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ABSTRACT Itis very challenging to detect traffic signs using a high-precision real-time approach in realistic
scenes with respect to driver-assistance systems for driving vehicles and autonomous driving. To address
this challenge, in this paper, a new detection scheme (named MSA_YOLOV3) is proposed to accurately
achieve real-time localization and classification of small traffic signs. First, data augmentation is achieved
using image mixup technology. Second, a multi-scale spatial pyramid pooling block is introduced into the
Darknet53 network to enable the network to learn object features more comprehensively. Finally, a bottom-
up augmented path is designed to enhance the feature pyramid in YOLOV3, and the result is to achieve
accurate localization of objects by utilizing fine-grained features effectively in the lower layers. According
to the tests on the TT100K dataset (which is a dataset for traffic sign detection), the performance of the
proposed MSA_YOLOV3 is better than that of YOLOV3 in detecting small traffic signs. The detection speed
of MSA_YOLOv3 is 23.81 FPS, and the mAP (mean Average Precision) reaches up to 86%.

INDEX TERMS Convolutional neural network, small object detection, traffic sign detection, YOLOV3.

I. INTRODUCTION

As an essential part of an advanced driver-assistance system
and autonomous driving, traffic sign detection is required for
locating traffic signs from realistic scene images and classify-
ing them into specified categories. For practical applications,
reliable and real-time detection of small objects in complex
backgrounds is required while the vehicle is running at high
speeds [1].

Overall, traffic sign detection can be roughly divided into
two categories: traditional schemes based on hand-crafted
features and deep learning schemes based on convolutional
neural networks (CNNGs). In the traditional approaches, three
steps are often involved: obtaining regional proposals that
contain traffic signs, extracting hand-crafted features from
these regions, and taking these features as the inputs to the
classifiers (e.g., SVM) [2]-[5]. However, the hand-crafted
features extracted by traditional algorithms are low-level,
specific to specified objects and unable to well represent

The associate editor coordinating the review of this manuscript and

approving it for publication was Kang Li

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

multi-class objects. Therefore, the robustness of the tradi-
tional approaches is poor for detecting traffic signs in a
complex environment. In contrast, the CNNs can learn more
generalized features from a large number of samples with-
out preprocessing, and thus, they can avoid the difficulty
of designing hand-crafted features. Overall, the CNN-based
detection approach can be further divided into two categories:
two-stage approaches and one-stage approaches. The two-
stage approaches to detecting traffic signs have high preci-
sion [6], [7], but these approaches require high computing
complexity and they do not satisfy the real-time requirement.
In the one-stage approaches, regression is used to achieve
real-time performance; for example, YOLOv3 [8] could reach
20 FPS under the 608 x 608 input size. However, their
performance on detecting small objects (e.g., traffic signs) is
often low.

Furthermore, the most common dataset used in the field
of traffic sign detection is the German Traffic Sign Detec-
tion Benchmark (GTSDB) [9]. We argue that the schemes
with perfect detection results on the GTSDB could have low
performance in a practical environment [10], because the
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GTSDB roughly divides the traffic signs into three categories
(i.e., mandatory signs, danger signs, and prohibitory signs),
and the schemes for the GTSDB detection task are required
only to detect the 3 traffic signs. Obviously, the three types
of signs are not enough in practice. To address this problem,
the Tsinghua-Tencent 100K (TT100K) dataset [11], which
has more practical traffic signs, has been published. This
dataset covers natural weather factors (e.g., the weather con-
ditions of foggy, cloudy, and rainy), partial occlusion, and
significant variations (e.g., illuminance and viewing angle).
This benchmark is closer to the real scenes than the GTSDB,
which has more background and smaller traffic signs. How-
ever, the detetion methods [11]-[13] on this benchmark do
not solve problems in real time.

To detect small traffic signs in time in real scenes using
YOLOV3, we proposed a new detection scheme (named
MSA_YOLOV3) to improve the detection efficiency. Our
main contributions are as follows:

1) In the data preprocessing stage, image mixup tech-
nology is applied for data augmentation. Specifically,
two images are randomly selected from the training
set and mixed pixelwise. The mixed images are used
as an interpolation between the training image pairs.
MSA_YOLOV3 is trained on these random convex
combinations of pairs of examples, which can effec-
tively reduce the false and missed detection rates of the
traffic signs in a complex background.

2) Three-scale spatial pyramid pooling (SPP) is added to
the convolutional layer in the end of Darknet53. The
SPP block performs pooling operations on the input
feature map at different scales and connects the pooled
three feature maps and input feature map, in such a way
that MSA_YOLOV3 can learn the object features more
comprehensively.

