network
operations and management.

In this article, we propose a novel approach for deploy-
ing control plane instances with reliability requirements and
routability guarantees covering both bandwidth and delay
bounds. Different application scenarios or service providers
may have different requirements on routability. In our work
we consider two primary scenarios of routability require-
ments. Scenario 1 only considers the bandwidth limitations,
i.e., whether it is possible to route all the flows without
exceeding the bandwidth of any link. The corresponding
routability problem can be formulated as a multi-commodity
flow problem, which is relatively easy to solve. Scenario
2 considers not only the bandwidth limitations, but also QoS
guarantees such as end-to-end flow delay bound and backlog

(buffer space) bound. This routability problem is substantially
more demanding and time-consuming than scenario 1.

In summary, our contributions are as follows:

1) By analyzing the challenges and complexity of the
controller placement and traffic routability problem,
we introduce a generic black-box optimization pro-
cess formulated as a feasibility problem, detailing each
step of the process along with guiding implementation
examples. Unlike existing approaches, our optimiza-
tion process adds the extra steps needed for quanti-
fying the consequences of deploying a control plane
solution fulfilling specified reliability and routability
requirements.

2) Our proposed optimization process is sufficiently flex-
ible to incorporate network calculus for modeling
the network elements and calculating the worst case
end-to-end flow delay and backlog requirements.

3) We have implemented a fast routability check algo-
rithm estλ for scenario 1. The estλ algorithm has sig-
nificantly less time complexity than the original [20]
algorithm when used in solving the control plane
deployment problem. In our experiments it is faster by
50x in large networks.

4) We have also implemented the CGH algorithm for
the scenario 2 routability check. Inspired by the col-
umn generation technique, the CGH algorithm sim-
plifies the routing decision by only selecting a small
fraction of all the possible paths. According to our
experimental results, the CGH algorithm can, for large
topologies, reduce the running time to the magnitude
of 500x (or more) while still offering near optimal
routing solutions. Because solutions can be obtained
within minutes or seconds (instead of hours and days),
it is possible to have the algorithm on the critical path
of frequent network deployment strategies for adapt-
ing to dynamically changing networking conditions.
Whereas classic traffic engineering approaches typi-
cally account for a fixed number of failures and rely
on overprovisioning, our approach can enable less over-
provisioning (due to its quick recomputation time), and
higher resilience (by increasing the chance of tolerating
unforeseen failures).

With the above contributions, we significantly advance our
initial approach [21] on solving the control plane deployment
problem along with substantial improvements on the meth-
ods we use for implementation. We extend our black-box
optimization process presented in [21] comprising flow rout-
ing under bandwidth constraints, by delay and backlog con-
straints using network calculus. We detail the design of
two routability check algorithms, the refined estλ used for
bandwidth verification (first introduced in [21]) and a novel
algorithm based on CGH for latency verification. We achieve
significant reduction in running time with the devised algo-
rithms. In addition, we report on the intuition, demonstrate
theoretical proofs, and include evaluation results to show the

70128 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 4. The main building blocks of the proposed optimization
process: decision on controller instances number and
placement (mapping) and control regions (association), estimation of
control load (traffic estimation) and verification (routability, reliability
and number of iterations).

achieved performance required for practical network opera-
tions. Further, we address a basic constraint that we over-
looked in our initial approach [21], namely when a node
hosts a controller instance and an aggregator, the instance
must control the latter. Not respecting such a requirement can
unnecessarily inject control traffic, consume energy, decrease
reliability, etc.

The remaining of the article is organized as follows.
In Section II, we give an overview of our approach.
In Section III, we show the prerequisites, assumptions and
methods for solving the control plane deployment problem
with reliability and bandwidth considerations. In Section IV,
we introduce network calculus, and show methods for the
control plane deployment problem with reliability, band-
width, delay and backlog considerations. We show use cases
in Section V and evaluation results in Sections VI and VII.
Related work and discussions are arranged in Sections VIII
and IX, respectively. In Section X we conclude with main
take-away messages.

II. THE PROPOSED APPROACH
Our approach for addressing the aforementioned challenges
is through an optimization process, which is executed in four
steps outlined below and illustrated in Fig. 4.
The mapping step places controllers on a given network

topology. The input to this first step contains (but is not
limited to) network topology and the related link bandwidth
as well as the constraints on the placement, such as reliability
requirement. The output is a controller locationmap aswell as
the quality of the mapping, for instance, the actual reliability.
The following association step associates aggregators to
controllers. The input is the controller location map. The
output is an aggregator-controller association plan. The next

traffic estimation step outputs the demand of each control
flow according to the input aggregator-controller association
plan as well as the demand of each inter-controller flow. The
routability check step outputs a decision variable, which
indicates whether all the control flows can be scheduled or
not, given (bandwidth and QoS) requirements. The input con-
sists of network topology properties and control flows. This
last step has two sub-steps: bandwidth verification as well as
delay and backlog bound verification. Scenario 1 routability
check needs to run the bandwidth verification step only,
whereas scenario 2 routability check needs to run both.

The process of finding a feasible solution satisfying all
conditions (such as reliability, bandwidth, delay and backlog)
includes iteration over the four steps until either a feasible
solution is found or a limit of iterations is reached (depicted
by the ending condition block in Fig. 4).

Note that the process is generic and can be extended
to include other (single or multiple) requirements (such as
load balancing) by adding proper constraints to the mapping
and association steps and end conditions. In other words,
the black-box approach offers flexibility to adapting the
implementation of each step of the optimization process in
line with the practical needs of the network operator. In the
following section, we exemplify each step by a possible
implementation that addresses the aforementioned challenges
and solves a control plane deployment problem.

III. SOLVING THE CONTROL PLANE DEPLOYMENT
PROBLEM WITH RELIABILITY AND
BANDWIDTH REQUIREMENTS
System reliability is defined as the probability that the system
operates without failure in the interval [0, t], given that the
system was performing correctly at time 0 [22]. In contrast,
service reliability, which we denote by Rmin, refers to the
minimum reliability among all nodes (aggregators). In turn,
the reliability of an aggregator is measured by the proba-
bility that an operational aggregator is connected to at least
one operational controller during the observed interval. Our
optimization approach is targeted at service reliability. This
reliability needs to be guaranteed and above a predefined level
called reliability threshold and denoted by β, Rmin ≥ β.

A. PROBLEM FORMULATION
Let G = 〈V = N ∪M ,E〉 be a graph representing a network
topology, where V denotes nodes and E links. Moreover, let
N denote the set of aggregator nodes andM a candidate set of
nodes eligible for hosting controller instances. We model the
failure of links, and nodes as i.i.d. random variables. In princi-
ple, these probability distributions can be set based on expert
knowledge or inferred by learning system performance.

We use binary variables yi, where yi = 1 if node i ∈ M
hosts a controller, and yi = 0 otherwise. Let C = {i|yi = 1,
i ∈ M} denote the set of deployed controllers and let the
binary variable aij = 1 if aggregator j ∈ N is controlled
by the controller in i ∈ C , otherwise aij = 0. Although
each aggregator j can only be controlled by one controller

VOLUME 8, 2020 70129

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

at a time, it can have multiple backup controllers (e.g., with
OpenFlow V1.2 protocol [23]). The reliability of node j is
represented as R(G, j,C) (among |C| controllers), capturing
the probability of node j connecting with at least one of the
operational controllers. Solutions satisfying the constraints
given topological conditions and reliability threshold β are
found by Rmin = min∀j∈N R(G, j,C) > β.
We can formulate the control traffic routability problem

in programmable networks as a multi-commodity flow prob-
lem [24] by taking flow splitting into account [17]. Let ue
be the bandwidth on each link e ∈ E allocated to control
plane traffic. Suppose (sf , tf) is the (source, sink) of control
traffic flow f . Let df denote the demand (throughput) of f . Let
F = {f : (sf , tf , df)} be the set representing the entire control
traffic in the network. Let Fc ⊂ F be the inter-controller
traffic, namely Fc = {f : (sf , tf , df)|sf ∈ C, tf ∈ C}.
Let κf denote all the possible non-loop paths for f ∈ F ,
and let κ = ∪f κf . Let variable X (K) denote the reserved
guaranteed service rate for a flow along path K ,∀K ∈ κ .
Then, the reliable control plane deployment problem can be
formulated as follows:

maximize 0

s.t.:
∑
i∈C

aij = 1, ∀j ∈ N (1)∑
i∈M

yi ≥ 1 (2)

R(G, j,C) ≥ β, ∀j ∈ N (3)∑
K∈κf

X (K) ≥ df , ∀f ∈ F (4)

∑
K :e3K

X (K) ≤ ue, ∀e ∈ E (5)

yi, aij ∈ {0, 1} (6)

X (K) ≥ 0, ∀K ∈ κ (7)

The above formulation of the control plane deployment
problem is general: for M ⊆ N , it corresponds to an in-band
control plane problem formulation, whereas for N ∩M = φ,
it reflects the out-of-band one. Recall that in the latter
case, the inter-controller traffic Fc is served by a control
network. This is implicitly included in the definition of
the set κf .
The main difference between this formulation and the tra-

ditional reliable controller placement problem [25] is that we
model the control plane deployment as a feasibility problem
without an optimization objective. The feasibility problem
formulation takes into account the constraints on control
traffic which, to our knowledge, have not been addressed
previously.

This problem is hard in terms of computational complexity
for the following reasons. First, constraints (1), (2), (3), (6)
constitute a fault tolerant facility location problem. Second,
constraints (4), (5), (7) form a multi-commodity flow prob-
lem. Third, the computation of the reliability R(G, j,C) can
be an NP-hard problem by itself [25]. Fourth, the number

of variables X (K) might be exponential in the number of
nodes N and/or edges E .

B. MAPPING
The problem of optimally choosing the number of control
instances as well as their location (see Fig. 4) is a combina-
torial optimization problem. The simulated annealing (SA)
algorithm [26], [27] has been extensively applied for solving
combinatorial problems from diverse fields [28]. Further,
SA is easy to implement in practice once its constituent
parts (such as the cost function and transition probability) are
properly defined.

We implement the mapping step of the optimization
process following the standard simulated annealing tem-
plate [26], [27] except that the Simulated Annealing for
Mapping (SAM) algorithm that we design generates a
new solution and decreases the temperature T when a
redoMapping signal is received. Such a signal is sent when
the reliability verification (executed in the "ending condition"
block of Fig. 4) has failed (Rmin < β). The temperature
T is used to guide the search of the SAM algorithm. The
initial number and placement of controllers can be randomly
decided or using a heuristic algorithm such as [25]. After
initialization (lines 1–4 in Algorithm 1), a new mapping is
generated when a redoMapping signal is received. In SAM,
the costnew (a user-defined cost function) of the latest map-
ping solution C along with the current temperature T is used
to decide whether the new mapping plan can replace the pre-
vious mapping solution (lines 6–10). The transition proba-
bility function P = min(1.0, exp costnew−costoldT) (line 8) defines
the probability with which the newmapping will be accepted.
The getNextSolution(Ccurrent) function generates a new map-
ping based on the previous mapping (Ccurrent) by randomly
adding, removing or moving (changing the node/location of)
a control instance (line 11). Then, the reliability Rmin of the
new mapping is computed (line 12). Finally, the temperature
is decreased by a factor of γ (line 13). In our implementation
of the simulated annealing algorithm, the mapping aims at
maximizing a cost function:

cost = min(0, log10
1− Rmin
1− β

, λ− 1) (8)

The λ is calculated in the routability checking step. It is an
indicator of whether control traffic is routable (λ ≥ 1) or not
(λ < 1). When both routability and reliability constraints are
satisfied (namely, λ ≥ 1 and Rmin ≥ β), the cost function
reaches its maximum value 0.

Since directly computing the reliability R(G, j,C) is
NP-hard [25], the approximation method proposed in [25] is
applied for computing a lower bound

←−−−−−−
R(G, j,C) instead. The

approximation method first computes the set of the disjoint
paths from a node j to all the controllers C , denoted as κ j.
Given the i.i.d operational probabilities of links and nodes
on each disjoint path, the failure probability of each path,
denoted by pk , k ∈ κ j, can be calculated. Then, the lower
bound can be computed:

←−−−−−−
R(G, j,C) = 1−

∏
k∈κ j pk , [25].

70130 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

Algorithm 1 The Simulated Annealing Algorithm for
Mapping
Input control signal: RedoMapping with inputs C , costnew

Initialization
1: Choose a set C of controllers from the set V
2: Calculate Rmin = min∀j∈V (

←−−−−−−
R(G, j,C))

3: Ccurrent = C , T = TInitial
4: Output Rmin,C

5: Upon control signal < RedoMapping|C, costnew > do
6: if T == TInitial then
7: costold = costnew
8: else if P(costold , costnew,T) ≥ random(0, 1) then
9: Ccurrent = C

10: end if
11: C = getNextSolution(Ccurrent),
12: Calculate Rmin = min∀j∈V (

←−−−−−−
R(G, j,C))

13: T = γT
14: Output Rmin,C
15: end upon

C. ASSOCIATION
The association algorithm implements simulated annealing
for Association (SAA) and is similar to Algorithm 1. There-
fore, instead of repeating the entire algorithm, we outline the
main differences:

• During the initialization, each aggregator is assigned
to its closest controller. If there is a single controller,
the association step just stops after the initialization as
there is only one possible association.