3) To utilize accurate localization signals in the lower
layers, an augmented path, which is designed from
bottom to top to enhance the feature pyramid structure
in YOLOV3, is created to improve the locating accuracy
on small objects in high-resolution images.

The remainder of this paper is organized as follows: We
discuss the relevant work in Section 2 and propose the detec-
tion framework in Section 3. Section 4 presents the experi-
mental results, and Section 5 concludes the paper.

Il. RELATED WORK

Because deep learning-based object detection methods have
achieved good results on public data, many researchers have
begun to apply these methods to traffic sign data. Next,
we briefly discuss the object detection algorithms based
on CNNs and their applications in the field of traffic sign
detection.

A. CNN-BASED OBJECT DETECTION
There are mainly two types of object detection methods that
are based on CNNs: two-stage schemes (also named R-CNN
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series object detection) and one-stage schemes, where the
two-stage schemes combine region proposals with the CNN
network to detect objects. In the one-stage schemes, the object
detection is transformed into a regression problem to perform
end-to-end detection.

1) TWO-STAGE SCHEMES

The main idea of these schemes is to first generate a large
number of region proposals through heuristic algorithms
(e.g., selective search) [14] or CNN networks (e.g., Region
Proposal Networks) for each image, and then, they classify
and regress these candidate regions. For example, as a clas-
sic two-stage scheme, R-CNN [15], which obtains approxi-
mately 2k region proposals by selective search [16], extracts
the features of the region proposals by the CNN, and finally,
it determines the classes of the objects by multiple SVMs
[17] and adopts linear regression to fine-tune the bounding
boxes. The SPP-Net [18] convolves the whole image at one
time to extract the features and avoids the problem of having
the enormous and redundant computation when the R-CNN
extracts features for all of the candidate regions separately.
In addition, the SPP-Net adds a spatial pyramid pooling layer
between the last convolutional layer and the fully connected
layer to extract the fixed-length feature vectors and to avoid
the normalization of the region proposals. However, the SPP-
Net follows almost the same multi-stage pipeline as the R-
CNN. The steps of the region proposals are determination,
feature extraction, object classification, and bounding-box
regression, which are still separated. Thus, additional expense
on storage space is still required. Based on the SPP-Net, Fast
R-CNN [19] simplifies the SPP layer into the ROI Pooling
layer and applies singular value decomposition (SVD) on the
outputs of the fully connected layer to accelerate the test-
ing procedure. Finally, the classification score of the object
and the regression between the predicted bounding boxes
(bboxes) and the ground-truth boxes are obtained through two
sibling output layers. Fast R-CNN combines classification
with bounding box regression to achieve single-stage training
instead of the original separated training of the object classi-
fication and object localization, Fast R-CNN suffers from the
problem of too much calculation (because it uses selective
search to determine the region proposals, this step involves
many calculations). For example, when running on a CPU,
it takes 2 s on average to obtain the region proposals for
each image. To address this problem, Ren et al. [20] replaced
the selective search algorithm by Region Proposal Networks
(RPN) to extract the region proposals. Through this approach,
they realize end-to-end computation on the object detection
and greatly improved the detection efficiency by sharing the
convolutional layers.

2) ONE-STAGE SCHEMES

Both R-CNN and Faster R-CNN adopt the idea of “region
proposal + CNN feature extraction + SVM or softmax
classification” to detect objects. The two-stage schemes
are slightly insufficient in terms of real-time performance.
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To address this problem, YOLO (which is a “one-stage”
model) [21] is proposed to divide the input image into S x
S grids, where each grid cell predicts 2 bounding boxes, their
confidence scores, and the conditional class probabilities.
In the YOLO scheme, a region proposal is replaced with
a grid-centered multi-scale region. Through this approach,
the detection efficiency is substantially increased to satisfy
the real-time requirement at the cost of low accuracy. Faster
R-CNN features high detection accuracy but slow detection
speed, while the detection accuracy of YOLO is not high, but
its detection speed is fast. SSD [22] combines the advantages
of YOLO and Faster R-CNN to perform object detection
on different feature maps at the same time and to achieve
both high accuracy and high efficiency. However, the SSD
suffers from the following problems. (1) The number of
default boxes increases linearly with the resolution of the
input image. (2) The scale and ratio of the default box in
each layer of the network varies, and they cannot be obtained
by learning; instead, they must be set manually. In practice,
their set seriously relies on the experience-dependent debug-
ging process. YOLOvV2 [23] further improves the detection
efficiency and accuracy by adding batch normalization after
each convolution layer, performing multi-scale training, and
applying the K-means dimension clustering on the training
set bounding boxes to automatically determine the suitable
priors. The algorithm could achieve up to 78.6% mAP (mean
Average Precision) on the PASCAL VOC 2007 dataset [24]
with a detection speed of 40FPS. In 2018, by adding a feature
pyramid structure on the basis of YOLOV2, Joseph released
YOLOV3 [8]. The feature extractor is updated from the
original darknetl9 to darknet53. YOLOv3 further improves
the ability to detect small objects by using top-down multi-
level predictions. However, the images in both the PASCAL
VOC [24] and COCO [25] datasets have small resolution.
In practical traffic sign detection tasks, the images usually
have large resolution, and the object sizes are small (e.g.,
the image resolution is 2048 x 2048, and the size of the traffic
sign is 40 x 40). Therefore, YOLOV3 cannot be directly used
on such datasets.