• The cost function used is cost = min(0, λ− 1).
• The implementation of the getNextSolution()
function is shown in Algorithm 2. Its general work flow
is: first, a controller is selected randomly (line 2); then,
an aggregator from the set of aggregators not currently
associated with the selected controller (denoted by rest
in Algorithm 2) is randomly chosen (line 5). When the
distance between the selected controller and aggregator
is small, there is a high probability that the aggregator
will change its association and will be assigned to the
considered controller (lines 6-11).

The association stops if a routable association plan is found
(indicated by cost = 0), or the temperature used for simulated
annealing is below a certain threshold.

D. TRAFFIC ESTIMATION
The demands of aggregator-controller and controller-
controller flows have to be estimated. Let (sf , tf , df) represent
the source, sink and demand of a flow f respectively. The
objective of this step is to estimate each df while sf and tf are
known from the mapping and association steps.

In principle, since the optimization process treats themodel
of control traffic as an input variable, any traffic model can
be applied for estimating each df . For example, we can

Algorithm 2 Procedure of getNextSolution() for Association
Input control signal: The set of controllersC . Current asso-

ciation {ai,j|i ∈ C, j ∈ N }. Number of hops between any
pair of nodes dist(i, j), i ∈ N , j ∈ N . Let A(c) denote the
set of aggregators associated to controller c.

1: procedure getNextSolution(C , {ai,j|i ∈ C, j ∈ N })
2: Randomly select a controller i ∈ C , that satisfies
rest = N − A(i) − C 6= ∅, where rest denotes the
aggregators not associated to i.

3: Compute minDist = minj∈rest dist(i, j).
4: while True do
5: Randomly select an aggregator j ∈ rest
6: distInv = 1/(dist(i, j)− minDist + 1)
7: if distInv ≥ random(0, 1) then
8: Get the current controller i′ of j.
9: Assign ai′,j = 0, assign ai,j = 1.

10: return {ai,j|i ∈ C, j ∈ N }
11: end if
12: end while
13: end procedure

model either average or worst case demands, with either
simple linear modelingmethod or advancedmachine learning
techniques.

However, as the scope of this paper concerns the generic
optimization process, we employ a simple traffic estimation
model, assuming that the message sizes of aggregator request
and corresponding controller response are Treq = 128 and
Tres = 128 bytes, respectively. Furthermore, after dealing
with a request, the controller instance sends messages of size
Tstate = 500 bytes to each of the other |C| − 1 control
instances notifying them about the network state changes.
Note that this traffic model is essentially in line with the
ONOS traffic model as described in [2]. The message sizes
are here set according to [2], [6], [29], but can be set arbi-
trarily. With these parameter settings and given the request
rate rj, j ∈ N of each aggregator, we simply estimate the
traffic between aggregator j and its associated controller by
rjTreq for aggregator-controller direction and by rjTres for the
controller-aggregator direction. We also use a simple linear
model to estimate the outgoing traffic from controller i to any
other controller j, which is given by Tstate

∑
j∈N aijrj.

E. ROUTABILITY CHECK
If only bandwidth constraints are considered, the routability
check consists of a bandwidth verification phase. It is a
multi-commodity flow feasibility LP problem. Solving this
problem means dealing with an undesired exponential num-
ber of variables, as indicated by the constraints (4), (5), (7).
This issue can be circumvented by formulating a maxi-
mum concurrent flow problem [30] (as (9), (10), (11), (12)
suggest), which is easier to solve and equivalent to the
multi-commodity flow problem.

The fundamental idea of the maximum concurrent flow
problem is to keep the capacities of the links fixed while

VOLUME 8, 2020 70131

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

scaling (adjusting) the injected traffic so that all flows fit into
the network. The optimization objective λ reflects the fraction
of the traffic that can be routed. When λ ≥ 1, the current
traffic is routable, which means that the link utilization is
below 100% for all links. In short, more traffic variation can
be tolerated with a larger λ.

maximize λ (9)

s.t.:
∑
K :e3K

X (K) ≤ ue, ∀e ∈ E (10)∑
K∈κf

X (K) ≥ λdf , ∀f ∈ F (11)

X (K) ≥ 0, ∀K (12)

The dual [31] of the above maximum concurrent flow
problem has a linear number of variables and an exponential
number of constraints, as formulated in (14), (15), (16) (17).
This allows for elegantly solving the problem to a desired
level of accuracy using a primal-dual algorithm. In particu-
lar, we can apply the FAS (Faster Approximation Schemes)
algorithm designed by Karakostas [20]. With this algorithm,
the near-optimal λ can be obtained, which is guaranteed
within the (1 + ε) factor of the optimal and time complexity
of O(ε−2|E|2logO(1)

|E|), according to [20], [30].

minimize D(l) =
∑
e∈E

uele (13)

s.t.:
∑
e∈K

le ≥ zf , ∀f ∈ F, ∀K ∈ κf (14)∑
f ∈F

df zf ≥ 1 (15)

le ≥ 0, ∀e ∈ E (16)

zf ≥ 0, ∀f ∈ F (17)

Although FAS has been used for solving flow routing
problems [24], [32], using it in its original [20] form for veri-
fying control traffic routability can in fact be time consuming
and hence not suitable. The control plane traffic routabil-
ity problem is a special flow routing problem, where every
control flow either originates or terminates in a controller,
or both (has its origin and destination from the set C of
controllers). Inspired by this specific phenomenon, we modi-
fied the FAS algorithm, and named the modified algorithm
FPTAS (as it belongs to Fully Polynomial Time Approxi-
mation Schemes [33]). The resulting FPTAS algorithm runs
much faster than FAS in solving the control traffic routabil-
ity check problem as explained below and demonstrated in
Appendix A. This algorithm was initially introduced in our
previous work [21]. In the following, we report for the first
time the details of the algorithm and its performance.

The FPTAS algorithm consists of a three-layer loop as
described in Algorithm 3. We name a round of the outermost
layer loop a phase, a round of the middle layer loop an
iteration and a round of the innermost layer loop a step. The
algorithm works as follows: initially, it computes a value δ
that is a function of the desired accuracy level ε, and the

Algorithm 3 The FPTAS Algorithm for Computing λ
1: D(l)← 0
2: l(e)← δ/ue
3: Rf ← 0,∀(sf , tf)
4: while D(l) < 1 do F phase loop

5: for each node c ∈ C do F iteration loop
6: d ′(f) = df ∀f ∈ Fc

7: while D(l) < 1 and d ′(f) > 0 for some f ∈ Fc

do F step loop
8: Pcf : Shortest path using l as link weights, ∀f ∈
Fc with d ′(f) > 0

9: ρ(e) =
∑

f :e∈Pf d
′(f)/ue is the utilization of

e ∈ E .
10: σ = max(1,maxe∈∪f Pcf ρ(e))
11: Route dr (f) = d ′(f)/σ amount flow along

Pcf , ∀f ∈ F
c with d ′(f) > 0

12: d ′(f) = d ′(f)− dr (f),∀f ∈ Fc

13: Rf = Rf + dr (f),∀f ∈ Fc

14: l(e) = l(e)(1 + ε(
∑

f :e∈Pf
dr (f)
ue

)), e ∈
{∪f Pcf |∀f ∈ F

c
}

15: Compute D(l) =
∑

e∈E uel(e)
16: end while
17: end for

18: end while
19: Rf = Rf /log1+ε 1+εδ ,∀f ∈ F
20: λ = min∀f ∈F (Rf /df)
Output: λ

number of edges |E|.We set δ = (1+ε)
ε

1−ε (1−ε
|E|)

1/ε as in [20].
The weight of each edge e ∈ E , is denoted by l(e) and l(e)
is initialized to δ/ue. Then, the algorithm iterates in phases
(suggested by the outermost while loop in line 4). Each phase
consists of |C| iterations (suggested by the for loop in line 5),
and each iteration contains one or several steps (suggested by
the innermost while loop in line 7). In each phase, every flow
f ∈ F is routed with df amount, distributed on one or several
non-loop paths between sf and tf . We can route all the flows
with |C| iterations in each phase, since every control plane
flow has at least one end (source/sink) in C . In each iteration,
we select a controller c ∈ C , and deal with a subset of flows
Fc that share a common source/sink c (Fc = Fcs ∪ Fct ,
that Fcs = {f |sf = c},Fct = {f |tf = c, sf ! = c}). The
algorithm keeps updating the weight function l(e) in each
step. At every step we compute the shortest tree that starts
from c or terminates at c using the l(e) link weights. Such a
shortest path tree can be computed with Dijkstra’s algorithm.

In summary, our FPTAS algorithm follows the same idea
and workflow of the FAS algorithm [20]. The modification
we introduce is that in each phase, the computation iterates
through the controller nodes C , rather than through all the
flow source nodes (V in this case). Appendix A explains why
this modification reduces the time complexity.

70132 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

Algorithm 4 The Estλ Algorithm
1: calculate λhigh, λlow
2: if λhigh < 1.0 or λlow > 1.0 then
3: λ = (λhigh + λlow)/2.0
4: else
5: compute λ with the FPTAS algorithm described in

Algorithm 3.
6: end if

Output: λ

To further accelerate the routability verification step,
we proposed in [21] a faster algorithm for estimation of λ,
which we here name the estλ algorithm and for the first
time describe in detail in Algorithm 4. Intuitively, we are
mainly concerned with knowing whether the estimated traffic
is routable (λ > 1), rather than with the accurate value of λ.
The estλ algorithm is designed following such an intuition:
it uses the bounds of λ to decide on whether λ > 1 is true
or not.

The algorithm estλ is based on Algorithm 3, with addi-
tional steps for calculating the upper λlow and lower λhigh
bounds of λ. The algorithm starts with calculating them. If the
lower bound is λlow > 1 (or upper bound is λhigh < 1),
the algorithm directly concludes that λ is above (or below) 1
(routable vs not routable). The algorithm only runs the FPTAS
algorithm (Algorithm 3) when λlow < 1 and λhigh > 1 since
in such a case, it cannot be concluded whether λ > 1 is true or
not and thus more accurate value of λ is required. Appendix B
elaborates on how λlow and λhigh are calculated.

In summary, compared to directly using the FAS algo-
rithm [20] for routability check (verifying bandwidth con-
straints), the estλ algorithm has the following advantages:

• It avoids unnecessary calculations for the accurate
approximation of λ. The estλ algorithm correctly tells
whether λ ≥ 1 is true or not, which is enough to
make a routability decision and guide the optimization
of mapping and association.

• When a more accurate approximation of λ is
required, the estλ algorithm uses our FPTAS algorithm
(Algorithm 3), which is faster than the FAS algorithm in
dealing with the control flows as shown in Appendix A,
which contains details about time complexity analysis
and comparison.

With these advantages, evaluation results suggest that our
algorithm can achieve 50x speedup over FAS in the examined
large topologies.

IV. SOLVING THE CONTROL PLANE DEPLOYMENT
PROBLEM WITH RELIABILITY, BANDWIDTH,
DELAY AND BACKLOG CONSIDERATIONS
Compared to Section III, the control traffic routability check
problem addressed in this section is more demanding, since
in addition to bandwidth constraints it includes delay and
backlog constraints too.

FIGURE 5. Graphical illustration of flow delay bound and backlog bound
computation using network calculus concepts. The delay and backlog
bounds correspond to the maximum horizontal and vertical deviations
between the (aggregated or single flow) arrival α(t) and service γ (t)
curves, respectively.

To model end-to-end flow delays in a network, we apply
Network Calculus (NC) [34]–[37], which is a commonly used
approach for analyzing the delay and backlog (buffer space)
bounds of flows. We give a brief overview of the NC theory
next.

A. NETWORK CALCULUS FUNDAMENTALS
Network calculus [34], [35] is a theory developed for ana-
lyzing communication systems. With the models of a flow
and the underlying system, three bounds can be calculated
with the aid of NC: delay bound, backlog bound, and output
flow bound after the flow has passed through the system.
Deterministic NC provides deterministic bounds, whereas
stochastic NC provides bounds following probabilistic dis-
tributions. In this work we consider the former to reduce the
computational complexity.