B. TRAFFIC SIGN DETECTION

Yang et al. [12] combined traditional computer vision algo-
rithms with CNNs and presented a new traffic sign detection
network. In their work, a two-stage adjustment strategy is
used to extract the region proposals, and an Attention Net-
work (AN) is introduced in the Faster-RCNN to find the
potential regions of interest; then, these regions are further
classified roughly according to their color characteristics.
Finally, the final region proposals are generated by an FRPN
(Fine Region Proposal Network). The experimental results
tested on the TT100k benchmark dataset showed that its
mAP was 80.31%. However, the detection accuracy on small
objects is quite low (49.81%), and the detection efficiency
also fails to meet the real-time requirements. Lu ez al. [13]
applied the visual attention model to improve the detection
effect of Faster R-CNN. The visual attention model can
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FIGURE 1. The simplified network structure of MSA_YOLOv3. (Note that
the bottom feature map in the augmented path is not processed; it comes
from the lower convolution layer in Darknet53).

generate a set of region proposals with appropriate sizes to
locate and classify small objects. Their mAP on TT100K
is 87.0%, and the efficiency is 3.85 FPS. Zhu er al. [11]
adopted the object localization in [26] to detect traffic signs.
Their detection framework has three branches. The first layer
(i.e., the pixel layer) used Overfeat’s [27] efficient “sliding
window” to detect the probability with which a 4 x 4 pixel
region of the input image contains a target object. Each result
of the second layer (i.e., the bounding box layer) represents
the distance between the 4 x 4 pixel region and the four sides
of the predicted bounding box of the target. GroupRectangles
in OpenCV is applied to merge the bounding boxes. The third
layer (i.e., the label layer) outputs the category probability of
the target object. Their mAP on the TT100K dataset is 87.5%.
Their model can locate the objects efficiently, because the
mask detection proposed in [28] is introduced to highlight
the object positions by the object mask outputted by the pixel
layer. Their work relies on image pyramids to detect objects
of different sizes, and thus, their detection speed should be
improved. Li et al. [29] proposed a Perceptual Generative
Adversarial Network (Perceptual GAN) model that improves
the detection accuracy of small traffic signs in the TT100K
data set through narrowing the representation difference of
small objects from large objects. Meng et al. [30] used an
expensive image pyramid and sliding window approach to
achieve a recall of 0.93 and an accuracy of 0.90 on TT100K.
Unfortunately, they did not provide the inference time.

IlIl. MSA_YOLOV3 DETECTION FRAMEWORK

To achieve real-time detection of traffic signs and improve
the detection ability of YOLOV3 on small objects, while con-
sidering MSA_YOLOV3 (as shown in Fig. 1), an algorithm
for small traffic sign detection in a realistic environment is
proposed in this paper. First, the generalization of the new
model is improved by the image mixup technique during the
model training. Then, by utilizing global features and multi-
scale local region features, a multi-scale spatial pyramid
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FIGURE 2. YOLOv3 detection method.

pooling module is introduced to Darknet53 to improve the
detection accuracy of small targets with rich local region
features. Finally, by utilizing the fine-grained features of the
lower convolutional layer, the augmented path is designed in
Darknet53 to improve the localization ability for small traffic
signs.

A. YOLOv3

In YOLOv3 detection pipelines, all of the bounding boxes and
category probabilities from the entire image are generated by
a single convolutional network at once, as shown in Fig. 2.
First, the network divides each image in the training set into
S x § (e.g., S = 13) grids. Each grid is given candidate
boxes of different sizes. If the center of the object ground
truth falls in a grid, then the grid is responsible for detecting
the object. Then, the features are extracted through the convo-
lutional layer (Darknet53). Finally, the yolo layer is used for
multi-scale prediction. Each grid predicts B bounding boxes
and their confidence scores, as well as C class conditional
probabilities.