Two key elements in NC theory are arrival curve and
service curve. The arrival curve α(t) is defined as the upper
bound on the amount of injected data during any time interval.
Suppose the total amount of data a flow will send during any
time interval [t1, t2] is R(t2)− R(t1), where R(t) is the cumu-
lative traffic function, which defines the traffic volume com-
ing from the flow within [0, t] time interval. A wide-sense
increasing function α(t) is called arrival curve of a flow if for
every t1, t2, 0 ≤ t1 ≤ t2 it satisfies:

R(t2)− R(t1) ≤ α(t2 − t1). (18)

In practice, the arrival curve α(t) of a flow f is usuallymod-
eled with a linear function lbf ,df = df t + bf , where df is the
sustainable arrival rate (or demand) and bf is the burstiness.
The interpretation of the linear arrival curve in Fig. 5 is that
the flow can send bursts of up to bf bytes, but its sustainable
rate is limited to df bytes/s.
The service curve γ (t) models a network element (a switch

or a channel) and expresses its service capability [38]. The
service curve shown in Fig. 5 can be interpreted as the longest
time T that a packet of a flow has to wait before being

VOLUME 8, 2020 70133

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

delivered at a rate of at least r bytes/s. This type of service
curve is referred to as a rate-latency service curve, γr,T .
By modeling a flow and the underlying system with these

two curves, the delay and backlog bounds can be calculated.
The delay bound corresponds to the maximum horizontal gap
between α(t) and γ (t), whereas the backlog bound corre-
sponds to the largest vertical gap as shown in Fig. 5. Specif-
ically, the delay bound D∗ and backlog bound B∗ can be
calculated as:

D∗ = T + b/r, (19)

B∗ = b+ Td . (20)

Assume a flow traverses two systems with service
curves γ1 and γ2, respectively. Then, the equivalent service
curve (ESC) of such a concatenated system can be calculated
by min-plus convolution

⊗
between γ1 and γ2:

γ (t) = (γ1 ⊗ γ2)(t) = inf
0≤s≤t

{γ1(t − s)+ γ2(s)}. (21)

In particular, if both γ1 and γ2 are rate-latency service
curves, e.g., γ1 = γr1,T1 and γ2 = γr2,T2 , then γ = γ1⊗γ2 =
γmin(r1,r2),T1+T2 . We can thus deduce the ESC for a given flow
that traverses multiple network elements (such as switches) in
a network by applying the concatenation property.

B. ASSUMPTIONS AND REQUIREMENTS
While transmitted along a path, a packet suffers four different
kinds of delays: processing, queuing, transmission, and prop-
agation. Propagation delay depends on the link characteristics
and the physical distance, and it is assumed to be known.
Processing delay depends on the underlying networking hard-
ware, and is usually much smaller than the other delays.
We can apply network calculus for calculating the bounds on
the queuing and transmission delays. The deterministic end-
to-end worst-case delay bound for a flow is calculated as the
sum of all the four kinds of delays along the path of a flow.

To apply NC for analyzing control plane flows, we first
need to estimate the linear1 arrival curve αf = (bf , df) of a
flow f and then we need to derive the rate-latency ESC γf =
(rf ,Tf) of the target flow. With these estimates we can derive
the delay Df and buffer Bf bounds of the flow f .

Each node in the network implements some kind of a
guaranteed performance service discipline [39], [40] to for-
ward traffic with bounded delay. Suppose for instance that
the bandwidth and (propagation plus processing) delay of
an output link e are ue and te, whereas the reserved and
guaranteed service rate of a flow is re, where re < ue.
In our work we consider the commonly used Weighted Fair
Queuing (WFQ) discipline for which the service curve of a
flow is given by γ ef = (re,Lmax/re + Lmax/ue), where Lmax
denotes the maximum packet size.

1We assume linear arrival and service curves to reduce computation
complexity, see Section IX for further discussion.

C. THE FORMAL PROBLEM
To formulate the control plane deployment problem with
network calculus for delay and backlog constraints, we incor-
porate additional notation to that introduced in Section III-A.
Let (ue, te) be the bandwidth capacity and delay of each link
e ∈ E . Suppose (sf , tf) are the (source, sink) of traffic flow f .
Let F = {f = (sf , tf , bf , df)} be the set of the entire control
traffic of the deployed infrastructure. We introduce a binary
decision variable δ(K),∀K ∈ κf to denote whether path K
is selected and used for routing flow f . Let variable X (K)
denote the reserved guaranteed service rate for flow f along
path K ,∀K ∈ κ . We assume a flow f can be split and routed
on a list of selected paths κ ′f = {K |δ

(K)
= 1,K ∈ κf }, with

each path serving a sub-flow f (K),K ∈ κ ′f . A sub-flow is
routed along path K if and only if δ(K)

= 1 and X (k) > 0.
Let Xf = {X (K)|K ∈ κf } denote the reserved guaran-
teed service rates on all paths of flow f . Let Dmax denote
the delay bound constraint, and Bmax the backlog bound
constraint.

To calculate the delayDf and buffer Bf bounds of a flow f ,
we just need to calculate the delay D(K)

f and backlog B(K)
f

bounds of sub-flow f (K), since Df = max{D(K)
f } and Bf =

max{B(K)
f }. The burstiness b(K)

f of each sub-flow should be
less than or equal to the burstiness of the aggregated flow.
Considering the worst case, b(K)

f = bf ,∀K ∈ κf . The

summation of the arrival rates d (K)
f of all sub-flows f (K)

should equal that of the aggregated flow:
∑

K∈κ ′f
d (K)
f = df .

For each sub-flow f (K), given rate X (K) and pathK and the
service discipline, we can calculate the rate-latency service
curve γ e

f (K) = (X (K), te(K)
f) at each link e ∈ K . Suppose

path K traverses several links. Then its ESC is: γf (K) =

(X (K), ts(K)
f) = γ e1

f (K)

⊗
γ e2
f (K) . . . γ

ek
f (K) , e1 . . . ek ∈ K by

the concatenation property. Here, X (K) is the service rate
and tsf can be understood as the service latency introduced
by all the network elements along the entire path K . The
delay and backlog bounds of each sub-flow are: D(K)

f =

ts(K)
f + b(K)

f /X (K) +
∑

e∈K te and B
(K)
f = b(K)

f + ts(K)
f d (K)

f .
The delay bounded deployment problem requires for all
non-zero sub-flows D(K)

f < Dmax ,B
(K)
f < Bmax ,∀K ∈ κf ,

∀f ∈ F .
Now, the problem can be formulated as follows:
maximize 0

s.t.:
∑
i∈C

aij = 1, ∀j ∈ N (22)∑
i∈M

yi ≥ 1 (23)

R(G, j,C) ≥ β, ∀j ∈ N (24)

yi, aij ∈ {0, 1} (25)∑
K∈κf

X (K)δ(K)
≥ df , ∀f ∈ F (26)

∑
K :e3K

X (K)δ(K)
≤ ue, ∀e ∈ E (27)

70134 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

X (K) ≥ 0, ∀K ∈ κ (28)∑
K∈κf

d (K)
f = df , ∀f ∈ F (29)

δ(K)(ts(K)
f X (K)+ b(K)

f) ≤ (Dmax −
∑
e∈K

te)X (K),

∀K ∈ κf , ∀f ∈ F (30)

δ(K)(b(K)
f + ts

(K)
f d (K)

f) ≤ Bmax , ∀K ∈ κf , ∀f ∈ F

(31)

d (K)
f ≤ X (K)δ(K), ∀K ∈ κf , ∀f ∈ F (32)

d (K)
f ≥ 0,∀K ∈ κf , ∀f ∈ F (33)

δ(K)
∈ {0, 1}, ∀K ∈ κ (34)

We can still apply the optimization process proposed in
Section II to solve this new control plane deployment prob-
lem. We can also reuse the SA algorithms in sections III-B
and III-C for the mapping and association steps. However,
to estimate the control traffic (see Section III-D), we need
to additionally estimate the flow burstiness. Moreover, for
the routability check step, we need a new workflow, which
takes constraints on bandwidth as well as delay and backlog
into consideration. We name such an extended routability
check problem a delay and backlog check problem and we
formulate it below.

D. TRAFFIC BURSTINESS ESTIMATION
We assume the burstiness bf of a flow (Fig. 5) is proportional
to its rate (df) as in [41], [42]. Therefore, the burstiness of a
flow f is estimated as brdf , where br is a burstiness ratio.

E. THE DELAY AND BACKLOG VERIFICATION
PROBLEM FORMULATION
With proper transformation, the delay and backlog check
problem is formulated as an optimization problem:

maximize λ (35)

s.t.:
∑
K :e3K

X (K)δ(K)
≤ ue, ∀e ∈ E (36)

X (K) ≥ 0, ∀K ∈ κ (37)∑
K∈κf

d (K)
f ≥ λdf , ∀f ∈ F (38)

δ(K)(ts(K)
f X (K)+ b(K)

f) ≤ (Dmax −
∑
e∈K

te)X (K),

∀K ∈ κf , ∀f ∈ F (39)

δ(K)(b(K)
f + ts

(K)
f d (K)

f) ≤ Bmax , ∀K ∈ κf , ∀f ∈ F

(40)

d (K)
f ≤ X (K)δ(K), ∀K ∈ κf , ∀f ∈ F (41)

d (K)
f ≥ 0, ∀K ∈ κf , ∀f ∈ F (42)

δ(K)
∈ {0, 1}, ∀K ∈ κ (43)

However, the above formulation contains quadratic terms
such as the one between the indicator variable δ(K) and X (K)
in (39) (40), which is not efficient for optimization problem

solvers such as CPLEX to solve. Therefore, we use the Big-M
method to obtain an equivalent formulation, which eliminates
the quadratic terms, see (45)-(53).

maximize λ (44)

s.t.:
∑
K :e3K

X (K) ≤ ue, ∀e ∈ E (45)

X (K) ≥ 0, ∀K ∈ κ (46)∑
K∈κf

d (K)
f ≥ λdf , ∀f ∈ F (47)

ts(K)
f X (K)+ b(K)

f δ(K)
≤ (Dmax −

∑
e∈K

te)X (K),

∀K ∈ κf , ∀f ∈ F (48)

b(K)
f δ(K)

+ ts(K)
f d (K)

f ≤ Bmax ,∀K ∈ κf , ∀f ∈ F

(49)

X (K) ≤ Mδ(K) (50)

d (K)
f ≤ X (K), ∀K ∈ κf , ∀f ∈ F (51)

d (K)
f ≥ 0, ∀K ∈ κf , ∀f ∈ F (52)

δ(K)
∈ {0, 1}, ∀K ∈ κ (53)

F. IMPLEMENTATION OF THE EXTENDED
ROUTABILITY CHECK STEP
We propose a two-phase workflow to perform the extended
routability check, which includes:
• Bandwidth verification: tests whether all flows can be
routed without overloading any link relative to specified
bandwidth constraints;

• Delay and backlog verification: tests whether the esti-
mated flows can be routed under given flow delay and
buffer space requirements.

The reason why we use such a two-phase workflow is
two-fold. First, if bandwidth verification fails (some links are
overloaded), there is no need to verify the delay and backlog
bounds, since the delays of certain flows, in theory, can go to
infinity. Second, bandwidth verification is usually less time
consuming (more than 10x less) than the delay and backlog
verification. Thus, overall it is much more time-efficient to
first check the bandwidth bound and use its outcome to decide
whether to continue with checking the remaining bounds.

In the following, we show our implementation of the algo-
rithm for performing the delay and backlog verification. Note
that in the delay and backlog bound verification problem,
defined in (45) – (53), the ts(K)

f in constraints (48) and (49)
depends on the choice of the service discipline, which we
have assumed to be the commonly used WFQ. Accord-
ing to [39], [40], ts(K)

f = LmaxH/X (K) +
∑

e∈K Lmax/ue,

where H is the number of path hops. By substituting ts(K)
f

in (48) (49), we obtain:

(
∑
e∈K

Lmax/ue)X (K)+ (LmaxH + b
(K)
f)δ(K)

≤ (Dmax −
∑
e∈K

te)X (K), ∀K ∈ κf , ∀f ∈ F (54)

VOLUME 8, 2020 70135

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

(b(K)
f X (K)+ LmaxHd

(K)
f)δ(K)

+(
∑
e∈K

Lmax/ue)d
(K)
f X (K)

≤ BmaxX (K),∀K ∈ κf , ∀f ∈ F (55)

Because of the quadratic term in (55), the delay and
backlog bound verification problem becomes a non-convex
Mixed Integer Quadratically Constrained Programming prob-
lem (MIQCP). Such non-convex MIQCP problems are
hard to solve with existing optimizers, e.g., CPLEX. Thus,
we replace (55) with a linear approximation (56):

(b(K)
f + Lmax ∗ H)δ(K)

+ (
∑
e∈K

Lmax/ue)d
(K)
f

≤ Bmax ,∀K ∈ κf , ∀f ∈ F (56)

It is easy to see that if constraint (56) is satisfied, (55)
must be satisfied too, but the reverse is not true. With the
replacement, the problem becomes an MILP problem.

We propose a heuristic algorithm based on column genera-
tion intuition, whichwe call CGH, to deal with the formulated
optimization problem. Column generation is a well-known
technique for solving large-scale linear programming prob-
lems. The key idea of column generation is to split the original
problem into two problems: a master problem and a subprob-
lem. Themaster problem is the original problem but with only
a subset of the variables being considered. The subproblem is
created to find a new variable that could potentially improve
the objective function of the master problem. Usually, the
dual of the original problem is used in the subproblem with
the purpose of identifying new variables. The kernel of the
column generation method defines such an iterative process:
1) solving the master problem with a subset of the variables
and obtaining the values of the duals, 2) considering the
subproblemwith the dual values and finding the potential new
variable, and 3) repeating step 1) with the new variables that
have been added to the subset. The whole process is repeated
until no new variables can be found.

Although our problem is not LP, we can still borrow
the column generation kernel idea to design a heuristic
algorithm. Intuitively, if we could ignore the constraints
on delay and backlog, the optimization problem would be
reduced to a maximum concurrent flow problem as formu-
lated in (9)–(12). With the column generation method, the
master problem is the maximum concurrent flow problem but
with a subset of the paths κ∗ ⊆ κ . According to [16], [43],
the corresponding subproblem can use (14) (in Section III-E)
to identify the new potential paths: the potential paths are the
ones that do not obey (14).

For our optimization problem, similar to [16], [43],
we define the subproblem that is also based on (14)
(in Section III-E) for identifying new potential path vari-
ables. However, because of delay and backlogs constraints
((54) and (56)), the new potential path variables need to
additionally obey

∑
e∈Kf Lmax/ue < Dmax −

∑
e∈K te and

b
(Kf)
f + LmaxH < Bmax . Otherwise, constraints (54) and (56)

Algorithm 5 Delay and Backlog Verification Algorithm
Based on Column Generation Intuition

Initialization
1: Using Lmax/ue + te as edge weights, compute κ∗ =
{Kf |f ∈ F}, whereKf is the shortest path for flow f under
the edge weights.

2: iter = 0
3: Relax the binary variable δ(K)

∈ {0, 1} to δ(K)
∈ [0, 1]

4: Set λold = 0
5: while (iter < MAXITERATIONS and Negf 6= φ) do
6: Solve the optimization problem with the set of paths
κ∗, get λ

7: if λ− λold <= 0 then
8: Break
9: end if
10: λold = λ

11: Calculate the duals DE = {le|e ∈ E} of con-
straint (45).

12: Calculate the duals DF = {zf |f ∈ F} of con-
straint (47)

13: With le as the edge weights, compute P =

{Pf , distf |∀f ∈ F}, where Pf is the shortest path for flow
f , and distf is the distance of the path.

14: Negf = {}
15: for f in F do
16: res = distf − zf
17: if res < 0 then
18: if

∑
e∈Kf Lmax/ue < Dmax −

∑
e∈K te and

b
(Kf)
f + Lmax ∗ H < Bmax then

19: Add f to Negf
20: end if
21: end if
22: end for
23: Select P∗f that distf = min({distf |∀f ∈ Negf })
24: Add P∗f to κ∗
25: end while
26: Change δ(K)

∈ [0, 1] to δ(K)
∈ {0, 1}

27: Solve the optimization problem with the set of paths κ∗,
get λ

Output: λ

will certainly be violated if they are chosen for routing flows
(δ(K) = 1). The design of our algorithm is illustrated by
Algorithm 5 and described in more detail below.

First, we relax our delay and backlog verification problem
to LP by relaxing the binary variable δ(K) to [0, 1]. We initiate
the master problem with a set of paths κ∗ ⊆ κ (lines 1–3),
Algorithm 5. Then, we begin a repetitive process for adding
new paths: 1) solve the master problem2 and obtain values
of the duals of the constraints imposed on edges and flows
(lines 11–12); 2) identify the new paths Kf as the paths that

2In the algorithm implementation, we can use optimization solvers, such
as CPLEX, for solving the master problem in line (6) and line (27) of
Algorithm 5.

70136 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

violate dual constraint (14 in Section III-E) (lines 13–17),
while satisfying requirements due to delay and backlog con-
straints (line 18); 3) add the new potential path to the subset
κ∗ and repeat the process again (line 19–24). The process is
repeated until no new paths can be found, or the maximum
number of iterations is reached, or the object value does not
improve with the newly added path (line 7–8). In the end,
we restrict the δ(K) variable back to integer values 0, 1, and
solve the delay and backlog verification master problem with
the set of the paths κ∗ found by the iterative process.
Naturally, we can use MILP solvers, such as CPLEX,

to directly solve the delay and backlog verification problem.
We call such an approach a CPLEX-direct method. However,
using a CPLEX-direct method is very time consuming, since
it needs to consider all the possible flow paths κ , the number
of which increases exponentially with the size of the con-
sidered topology. In comparison, our CGH algorithm uses
much fewer paths. The CGH algorithm is initialized with only
one path for each source-destination pair (only |N |(|N | − 1)
paths after initialization). The algorithm adds one new path in
each iteration (lines 5–24). Usually, even for large topologies,
the iteration process terminates within a few hundred rounds.
Therefore, the number of paths being considered |κ∗| can
be thousands of times less when compared to the number
of paths |κ| used by the CPLEX-direct method, resulting
in much shorter running time. Note that our algorithm is a
heuristic one, which means that there is no guarantee that
it can find the optimal or approximate the optimal result.
However, the evaluation results suggest that in practice it
performs remarkably well. In particular, it can achieve a
500x running time reduction over the CPLEX-direct method,
while yielding nearly as optimal results as the CPLEX-direct
method.

V. USE CASES
To demonstrate the optimization capabilities of the feasibility
solver, we discuss two of its use cases below. The perfor-
mance of the solver under different conditions is evaluated
and contrasted to existing solutions in the next sections.

Given certain constraints to be satisfied by the optimization
process, one of these constraints can be optimized, given that
the remaining ones are hold fixed. In particular, assuming a
certain bandwidth constraint, the optimization objective can
be to maximize the reliability Rmin, and vice versa, given a
minimum reliability threshold constraint β, the bandwidth u
that can guarantee this threshold can be minimized. We apply
the binary search method3 [45] to find the optimal value
(Rmin in the former and minimum u in the latter case).
The optimization process is applied to the real-world Inter-

netmci topology (a part of the publicly accessible Internet
topologies Zoo (ITZ) [46]). Appendix C lists the topological
details of the networks used for experimentation and evalua-
tion. We assume in-band control and the set of nodes eligible

3The binary search method is applicable to a single objective optimiza-
tion. In multi-objective optimization, hierarchical optimization or trade-off
methods [44] can be applied.

FIGURE 6. The corresponding deployment solution of controllers (red)
and the association plan (denoted as Node ID/Associated Controller ID),
when the minimum required reserved bandwidth is 35.25 MBits/s per
link, given a reliability threshold β = 0.99999 and requirement Rmin > β.
λ = 1.05.

for hosting controller instances is the entire set of nodes,
M = N . Each node hosts an aggregator with a 500 requests/s
rate [47]. The operational probability of each node, link and
controller is set to 0.9999 considering WAN links with four
nines of average reliability [25], [48].

A. RELIABILITY AND BANDWIDTH CONSTRAINTS
(SCENARIO 1)
We first use the feasibility solver to find bandwidth that
satisfies a given reliability constraint β. Then, to find the min-
imum such bandwidth, we apply the binary search method.
The results discussed below are obtained when the optimiza-
tion process implements SAM and SAA for mapping and
association. Assuming equal bandwidth allocation on each
link, such that ue = u,∀e ∈ E , a minimum bandwidth
of 35.25 Mbits/s is needed to ensure Rmin > β = 0.99999,
see Fig. 6 for an example of a deployment solution.
To exemplify Rmin maximization, the bandwidth constraint

(that is, bandwidth reserved for control traffic) ue of each
link e is set to 24 Mbits/s (considering the modest SDN
control plane traffic case with the OpenFlow protocol). The
maximum Rmin achieved under these particular conditions is
0.99989.

Recall that λ acquired by the optimization process under
certain deployment and link bandwidth settings can be
viewed as a safety margin for tolerating the variations in flow
demand. For the deployment plan solution shown in Fig. 6,
λ = 1.05 translates into tolerated flow demand increase
of at least 5% (on any flow) when the bandwidth per link
is 35.25 Mbits/s. One possible way to attain larger λ is to
scale up the bandwidth accordingly. In the first case, for
instance, to ensure a λ′ = 1.2 (20 % safety margin) while
still satisfying β = 0.99999, the smallest bandwidth needed
becomes 35.25λ

′

λ
= 40.29 Mbits/s. The deployment solution

remains the same as in Fig. 6.

B. RELIABILITY, BANDWIDTH, DELAY, AND BACKLOG
CONSTRAINTS (SCENARIO 2)
Backlog and delay are added to the constraints considered
previously. Given a reliability β = 0.9999, bandwidth ue =
400 Mbits/s, and backlog Bmax = 80 Mbits constraints,

VOLUME 8, 2020 70137

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 7. The corresponding deployment solution of controller
instances (red) and the association plan (denoted as Node ID/Associated
Controller ID). The highest reliability achieved by our method is 0.999899,
when the bandwidth constraint is ue = 24 Mbits/s. λ = 1.04 is attained.

FIGURE 8. The corresponding deployment plan of controller instances
(red) and the association plan (denoted as Node ID/Associated Controller
ID) that can ensure all flow delays are bounded by 180 ms, when the
reliability constraint is β = 0.9999, bandwidth constraint is
ue = 400 MBits/s and the backlog constraint is Bmax = 80 Mbits.

our approach outputs a controller deployment solution that
ensures worst case flow delay of 180 ms. The deployment
plan is shown in Fig. 8. Similarly, if the reliability, delay, and
backlog constraints are fixed, the bandwidth requirement can
be optimized. Under reliability β = 0.9999, delay Dmax =
100 ms and backlog Bmax = 80 MBits constraints, the opti-
mization solver reports a minimum bandwidth of 600Mbits/s
needed to satisfy all these constraints.

VI. EVALUATIONS: SCENARIO 1
The goal of this and the following sections is to reveal the
capabilities and shortcomings of the devised optimization
process by studying parameters such as optimization time
(under different implementations), reliability, bandwidth uti-
lization as well as the tradeoff between these optimization
objectives.

The choice of values for the parameters used in the
experiments is dictated by a simple distributed control
service, which manages only flow-tables in OpenFlow
switches. The aggregator request rate varies uniformly within
[100, 900]reqs/s, with an average 500 req/s (in line with
OpenFlow traffic characteristics [47]). The operational prob-
ability of links and nodes is randomly drawn from a Weibull

TABLE 1. Different implementations of the mapping and association
steps used in the evaluations.

distribution with parameters 0.9999 and 40000, considering
the long tails in the downtime distribution of WAN links
with four nines of mean reliability [25], [48]. We plot the
failure probability (1−Rmin) instead of reliability as it is more
effective for plotting in log-scale.

We implemented the deployment optimization process
in Python. We run the tests on a server equipped with
AMD Opteron(tm) processor (8 cores, 3.1GHz) and 128 GB
memory. The entire optimization process runs on a single
core.

A. MAPPING AND ASSOCIATION IMPLEMENTATIONS
To validate the optimization solver we compare different
implementations (summarized in Table 1) of the mapping and
association steps (while holding the remaining steps fixed).
FTCP (fault tolerant controller placement) algorithm [25] is
a heuristicmapping algorithm that aims at placing aminimum
number of controllers in a heuristic way for guaranteeing
certain reliability.

Four small, three medium and five large topologies [46]
are used as test scenarios (see Appendix C for topological
details). In all of them the link bandwidth ue = u varies
within [µ/2, 3µ/2] randomly drawn from a truncated normal
distribution with mean µ and standard deviation σ = 4.
Considering the traffic characteristics of the OpenFlow pro-
tocol [47] and the traffic estimation model in Section III-D,
a control flow typically ranges from a few Kbits/s to a few
Mbits/s, depending on the request rates. Thereby, we set µ
to [8, 24, 48]Mbits/s for small, medium and large topologies,
respectively. These rates are sufficient for satisfying at least
3-nine reliability, but not for yielding trivial solutions. All the
reported results are based on 100 repetitions.

In Fig. 9 the performance of AA and FS for small topolo-
gies is shown as a ratio relative to the baseline implemen-
tation EE. For medium and large topologies, we only plot
the performance ratio between FS and AA, as EE is too slow
for obtaining any result. In Fig. 9a the performance is mea-
sured in terms of the observed failure probability (1− Rmin),
whereas in Fig. 9b it is in terms of optimization time.

In summary, the results in Fig. 9 provide evidence that
the outlined optimization process is capable of providing
a tunable control plane management solution that is close
to optimal. The choice of the particular method used for
mapping and association is a trade-off between the ability
to produce close to optimal solutions for different topology

70138 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 9. In (a) failure probability ratio is studied under different implementations, topologies and variable link
bandwidth; (b) optimization time ratio for different topologies as well as implementations is examined. The network
topologies vary from small to large (from left to right). AA offers better performance (in terms of lower failure probability
under the same link bandwidth), whereas FS is faster.

sizes (Appendix C) and optimization time spent to find them.
Specifically, AA offers better performance (in terms of lower
failure probability under the same link bandwidth), whereas
FS is faster. The same conclusions hold when the optimized
parameter is the bandwidth (not depicted).

B. BANDWIDTH VERIFICATION IMPLEMENTATIONS
(SCENARIO 1)
We compare two different bandwidth verification imple-
mentations, namely the FAS algorithm designed by
Karakostas [20] and the estλ algorithm designed by us.

Fig 10 shows the total running time when AA is used for
mapping and association. The estλ algorithm can achieve
50x running time reduction relative to the FAS algorithm—
a reduction from days to minutes—as is the case for the
‘‘BtEurope" topology. Fig. 11 shows results from the same

experiments4 but when, instead of AA, FS is used for map-
ping and association. The same conclusion—using estλ can
result inmuch faster optimization (fromminutes to seconds in
examined cases) than using the FAS algorithm—is reached.

C. LINK BANDWIDTH AND RELIABILITY SCALING TEST
We systematically quantify the impact of an increased
link bandwidth constraint on the achieved maximum Rmin.
Fig. 12 illustrates this effect for the "Internetmci" topology.
When scaling up the link bandwidth, the failure probabil-
ity decreases (equivalently, the reliability Rmin increases).
This phenomenon can intuitively be explained as follows.
An increase in bandwidth translates into more control traffic

4In addition to the topologies evaluated with the AA implementation,
we consider additional network topologies for complementary results (the
FS algorithm runs much faster than AA).

VOLUME 8, 2020 70139

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 10. The optimization time with different implementations of the bandwidth verification when AA is used for mapping and
association. The network topologies depicted on the x-axis are arranged in increasing size order (Appendix C). Clearly, our estλ algorithm
offers considerable reduction in the running time under all topologies. For larger, medium-sized networks, such as Jannetlense and
BtEurope, the running time is reduced from hours to minutes.

FIGURE 11. The optimization time with different implementations of the bandwidth verification when FS is used for mapping and
association. The reduction in running time offered by our estλ algorithm is from minutes to seconds.

that can be tolerated, and therefore into a larger number
of controllers that can be deployed. A larger number of
controller instances increases the probability of aggregators
being connected to an operational controller and therefore
to enhanced reliability. Another important observation, how-
ever, is that the failure probability decrease does not scale
linearly with bandwidth increase. A good balance between
bandwidth and reliability for the specific scenario studied in
Fig. 12 is attained at around 40Mbit/s. Increasing the band-
width beyond this point leads to insignificant improvement in
reliability at the cost of increased bandwidth. In other words,
when there are already many controllers in a network and
the attained reliability is very high (e.g., 7 nines and above),
deploying even more controllers yields only a negligible
gains.

Similar reasoning applies when we quantify the impact
of increased reliability threshold β, which is a constraint on
Rmin, on the requiredminimumbandwidth. Note that (1−β) is
the maximum constraint on the failure probability (1− Rmin).
Naturally, as β increases, more bandwidth is required to

FIGURE 12. Failure probability versus link bandwidth. The plot can be
used to determine the optimal trade-off between required reliability and
associated bandwidth demands.

guarantee a failure probability below (1 − β). Likewise,
Fig. 13 shows that when β is increased from 0.9995 to 0.9999,
the required bandwidth increases dramatically.

In short, the proposed optimization process can be used by
service providers and operators as a practical tool for quan-
tifying the trade-off between bandwidth and reliability gains,

70140 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 13. (upper) Achieved link bandwidth and (lower) failure
probability relative to varying constraints on the minimum reliability. The
optimization process always guarantees a failure probability equal to or
well below the requirement (the reference line).

TABLE 2. Results of SAS based on 100 runs with β = 0.99999 and large
topology Renater2010.

enabling development of flexible and fine-tuned controller
deployment policies.

D. MEASURING THE IMPACT OF THE ROUTABILITY
VERIFICATION STEP
Earlier works did not fully address the control plane deploy-
ment problem. In particular, the routability verification is
typically ignored to the best of our knowledge. Thereby,
it does not seem viable to perform quantitative comprehensive
comparisons. Instead, we design an experiment to show the
effect of incorporating routability check into the control plane
deployment problem.

We use FS (the FTCP method [25] for mapping and CAA
for association, see Table 1) i) integrated into the full opti-
mization process (see Fig. 4) and ii) as a stand-alone solution,
without traffic estimation and routability check. We abbrevi-
ate the latter SAS (Stand-Alone-Solution).

Given a minimum reliability constraint β, our optimization
process offers the capability to estimate the control traffic and
decide on the bandwidth required to avoid congestion. In con-
trast, the SAS approach is limited to ensuring a placement
satisfying β, but no guidelines on the amount of bandwidth
needed to route the control traffic. This limitation of the
SAS method yields the dilemma: how to manually reserve
sufficient but not excessive bandwidth. We exemplify this
dilemma in Table 2 by showing the bandwidth underutiliza-
tion ratio BUR = max(0.0, 1 − BWFS/BWSAS) for fixed
bandwidth reservations with SAS (BWSAS) relative to the
estimates produced by FS (BWFS). Note that for the third case

in Table 2, the bandwidth consumption can be largely reduced
by at least 36.6% in half of the observed cases without the
risk of introducing any congestionwhen applying the outlined
optimization process. Naturally, the average running time of
FS is longer (around 8 times for the considered topology) than
SAS due to the routability verification step.

VII. EVALUATION: SCENARIO 2
A. DELAY AND BACKLOG VERIFICATION METHODS
We compare our CGH algorithm5 with the direct-CPLEX
method (that is, with CPLEXwhen CPLEX is used to directly
solve the delay and backlog verification problem) in terms of
performance and running time. The time is especially relevant
in large-scale networks and when network changes occur
frequently since a fast solution in such scenarios can offer the
flexibility to respond to variations in conditions accordingly.

We first evaluate the standalone performance of the
two different methods when solving randomly generated
delay and backlog verification problems. Then we inte-
grate the delay and backlog verification methods into the
proposed optimization process, and illustrate the overall
optimization time by using different controller deployment
implementations.

For the experimental settings, the link propagation delay
is extracted from the topology based on physical distance
between two nodes. The processing delays are randomly
sampled from [0.1, 1]ms [49].

1) PERFORMANCE OF CGH AND CPLEX METHODS AS
STANDALONE SOLUTIONS FOR DELAY AND
BACKLOG VERIFICATION
We set Lmax = 1542 bytes, which is the maximum Ethernet
frame size [50]. In order to comprehensively study the per-
formance of the two methods, two traffic patterns are utilized
for evaluation, which are uniform traffic pattern and control
traffic pattern. We randomly generate several sets of bursty
flows for each traffic pattern.

For the uniform traffic pattern, the source and destina-
tion of a flow are uniformly distributed in the network.
The number of flows ranges within [20, 80], whereas the
flow rate ranges within [800, 7200]Kbits/s and the burstiness
within [1600, 48000]Kbits following a truncated multivariate
normal distributions, with means (µrate = 2400, µburst =
24000) and covariance (σrate = 300, σburst = 3000) and a
correlation parameter ρ = 0.83 [42]. The bandwidth of the
links is randomly distributed within [80, 8000]Mbits/s. The
delay constraints are swept within [0.5, 1.0]s and the backlog
constraints within [120, 240]Mbits.

The control traffic pattern emulates the phenomenon
that control plane flows tend to concentrate at con-
trollers. The control traffic flows are generated as follow:
first, we randomly select |C| ∈ [0.1|N |, 0.5|N |] nodes
as controllers. Second, we sample a probability vector

5As mentioned in Section V, the master problem in line (6) and (27) in our
CGH algorithm (Algorithm 5) is also solved by using CPLEX.

VOLUME 8, 2020 70141

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 14. Speed-ups by using column generation heuristic algorithm,
tested under (left) uniform traffic pattern and (right) control traffic
pattern. Compared with the direct-CPLEX method, the CGH algorithm has
a speed-up of 500x under uniform traffic pattern and 1000x under control
traffic pattern. The size of the examined topologies (Appendix C) ranges
from small to large (from left to right).

pc = [p1, p2, · · · , p|C|] from a Dirichlet distribution and
assign to each controller a probability value. Then, each
aggregator randomly selects one of the controllers for asso-
ciation according to these probabilities pc. The aggregator
request rate varies uniformly within [100, 900]req/s, with
an average of 500req/s. The burstiness ratio br is ran-
domly sampled from [0.1, 5.0]. Then, with the traffic esti-
mation method proposed in Section III-D and Section IV-D,
we estimate the rate (demand, df) and burstiness (bf) of
a flow f . The bandwidth of the links is randomly dis-
tributed within [8, 25600]Mbits/s. The delay constraints are
swept within [0.1, 1.0]s and the backlog constraints within
[120, 240]Mbits.

The results for each topology (Appendix C) and traffic
pattern are obtained over 1000 runs. The cut-off time for the
direct CPLEX was set to 10min since if a single routability
check runs for longer time, it is infeasible to use in practice.
The CPLEX is configured with two threads, which run on two
processor cores.6

The speed-up ratio of CGH over CPLEX is show in Fig. 14.
The approximation ratio (Fig. 15) is defined as (λCGH +
eps)/(λCPLEX + eps), where λCGH and λCPLEX are the maxi-
mization objective value (36) of our CGH and direct-CPLEX,
respectively. We set eps to a very small value (1e − 4) to
avoid numerical issues such as division by zero. The results
from the experiments show that overall CGH runsmuch faster
than direct-CPLEX. The larger the topology, the higher the
speed-up ratio. In particular, for the largest network topology
examined in these set of simulations (’Geant2010’), with uni-
form traffic pattern and control traffic pattern, we observed a
500x and 1000x reduction in time with our CGH algorithm,
respectively. Importantly, this significant reduction in run-
ning time is not at the cost of deterioration in optimization
performance. As the box plot in Fig. 15 suggests, the two

6We observed that parallel running of CPLEX with more than two pro-
cessor cores (and threads) only leads to insignificant speed-ups. We also
observed that an increase in the number of threads will significantly increase
the memory consumption, which can lead to memory overflow in certain test
cases.

FIGURE 15. Approximation ratio of CGH algorithm to direct-CPLEX
method, tested under (left) uniform traffic pattern and (right) control
traffic pattern. The box plots in the figure show that minimum, first
quartile, median, third quartile, and maximum under both traffic patterns
are all 1.0—the CGH algorithm can effectively reach similar performance
as the direct-CPLEX method.

TABLE 3. Optimization time comparison of different implementations.
Using our CGH for delay and backlog check can reduce the running time
from days to seconds.

methods statistically reach the same performance. The first
and third quartiles, minimum, median, and maximum values
are all 1.0, which means that in general CGH obtains the
same (optimal) solution as direct-CPLEX in all the exam-
ined test cases. The box plot also shows some outliers.
As mentioned earlier, CGH is an heuristic algorithm, there-
fore in some cases its solution can be worse than that of the
direct-CPLEX method (manifested in the box plot through
outliers below 1.0). On the other hand, due to the time limit
(the cut-off time), the direct-CPLEX method might not be
able to find the optimal solution but will instead report the
best solution that the method finds during the time limit.
In such cases, the solution of CGH might be better (which
results in the large valued (above 1.0) outliers).

2) PERFORMANCE EXAMPLE OF THE CONTROL PLANE
OPTIMIZATION SOLVER WITH CGH AND CPLEX METHODS
FOR DELAY AND BACKLOG VERIFICATION
The time reductions achievable with proposed algorithms
and the actual time this may translate to, in terms of run-
ning the whole process for solving a controller deploy-
ment plan, is exemplified by evaluating a medium-sized
topology (‘‘Internetmci’’, Appendix C) when combining dif-
ferent solver implementations summarised in Table 3 (see
also Table 1 for acronyms). In this example, we repeat-
edly optimized for reliability while keeping bandwidth to
400Mbps and having the latency requirement be set to a delay
between 50 ms to 400 ms.

For the AA+ estλ+ direct-CPLEX it takes over 50 hours
to complete a deployment plan, which is impractical to use in

70142 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

FIGURE 16. Bandwidth vs different delay bound constraints under
varying burstiness ratio. The required bandwidth decreases as the delay
bound constraint increases. Further, for smaller burstiness ratio the
required bandwidth is less.

real implementations. In comparison, the AA+ estλ+ CGH
solver can produce a deployment plan within approximately
35 min in median. The FS mapping and association offers
less optimal deployment plan than AA, but runs much faster
as was already indicated by the study in Section VI-A. In our
evaluation, the FS+ estλ+CGH can yield a deployment plan
within about 22 seconds. Compared with FS+ estλ+ direct-
CPLEX, our FS+ estλ+ CGH implementation considerably
reduced the running time by around 80x. The observed results
demonstrate that our CGH algorithm can greatly accelerate
the process of deploying controllers.

B. BANDWIDTH AND DELAY BOUND SCALING TEST
The relationship between bandwidth and reliability was stud-
ied for scenario 1. The same conclusions are valid for
scenario 2 (we omit the detailed results).

We focus here on studying the relationship between band-
width and delay in scenario 2 and to this end we use the
AA + estλ + CGH solver implementation. We illustrate
the results with the Internetmci topology. For experiment
settings, the rate rf of a control flow f depends on the
request rate of aggregators according to the traffic estimation
model in Section III-D. Similar to the settings in Section VI,
we vary the request rates of each aggregator randomly within
[100, 900]reqs/s. In our tests, the burstiness ratio br takes
on values within [0.1, 5.0]. Clearly, smaller br means lower
magnitude of burstiness.

To quantify the influence of the required bandwidth rela-
tive to the worst-case flow delay of a deployment plan we
proceeded as follows. Given 0.9999 reliability and 80 Mbits
backlog constraints fixed, we vary the delay constraint from
50ms to 5s. We observed that as we relax the delay constraint,
the required bandwidth for guaranteeing such a delay bound
decreases dramatically (see Fig. 16). Furthermore, for guar-
anteeing the same delay bound, control flows with smaller
burstiness require less bandwidth than flows with larger
burstiness (as expected). Similarly, in Fig. 17 we quantify the
influence of the guaranteed worst case delay relative to the
bandwidth limitations. When the bandwidth is varied from
40Mbits/s to 4800Mbits/s, the guaranteed worst-case delay
drops dramatically. Moreover, we can conclude that control
flows with smaller burstiness can be scheduled with lower

FIGURE 17. Worst case delay versus different bandwidth constraints,
under varying burstiness ratio. The worst case delay decreases as the
bandwidth constraint increases. Moreover, smaller burstiness ratio
corresponds to lower worst case delay.

FIGURE 18. Failure probability vs varying delay bound. Relaxing the delay
bound results in a decrease of failure probability (increase in reliability).

delay bound than flowswith larger burstiness, when the band-
width constraints are the same. These observations concord
with our intuition: the larger the bandwidth, the shorter the
worst-case delay, and vice versa.

C. RELIABILITY AND DELAY BOUND SCALING TEST
Three pairs of relationships can be explored with our current
implementation of the optimization process: reliability and
bandwidth, delay bound and bandwidth, reliability and delay
bound (the first of these was studied earlier). We focus on
the relationship between reliability and delay bound, given
400 Mbits/s bandwidth and 80 Mbits backlog constraints.
When we relax the delay bound constraints, the failure proba-
bility decreases, see Fig. 18.When the delay bound is relaxed,
less bandwidth is required, thus more controllers can be
used in an deployment plan, which results in an increase in
reliability.

VIII. RELATED WORK
Control plane deployment has become a hot research topic in
recent years. Existing works in this domain focus on aspects
such as switch-to-controller or controller-to-controller delay
reduction [3], [9], [10], [51]–[53], controller capacity and
utilization optimization [54], [55], flow setup time and com-
munication overhead minimization [56], [57], and energy
consumption among others.

Existing controller placement works [3], [9], [10],
[51]–[53] with delay objectives merely consider packet
propagation and processing delay. These works do not

VOLUME 8, 2020 70143

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

address the control plane traffic and the corresponding control
flow routability issues. Queueing and transmission delays are
thus typically ignored. Nonetheless, these delays contribute to
a large portion of the end-to-end flow delay, which needs to
be estimated and scheduled accordingly.

Control plane resilience contributions can be categorized
into two major classes: with or without certain theoretical
reliability guarantees. Compared to delay or load, reliability
(or failure resilience) is hard to compute, often requiring
sophisticated modeling. Examples of prior work with relia-
bility models or measurements include [15], [58]–[62], which
instead use intuitive objective functions to obtain a place-
ment solution, however, without providing an estimate of the
achieved reliability. In contrast, the authors in [25], [63] esti-
mate the network reliability in polynomial time and provide a
lower bound of the actual reliability. Additionally, the authors
have proposed a heuristic algorithm to decide on the number
and location of controllers in order to guarantee a certain
reliability requirement.

None of the aforementioned prior approaches address con-
trol traffic routability. A scalability optimization model for
placement, which has constraints on traffic demand and link
bandwidth, has been proposed in [64], albeit in a simpli-
fied context by assuming: 1) there is exactly one dedicated
one-hop link between each switch and each controller; 2) the
control traffic between a switch and a controller is always
routed on that dedicated link; and 3) no inter-controller traffic,
nor 4) flow delay considerations. In contrast, our approach
can be applied to any network topology and can deal with
any control traffic pattern, while quantifying reliability, band-
width and end-to-end flow delay requirements associated
with a certain control plane solution. The essential difference
between our work and the work reported in [65], which also
investigates routing of control flows, is that our solution is
proactive—it provides guarantees on routing control flows
when a feasible solution is found—whereas the approach
in [65] is reactive—it deals with failures and congestion when
such events occur.

Traditionally, network flow scheduling has been viewed
simply as a multi-commodity flow problem that only con-
siders bandwidth limitation (scenario 1 routability). Works
in this area include the classical column generation
method [16], [43] and the relatively new polynomial time
approximation algorithm [20], which is considered state-of-
the-art. We have advanced the latter algorithm [20] for solv-
ing scenario 1 control flow routability problems by adapting
the general algorithm [20] to the specifics of the aforemen-
tioned problem. As a result, the improved algorithm has
lower complexity and runs faster than [20]. Importantly, there
are only few works that incorporate the entire end-to-end
flow delay into the routability (scenario 2 routability) prob-
lem definition. Works such as [50], [66] route flows with
delay constraints and use network calculus for modeling
network elements and calculating flow delays. Nevertheless,
they route only new arrival flows, with one flow scheduled
at a time, rather than performing a global flow scheduling

and optimization. In contrast to these works, our algorithm
optimizes the routes of all existing flows.

In the context of prior art, the essence of our approach is
that it is holistic as it globally optimizes the routing of all
control traffic flows, it is versatile as no specific network
assumptions are made, and importantly it is proactive as it
supplies a reliable distributed control plane with performance
guarantees. The latter is vital for time-critical services.

IX. DISCUSSION
A. RUNNING TIME
Wehave generally observed that for medium-sized topologies
(Appendix C), if delay and backlog requirements are not con-
sidered, using our estλ algorithm for bandwidth verification
together with the simulated annealing (AA) implementation,
needs 5–30 minutes to complete a deployment plan (see
also Section VI). In contrast, with the FS implementation
(FTCP-CAA), it takes only a few seconds (< 10s) to generate
a plan, but the plan is farther from optimal. If delay and back-
log requirements are added, using our CGH algorithm for
delay and backlog verification, estλ algorithm for bandwidth
verification, together with AA implementation for mapping
and association, it takes around 30-120 minutes to accom-
plish a controller deployment plan. With FS implementation,
the estimated time to accomplish a deployment plan is about
0.5–1 minutes (see also Section VII).

Considering practical scenarios, controllers need to be
re-deployed when failures occur or in presence of significant
variations in the request rates. Failures are rare events, there-
fore the deployment process will not be invoked frequently.
If we only consider hourly variations of the request rates
(such as request rate changes due to busy hours and idle
periods during the day), the deployment process will run only
a few times per day. In both cases, since we only invoke the
deployment process infrequently, the AA implementation of
the deployment process can satisfy the requirements.

However, in scenarios that require frequent re-deployment
or in large-scale networks, where the computational time will
be increased due to the network size, we need to consider
either accelerating the AA implementation or using the FS
implementation. One way to speed-up the execution of the
AA implementation is to use the C programming language
and parallel computing.

Furthermore, we may cache certain frequently used
deployment plans in advance. In particular, we may esti-
mate the busy and idle hours of the day based on historical
observations. Then, we can use the deployment process to
generate plans for these daily periods in advance and load the
pre-calculated plans accordingly.

B. NETWORK CALCULUS
In this article, we use simple affine functions for modeling
the arrival and service curves of a flow, since the use of
such affine functions can greatly simplify the calculation of
the delay and backlog bounds. Theoretically, we may use

70144 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

complex wide-sense increasing functions to better approxi-
mate the arrival and service processes of a flow and hence
obtain tighter bounds. However, this often comes at the cost
of longer computational time, especially when the curves are
non-convex and non-linear. The authors of [35] propose to
use a set of piecewise linear functions for better approxi-
mations and therefore tighter bounds without complicating
the computation too much. However, the effect and rela-
tionship between computational complexity and tightness of
bounds have not been studied under the context of con-
trol plane deployment. This is a potential line for future
research.

The deterministic network calculus we applied in our work
has one shortcoming: it only considers the worst case. It can-
not use the statistical nature of traffic flows, and report on, for
instance, the exceeding likelihood of a particular delay bound.
Introducing stochastic network calculus into our optimization
process, and weighing the pros and cons on aspects such
as computational time, network bandwidth requirement and
so on, is also another relevant future work.

C. ADVANTAGES AND OTHER POSSIBLE APPLICATIONS
The method proposed in this work can be applied to problems
of the same class independently of the specific properties
of the underlying network topology and networking condi-
tions, allowing the user to specify traffic models, topological
properties and end-conditions arbitrarily. Further, each step of
the optimization process allows for a flexible implementation
based on any suitable method of choice (heuristic methods,
machine learning, exhaustive search, etc.) and is hence adap-
tive to the system at hand, in terms of computational capacity,
platforms and software. We implemented the mapping and
association steps by applying the simulated annealing algo-
rithm, but any other algorithm (such as those from the
stochastic search category or the extensively used k-means
algorithm) pertinent to this type of problems could also be
used. Even the implementation of the simulated annealing
algorithm is susceptible to different design choices of the cost
and transition probability functions (which can have a large
impact on the convergence and overall performance of the
algorithm).

Furthermore, whereas the optimization process is com-
posed of core steps, its flow (the order of these steps) can
be flexibly adapted to accommodate different optimization
objectives. Aggregator request rate estimation, for instance,
can precede the association step and be used to decide on the
control regions so that the load between controllers can be
more evenly distributed (that is, balanced).

We believe that with proper implementations, the proposed
method may be widely applicable to resource management
problems requiring guaranteed performance and reliability
in distributed system domain. Examples of applications that
may benefit from the proposed method are several:

• Distributed big data computations, where resource allo-
cation and synchronization of partial results require data

transactions under certain performance requirements
and reliability guarantees.

• Self-organization of wired and wireless communication
infrastructures (e.g., sensor networks) requiring mul-
tiple cluster heads selection and association of nodes
and scheduling of flows following performance and
reliability requirements.

• Scaling of virtualized network functions implementing
elastic services, which require performance and relia-
bility guarantees of deployed flows to ensure service
availability and quality.

• Organization of wireless access networks, associating
access points and base stations as aggregators with dis-
tributed controller instances (processing entities) as part
of a distributed evolved packet core.

D. SYSTEM INTEGRATION AND CONFIGURABILITY
Our proposed optimization process is generically applica-
ble in the sense that each step can be implemented using
suitable methods in line with the needs and requirements of
the network operator. In the following, we comment on the
practical aspects of integrating and configuring the proposed
optimization approach.

1) THE PROCESS AS A NETWORK MANAGEMENT FUNCTION
We envision the optimization process as a functional part of a
network management system [67]. In this context, the opti-
mization process can be invoked by auxiliary control and
monitoring functions, for triggering adaptation of the deploy-
ment plan to increased or decreased network load (i.e., num-
ber of requests and expected message sizes), or for mitigating
detected failures. The proposed implementation of the opti-
mization process enables fast adaptation to both data volume
and topological changes. Parameter tuning and/or alternative
implementations of the outlined steps may accelerate the
processing speed even further.

2) RUNNING THE OPTIMIZATION FRAMEWORK
In our implementation of the proposed optimization pro-
cess [67], [68], two types of input is required – a network
description file (i.e., graphml-file) and a configuration file
specifying the optimization parameters. The former includes
an XML-description of the network topology, together with
the expected load of each node (i.e., number of requests),
the capacity and latency of each link (i.e., the physical
transmission delay) and the operational reliability of links
and nodes (i.e. failure probabilities). The configuration file
specifies the parameter to optimize for (reliability, band-
width or delay) and the constraints delay, reliability, band-
width and backlog, as well as the traffic parameters related
to inter-traffic between controller and aggregator. The lat-
ter requires configuration of three parameters: the mes-
sage sizes of Treq for bidirectional (and possibly asymmet-
ric) communication between controllers and aggregators,
as well as Tstate reflecting themessage size for inter-controller
communication (see also Section III-D).

VOLUME 8, 2020 70145

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

3) CONFIGURING THE OPTIMIZATION STEPS
The specific methods used in this paper have been selected
and adapted to produce close to optimal results within short
time frames, as demonstrated in Section VI and Section VII.
In practice, the methods suggested for each step of the opti-
mization process require empirical tuning of few parameters.
Specifically, configuration of the applied simulated annealing
methods for mapping and association (partially outlined in
Algorithm 1 and 2) requires initialization of the initial tem-
perature Tinitial and the step-factor γ . These two parameters
are empirically set by the user as a trade-off between the com-
putation time and level of optimality of the produced result
after running the optimization process. Moreover, the FPTAS
algorithm (Algorithm 3) implementing the routability check
requires only configuration of the ε parameter reflecting the
level of accuracy. This parameter is user-defined and does not
require tuning. For CGH (Algorithm 5), CPLEX is an integral
part of the implementation logic. The practitioner would need
to ensure the smooth interaction of CPLEX (which solves
the master problem) and the remaining part of CGH, which
iteratively solves the subproblem by sending input to CPLEX
for generating a solution. Knowledge of CPLEX or any other
optimization solver is therefore required. The user must also
tune the maximum number of iterations allowed before the
algorithm stops searching for solution. Theoretically, if this
value is very low, CGH might not find a solution. Therefore,
setting this parameter requires some empirical work.

X. CONCLUSION
We have proposed a novel optimization approach for flexi-
ble deployment of distributed control planes. The approach
can automatically decide on the number of controllers, their
locations and control regions, and is guaranteed to find a
deployment plan that fulfills requirements on control traffic
reliability and routability. This feature is especially relevant in
the context of future distributed control service applications,
where the inter-control traffic required for shared informa-
tion consistency could potentially become very large with
the number of controller instances and when time critical
services must be supported by the network. Evaluation results
indicate that the approach, involving two novel algorithms for
routability, is essentially as effective in finding close to opti-
mal solutions under diverse conditions as other algorithms,
but substantially faster, especially for large topologies. The
approach can be used as a practical tool for quantifying
and predicting the trade-off between bandwidth, delay and
reliability, making it suitable for service providers and oper-
ators that wish to develop control plane deployment policies.
Note that, the approach is applicable not only to the case of
deploying instances in controller plane applications, but also
to other types of service deployment (such as deployment of
back-up service nodes for maintaining service availability).

Our design of two fast algorithms for bandwidth verifica-
tion as well as delay and backlog verification, makes it pos-
sible to satisfy, in extremely fast fashion, different routability
requirements. The running time is effectively reduced to the

level of 50x in the case of bandwidth verification, and by 500x
for delay and backlog verification (compared to CPLEX)
for large-sized topologies. In a practical network operations
setting, the ability to retrieve a complex deployment plan with
many constraints within seconds rather than days, is essen-
tial for quickly adapting to changing network conditions
(e.g., emergencies where connectivity and communication
is vital) and to ensure critical service availability at all
times. The possibility to elastically adapt the control plane
deployment is also fundamental for effective utilization of
networked infrastructure resources. The concepts presented
in this article have been filed for patenting [67] and an early
implementation of the tool reflecting the features in [21] is
also available at https://github.com/nigsics/dcpmtool.

APPENDIXES
APPENDIX A
TIME COMPLEXITY ANALYSIS OF THE FPTAS ALGORITHM
The FPTAS algorithm follows the core prime-dual idea
and flow of the FAS algorithm [20] as described earlier
in Section III-E. Here, we mainly focus on analyzing the
running time of our algorithm and answer the question why it
is faster than the FAS [20] when routing control plane flows.

We only consider the η ≥ 1 case, where η = minlD(l)
(see (13)), since when η < 1, we can always scale all the flow
demands with a common factor Sc to ensure η′ = η/Sc ≥ 1.
How to find a proper Sc has already been discussed in [20].
For η ≥ 1, we state the lemmas as follow:
Lemma 1: The upper bound on the total number of phases

is given by:

t = d
η

ε
log1+ε

|E|
1− ε

e.

The upper bound is the same for both FAS [20] and FPTAS
algorithms. For the proof of Lemma 1, the reader is referred
to [20].

Now, let us consider the number of iterations in each phase.
In comparison to FAS, which executes |V | iterations, each
phase in our FPTAS algorithm needs just |C| iterations. Note
that each iteration might have different number of steps.
Lemma 2 gives a bound on the total number of steps.
Lemma 2: The total number of steps exceeds the total

number of iterations by at most |E|log1+ε 1+εδ , for η > 1.
Proof: In each iteration, there are two types of steps: the

terminal step (the last step of an iteration) and non-terminal
steps. Clearly, the total number of terminal steps equals
the total number of iterations. Therefore, we need to prove
only that the total number of non-terminal steps is less than
|E|log1+ε 1+εδ .

If jth step in an iteration is not the last step, there must
be at least one saturated edge e with ρ(e) > 1 (line 9 of
Algorithm 3). Otherwise, σ = 1 according to line 10 and thus
d ′(f) = 0,∀f ∈ Fc, which means there will be no next step.
Therefore, according to line 14, for any saturated edge e, its
link length l(e) = (1+ε)l(e) is increased. This means that for
every non-terminal step in an iteration, the length of at least
one edge is increased by a factor of (1 + ε). Furthermore,

70146 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

we have D(l) ≤ (1+ ε) (otherwise the algorithm has already
terminated), which requires that l(e) < (1 + ε)/u(e),∀e.
Thus, given the initial l(e) = δ/u(e),∀e, the total num-
ber of non-terminal steps is at most |E|log1+ε

(1+ε)/u(e)
δ/u(e) =

|E|log1+ε 1+εδ . �
Therefore, the FPTAS algorithm contains t|C| iterations

and hence the total number of steps have an upper bound of
t|C|+ |E|log1+ε 1+εδ . In contrast, the FAS algorithm requires
t|V | iterations and the upper bound on the total number of
steps is t|V | + |E|log1+ε 1+εδ . Considering that in both algo-
rithms each step has the same time complexityO(|V |log|V |+
|E|) (due to the Dijkstra shortest path algorithm in the inner
loop), our FPTAS algorithm outperforms FAS [20] in time
complexity. In essence, it requires fewer iterations and steps,
and is especially faster when |C| � |V |.

APPENDIX B
A METHOD FOR CALCULATING THE LOWER AND UPPER
BOUNDS OF 3

The lower and upper bounds of λ are calculated based on the
following two propositions.
Proposition 1: Let Pf denote the shortest path of flow f

with maximum capacity and let capf denote the capac-
ity of this path (capf = min(ue|e ∈ pf)). Let rmin =
min(capf /df ,∀f ∈ F). Then, λ <= |E|rmin, and
λ >= rmin/|E|.

Proof: Suppose we route each flow f ∈ F with df units
along its maximum capacity shortest path Pf , considering the
utilization of every edge e ∈ E .

ρ(e) =

∑
f :e3Pf df

cape
,∀e ∈ E (57)

≤

∑
f :e3Pf

1/rmin (58)

≤ |E|/rmin (59)

Since the maximum utilization of any link is smaller than
|E|/rmin, we can always feasibly route each flow f ∈ F with
d ′f = df

rmin
|E| . Thus, we have λ = d ′f /df ≥

rmin
|E| .

Each flow f can have at most |E| different paths
(|κf | < |E|). Since capf denotes the capacity of themaximum
capacity shortest path of flow f , we can at most route capf |E|
units of each flow. Thus, we have:

λ ≤ min(capf |E|/df) (60)

= |E |rmin (61)

�

Proposition 2: Let capnout denote the sum of all the outgo-
ing link capacities of arbitrary node n ∈ V and let dnout denote
the sum of {df |sf = n}. Similarly, let capnin denote the sum of
all the incoming link capacities, and dnin denote the sum of
{df |tf = n}. Then, λ ≤ min(dcout/cap

n
out , d

c
in/cap

n
in).

Proof: We calculate the ratio of the total demand of
all the flows originating from a node or ending at a node, over
the total input/output bandwidth of the node. Since λ reflects

TABLE 4. Description of used topologies.

the proportion of routable flow demand, it should be smaller
than this ratio. �

By combining Proposition 1 and Proposition 2, we can cal-
culate the upper bound by λhigh = min(|E|rmin, dnout/cap

n
out ,

dnin/cap
n
in), and the lower bound by λlow = rmin/|E|.

APPENDIX C
TOPOLOGIES USED
Table 4 provides an overview of the topologies used for the
tests in terms of number of nodes and number of edges. In this
paper, we consider topologies of small (< 10 nodes), medium
(< 30 nodes) and large (≥ 30 nodes) sizes.

ACKNOWLEDGMENT
The authors would like to thank the anonymous reviewers,
as well as Prof. Magnus Boman (KTH, Sweden) and the
M.Sc. Daniel Felipe Perez-Ramirez (RISE, Sweden), for
valuable comments and suggestions received in the prepara-
tion of the final version of this manuscript.

REFERENCES
[1] A. Bianco, P. Giaccone, R. Mashayekhi, M. Ullio, and V. Vercellone,

‘‘Scalability of ONOS reactive forwarding applications in ISP networks,’’
Comput. Commun., vol. 102, pp. 130–138, Apr. 2017.

[2] A. S. Muqaddas, A. Bianco, P. Giaccone, and G. Maier, ‘‘Inter-controller
traffic in ONOS clusters for SDN networks,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[3] T. Zhang, A. Bianco, and P. Giaccone, ‘‘The role of inter-controller
traffic in SDN controllers placement,’’ in Proc. IEEE Conf. Netw.
Function Virtualization Softw. Defined Netw. (NFV-SDN), Nov. 2016,
pp. 87–92.

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker, ‘‘Onix:
A distributed control platform for large-scale production networks,’’ in
Proc. OSDI, vol. 10, 2010, pp. 1–6.

[5] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz,
B. O’Connor, P. Radoslavov, W. Snow, and G. Parulkar, ‘‘ONOS: Towards
an open, distributed SDN OS,’’ in Proc. ACM Hot topics Softw. Defined
Netw., 2014, pp. 1–6.

[6] A. S. Muqaddas, A. Bianco, and P. Giaccone. (2016). Inter-Controller
Traffic in ONOS Clusters for SDN Networks. [Online]. Available:
http://onos-cord-eu.create-net.org/wp-content/uploads/2016/09/01-
ONOS_CORD_Workshop16-InterClusterTraffic_ONOS-Abridged.pdf

[7] E. S. Elmallah, ‘‘Algorithms for K-terminal reliability problems with node
failures,’’ Networks, vol. 22, no. 4, pp. 369–384, Jul. 1992.

VOLUME 8, 2020 70147

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

[8] P. Hunt, M. Konar, F. P. Junqueira, and B. Reed, ‘‘ZooKeeper: Wait-free
coordination for Internet-scale systems,’’ in Proc. USENIX Ann. Tech.
Conf., vol. 8, no. 9, 2010, p. 11.

[9] B. Heller, R. Sherwood, and N. McKeown, ‘‘The controller placement
problem,’’ in Proc. ACM SIGCOMM Comp. Comm. Rev., 2012, pp. 7–12.

[10] Y. Jimenez, C. Cervello-Pastor, and A. J. Garcia, ‘‘On the controller
placement for designing a distributed SDN control layer,’’ in Proc. IFIP
Netw. Conf., Jun. 2014, pp. 1–9.

[11] Y. Hu, W.Wendong, X. Gong, X. Que, and C. Shiduan, ‘‘Reliability-aware
controller placement for software-defined networks,’’ in Proc. IFIP/IEEE
Int. Symp. Integr. Netw. Manage. (IM), 2013, pp. 672–675.

[12] Y. Hu,W.Wang, X. Gong, X. Que, and S. Cheng, ‘‘On reliability-optimized
controller placement for software-defined networks,’’ China Commun.,
vol. 11, no. 2, pp. 38–54, Feb. 2014.

[13] Y. Zhang, N. Beheshti, and M. Tatipamula, ‘‘On resilience of split-
architecture networks,’’ in Proc. IEEE Global Telecommun. Conf.
(GLOBECOM), Dec. 2011, pp. 1–6.

[14] Q. Zhong, Y. Wang, W. Li, and X. Qiu, ‘‘A min-cover based controller
placement approach to build reliable control network in SDN,’’ in Proc.
NOMS - IEEE/IFIP Netw. Oper. Manage. Symp., Apr. 2016, pp. 481–487.

[15] S. Lange, S. Gebert, T. Zinner, P. Tran-Gia, D. Hock, M. Jarschel, and
M. Hoffmann, ‘‘Heuristic approaches to the controller placement problem
in large scale SDN networks,’’ IEEE Trans. Netw. ServiceManage., vol. 12,
no. 1, pp. 4–17, Mar. 2015.

[16] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: The-
ory, Algorithms, and Applications. Upper Saddle River, NJ, USA:
Prentice-Hall, 1993.

[17] S. Kandula, D. Katabi, S. Sinha, and A. Berger, ‘‘Dynamic load balancing
without packet reordering,’’ ACM SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 2, pp. 51–62, Mar. 2007.

[18] M. Zhang, C. Yi, B. Liu, and B. Zhang, ‘‘GreenTE: Power-aware traffic
engineering,’’ in Proc. 18th IEEE Int. Conf. Netw. Protocols, Oct. 2010,
pp. 21–30.

[19] S. Arora and B. Barak, Computational Complexity: A Modern Approach.
Cambridge, U.K.: Cambridge Univ. Press, 2009.

[20] G. Karakostas, ‘‘Faster approximation schemes for fractional multicom-
modity flow problems,’’ ACM Trans. Algorithms, vol. 4, no. 1, pp. 1–17,
Mar. 2008.

[21] S. Liu, R. Steinert, and D. Kostic, ‘‘Flexible distributed control plane
deployment,’’ in Proc. NOMS - IEEE/IFIP Netw. Operations Manage.
Symp., Apr. 2018, pp. 1–7.

[22] J. W. Rupe, ‘‘Reliability of computer systems and networks fault tolerance,
analysis, and design,’’ IIE Trans., vol. 35, no. 6, pp. 586–587, Jun. 2003.

[23] (2011). Openflow Switch Specification v1.2. [Online]. Available:
https://www.opennetworking.org/

[24] S. Agarwal, M. Kodialam, and T. V. Lakshman, ‘‘Traffic engineering
in software defined networks,’’ in Proc. IEEE INFOCOM, Apr. 2013,
pp. 2211–2219.

[25] F. J. Ros and P. M. Ruiz, ‘‘On reliable controller placements in software-
defined networks,’’ Comput. Commun., vol. 77, pp. 41–51, Mar. 2016.

[26] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[27] A. Corana, M. Marchesi, C. Martini, and S. Ridella, ‘‘Minimizing mul-
timodal functions of continuous variables with the ‘simulated annealing’
algorithm—Corrigenda for this article is available here,’’ ACM Trans.
Math. Softw., vol. 13, no. 3, pp. 262–280, 1987.

[28] D. Bertsimas and J. Tsitsiklis, ‘‘Simulated annealing,’’ Statist. Sci., vol. 8,
no. 1, pp. 10–15, 1993.

[29] A. Bianco, P. Giaccone, A. Mahmood, M. Ullio, and V. Vercellone, ‘‘Eval-
uating the SDN control traffic in large ISP networks,’’ in Proc. IEEE Int.
Conf. Commun. (ICC), Jun. 2015, pp. 5248–5253.

[30] N. Garg and J. Könemann, ‘‘Faster and simpler algorithms for multicom-
modity flow and other fractional packing problems,’’ SIAM J. Comput.,
vol. 37, no. 2, pp. 630–652, Jan. 2007.

[31] T. H. Cormen, Introduction to Algorithms. Cambridge, MA, USA:
MIT Press, 2009.

[32] I.-L. Wang, ‘‘Multicommodity network flows: A survey, part II: Solution
methods,’’ Int. J. Oper. Res., vol. 15, no. 4, pp. 155–173, 2018.

[33] V. V. Vazirani, Approximation Algorithms. Berlin, Germany: Springer-
Verlag, 2003.

[34] R. L. Cruz, ‘‘A calculus for network delay. I. Network elements in isola-
tion,’’ IEEE Trans. Inf. Theory, vol. 37, no. 1, pp. 114–131, Jan. 1991.

[35] J.-Y. Le Boudec and P. Thiran, Network Calculus: A Theory of Determin-
istic Queuing Systems for the Internet. Springer, 2001, p. 2050.

[36] R. Agrawal, R. L. Cruz, C. Okino, and R. Rajan, ‘‘Performance bounds
for flow control protocols,’’ IEEE/ACM Trans. Netw., vol. 7, no. 3,
pp. 310–323, Jun. 1999.

[37] Y. Jiang and Y. Liu, Stochastic Network Calculus, vol. 1. London, U.K.:
Springer-Verlag, 2008.

[38] A. Van Bemten and W. Kellerer, Network Calculus: A Comprehen-
sive Guide, Lehrstuhl für Kommunikationsnetze, Technische Universität
München, Munich, Germany, 2016.

[39] Y. Jiang, ‘‘Relationship between guaranteed rate server and latency rate
server,’’ Comput. Netw., vol. 43, no. 3, pp. 307–315, Oct. 2003.

[40] H. Zhang, ‘‘Service disciplines for guaranteed performance service in
packet-switching networks,’’ Proc. IEEE, vol. 83, no. 10, pp. 1374–1396,
Oct. 1995.

[41] M. Casado, M. J. Freedman, J. Pettit, J. Luo, N. McKeown, and S. Shenker,
‘‘Ethane: Taking control of the enterprise,’’ ACM SIGCOMM Comput.
Commun. Rev., vol. 37, no. 4, pp. 1–12, 2007.

[42] K.-C. Lan and J. Heidemann, ‘‘A measurement study of correlations of
Internet flow characteristics,’’ Comput. Netw., vol. 50, no. 1, pp. 46–62,
Jan. 2006.

[43] L. R. Ford and D. R. Fulkerson, ‘‘A suggested computation for maximal
multi-commodity network flows,’’Manage. Sci., vol. 5, no. 1, pp. 97–101,
Oct. 1958.

[44] L. S. D. Oliveira and S. F. P. Saramago, ‘‘Multiobjective optimization
techniques applied to engineering problems,’’ J. Brazilian Soc. Mech. Sci.
Eng., vol. 32, no. 1, pp. 94–105, 2010.

[45] D. E. Knuth, ‘‘Searching and sorting,’’ in The Art of Computer Program-
ming, vol. 3. Reading, MA, USA: Addison-Wesley, 1973, ch. 6.5.

[46] (2011). The Internet Topology Zoo. [Online]. Available: http://www.
topology-zoo.org/

[47] D. Levin, A. Wundsam, A. Feldmann, S. Seethamaran, M. Kobayashi, and
G. Parulkar, ‘‘A first look at OpenFlow control plane behavior from a test
deployment,’’ Fakultät Elektrotechnik Informatik, Technische Universität
Berlin, Berlin, Germany, Tech. Rep. 13-2011, 2011. [Online]. Available:
http://www.eecs.tu-berlin.de/menue/forschung/forschungsberichte/2011

[48] D. Turner, K. Levchenko, A. C. Snoeren, and S. Savage, ‘‘California fault
lines: Understanding the causes and impact of network failures,’’ ACM
SIGCOMM Comput. Commun. Rev., vol. 40, no. 4, pp. 315–326, 2010.

[49] G. P. Katsikas, ‘‘NFV service chains at the speed of the underlying com-
modity hardware,’’ Ph.D. dissertation, KTH Roy. Inst. Technol., Stock-
holm, Sweden, 2018.

[50] J. W. Guck, A. Van Bemten, and W. Kellerer, ‘‘DetServ: Network models
for real-time QoS provisioning in SDN-based industrial environments,’’
IEEE Trans. Netw. Service Manage., vol. 14, no. 4, pp. 1003–1017,
Dec. 2017.

[51] L. Liao and V. C. M. Leung, ‘‘Genetic algorithms with particle swarm opti-
mization based mutation for distributed controller placement in SDNs,’’
in Proc. IEEE Conf. Netw. Function Virtualization Softw. Defined Netw.
(NFV-SDN), Nov. 2017, pp. 1–6.

[52] B. P. R. Killi, E. A. Reddy, and S. V. Rao, ‘‘Cooperative game the-
ory based network partitioning for controller placement in SDN,’’ in
Proc. 10th Int. Conf. Commun. Syst. Netw. (COMSNETS), Jan. 2018,
pp. 105–112.

[53] K. S. Sahoo, S. Sahoo, A. Sarkar, B. Sahoo, and R. Dash, ‘‘On the
placement of controllers for designing a wide area software defined
networks,’’ in Proc. TENCON - IEEE Region 10 Conf., Nov. 2017,
pp. 3123–3128.

[54] G. Yao, J. Bi, Y. Li, and L. Guo, ‘‘On the capacitated controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 18,
no. 8, pp. 1339–1342, Aug. 2014.

[55] S. Jiugen, Z. Wei, J. Kunying, and X. Ying, ‘‘Multi-controller deployment
algorithm based on load balance in software defined network,’’ J. Electron.
Inf. Technol., vol. 40, no. 2, pp. 455–461, 2018.

[56] M. He, A. Basta, A. Blenk, and W. Kellerer, ‘‘Modeling flow setup time
for controller placement in SDN: Evaluation for dynamic flows,’’ in Proc.
IEEE Int. Conf. Commun. (ICC), May 2017, pp. 1–7.

[57] M. F. Bari, A. R. Roy, S. R. Chowdhury, Q. Zhang, M. F. Zhani,
R. Ahmed, and R. Boutaba, ‘‘Dynamic controller provisioning in software
defined networks,’’ in Proc. 9th Int. Conf. Netw. Service Manage. (CNSM),
Oct. 2013, pp. 18–25.

[58] D. Hock, M. Hartmann, S. Gebert, M. Jarschel, T. Zinner, and
P. Tran-Gia, ‘‘Pareto-optimal resilient controller placement in SDN-based
core networks,’’ in Proc. 25th Int. Teletraffic Congr. (ITC), Sep. 2013,
pp. 1–9.

70148 VOLUME 8, 2020

S. Liu et al.: Fast Deployment of Reliable Distributed Control Planes With Performance Guarantees

[59] D. Hock, S. Gebert, M. Hartmann, T. Zinner, and P. Tran-Gia, ‘‘POCO-
framework for Pareto-optimal resilient controller placement in SDN-based
core networks,’’ in Proc. IEEE Netw. Operations Manage. Symp. (NOMS),
May 2014, pp. 1–2.

[60] L. F. Muller, R. R. Oliveira, M. C. Luizelli, L. P. Gaspary, and
M. P. Barcellos, ‘‘Survivor: An enhanced controller placement strategy
for improving SDN survivability,’’ in Proc. IEEE Global Commun. Conf.,
Dec. 2014, pp. 1909–1915.

[61] D.M. F.Mattos, O. C.M. B. Duarte, and G. Pujolle, ‘‘A resilient distributed
controller for software defined networking,’’ in Proc. IEEE Int. Conf.
Commun. (ICC), May 2016, pp. 1–6.

[62] P. Vizarreta, C. M. Machuca, and W. Kellerer, ‘‘Controller place-
ment strategies for a resilient SDN control plane,’’ in Proc. 8th
Int. Workshop Resilient Netw. Design Model. (RNDM), Sep. 2016,
pp. 253–259.

[63] F. J. Ros and P. M. Ruiz, ‘‘Five nines of southbound reliability in software-
defined networks,’’ in Proc. 3rd workshop Hot topics Softw. defined Netw.
(HotSDN), 2014, pp. 31–36.

[64] A. Sallahi and M. St-Hilaire, ‘‘Optimal model for the controller placement
problem in software defined networks,’’ IEEE Commun. Lett., vol. 19,
no. 1, pp. 30–33, Jan. 2015.

[65] B. Gorkemli, S. Tatlicioglu, A. M. Tekalp, S. Civanlar, and E. Lokman,
‘‘Dynamic control plane for SDN at scale,’’ IEEE J. Sel. Areas Commun.,
vol. 36, no. 12, pp. 2688–2701, Dec. 2018.

[66] J. W. Guck, M. Reisslein, and W. Kellerer, ‘‘Function split between
delay-constrained routing and resource allocation for centrally managed
QoS in industrial networks,’’ IEEE Trans. Ind. Informat., vol. 12, no. 6,
pp. 2050–2061, Dec. 2016.

[67] S. Liu, R. Steinert, and D. Kostic, ‘‘Dynamic deployment of network appli-
cations having performance and reliability guarantees in large computing
networks,’’ USPTO Patent 16 745 477, Jan. 17, 2020.

[68] D. F. Perez-Ramirez, R. Steinert, N. Vesselinova, and D. Kostic, ‘‘Demo
abstract: Elastic deployment of robust distributed control planes with
performance guarantees,’’ in Proc. IEEE Int. Conf. Comput. Commun.
(INFOCOM), Jul. 2020, pp. 1–2.

SHAOTENG LIU was born in Xi’an, Shannxi,
China, in 1984. He received the B.S. and M.S.
degrees in microelectronics from Fudan Univer-
sity, Shanghai, China, in 2010, and the M.S.
degree on system-on-chip and the Ph.D. degree in
electronics and computer system from the KTH
Royal Institute of Technology, Stockholm, Swe-
den, in 2010 and 2015, respectively.

From November 2013 to June 2014, he was a
Ph.D. Intern with the Xilinx Research Laboratory,

USA. From 2015 to 2017, he was a Researcher with RISE SICS. Since 2017,
he has been a Senior Researcher with the Network Intelligence Group, RISE
SICS. He is the author of 12 articles. His research interests include electronic
systems, high performance computation, networks-on-chip, distributed sys-
tems, optimization and machine learning.

Dr. Liu received the Best Paper Award from the Ninth ACM/IEEE Inter-
national Symposium on Networks-on-Chip, in 2015.

REBECCA STEINERT received the B.Sc. degree
in real-time systems, the M.Sc. degree in com-
puter science with emphasis on autonomous sys-
tems and machine learning, in 2008, and the Ph.D.
degree in probabilistic fault management and per-
formance monitoring in networked systems from
the KTH, Royal Institute of Technology, Stock-
holm, in 2014.

She joined the RISE Research Institutes of Swe-
den (formerly SICS Swedish Institute of Computer

Science), in 2006. She is currently driving research within applied machine
learning for intelligent autonomous networked systems, and has been the
Leader of the Network Intelligence Research Group, since 2015. Her current
research interests include probabilistic modeling, deep learning and com-
binatorial optimization applied in programmable networks, and distributed
systems.

NATALIA VESSELINOVA (Member, IEEE)
received the M.Sc. degree in telecommunications
engineering from the Technical University of
Sofia, and the Nordic Five Tech M.Sc. degree
in applied and engineering mathematics from the
Chalmers University of Technology and Aalto
University, and the Ph.D. degree in telecom-
munications from the Technical University of
Catalonia.

She is currently a Senior Research Scientist with
the Research Institutes of Sweden (RISE), where she contributes to the
research endeavours of the Network Intelligence Group. At present, she is
focused on solving problems from the networking engineering practice with
probability, statistics, machine learning, and deep learning theory and tools.

DEJAN KOSTIĆ received the Ph.D. degree in
computer science from Duke University. He spent
the last two years of his studies and a brief stay
as a Postdoctoral Scholar with the University of
California, San Diego, CA, USA. Since 2014,
he has been associated with the RISE Research
Institutes of Sweden (formerly SICS Swedish
Institute of Computer Science). He is currently a
Professor of internetworking with the KTH Royal
Institute of Technology, where he is theHead of the

Communication Systems Division. His research interests include distributed
systems, computer networks, operating systems, and mobile computing.

VOLUME 8, 2020 70149