B. DATA AUGMENTATION

According to the Vicinal Risk Minimization (VRM) princi-
ple, the generalization capacity should be improved by creat-
ing samples that are similar to the training samples for data
augmentation. In this paper, data augmentation is conducted
from two aspects: On the one hand, since YOLOvV3 does
not have a fully connected layer, the prediction results are
generated from every single cell in the feature map and hence
preserve the spatial alignments. Therefore, during the model
training stage, images are randomly flipped and cropped to
increase the spatial position transformation of the objects.
On the other hand, we apply mixup [31] of the classifi-
cation tasks into YOLOv3. After preliminary experiments,
we choose a distribution for the blending ratio in mixup that
is drawn from beta distributions B(1.5, 1.5). In a nutshell,
mixup constructs virtual training examples.

img_C = Aimg_A + (1 — A)img_B €))]

where, represent two input images, is the mixed image, and A
is the blending ratio.

Cimg?C = )\Cimng U - )\)Cimng 2)
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FIGURE 3. (a) Mixup visualization with a blending ratio at 0.8:0.2. Object
labels are merged as a new array (pm20 and pn represent traffic sign
labels). (b) YOLOv3’s grid cell prediction mechanism, the confidence of
the ground truth bounding box in the training stage is set to be the
corresponding blending weight.

where Cing_a represents the confidence of the ground truth
boxes in image img_A, C;;g_p represents the confidence of
the ground truth boxes inimage img_B, C;n,_c and represents
the confidence of the ground truth boxes in the mixed image.

An example of mixup in the proposed approach is illus-
trated in Fig. 3. Two images from the training set are ran-
domly selected and mixed pixelwise. The mixed images are
used as an interpolation between the training image pairs,
as shown in Fig. 3a. In Fig. 3b, the confidence of the ground
truth box in the mixed image is set to be the corresponding
blending weight (the confidence of the ground truth box of
pn is set to 0.8, and the confidence of the ground truth box
of pm20 is set to 0.2). Compared with [32], we not only mix
the pictures but also adjust the confidence of the ground truth
box. Three training images are produced after mixup. The
model is trained on random convex combinations of pairs
of examples and their confidences, which can effectively
improve the generalization of the model.

C. MULTI-SCALE LOCAL REGION FEATURES

YOLOV3 utilizes the feature pyramid structure to improve
the detection accuracy of the multi-scale objects by fusing
feature maps of different scales. However, these feature maps
are only the global features of different convolutional layers
of the network, and the multi-scale local region features of the
convolutional layer are not effectively utilized. To effectively
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FIGURE 4. SPP_YOLOvV3 (Conv represents the convolutional layer, _s2 represents that the stride is 2).

make use of the local region features of the final convolutional
layer of Darknet53, the spatial pyramid pooling block (SPP
Block) [33] (as shown in Fig. 4) is adopted to pool the local
regions of the feature maps. Both the local multi-scale and
global features are utilized together to improve the accuracy
of the object detection. Here, the multi-scale spatial pyramid
pooling block is composed of three max-pooling layers, and
the size of the pooling window can be computed from (3)

3

sizep = |_sizef /ni-|

where size), represents the size of the pooling windows, and
sizer represents the size of the feature maps, n; =1, 2, 3.
We add the spatial pyramid pooling block in front of the
detection layer of YOLOv3. The resolution of the input image
is 544 x 544. After downsampling 5 times, the size of the input
feature map of the SPP Block is 17 x 17 x 512. The sizes of
the pooling windows obtained from (3) are 6 x 6,9 x 9 and
17 x 17. The strides of the pooling windows are all 1, and the
input feature maps are padded with O to ensure that the output
feature maps after pooling are the same size as the input.

D. BOTTOM-UP AUGMENTATION PATH

Although the fine-grained features in the lower layer map can
accurately locate small targets, they are not suitable for object
recognition (because of their weak representation capacity)
[34]. Therefore, an augmentation path (AP) is designed from
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reorg

FIGURE 5. AP_YOLOv3 (White cubes represent convolutional layers, red
cubes represent residual modules, and yellow cubes represent
upsampling layers). The blue dotted line represents the augmented path,
where each blue cube is obtained by merging a large feature map after
processing by the reorg layer with a small feature map. P1, P2 and

P3 constitute the FPN structure of YOLOv3.

bottom to top. As shown in Fig. 5: {P1, CP2, CP3} represents
the feature pyramid structure of YOLOv3, and the feature
maps after performing the augmentation path are concate-
nated with P1, P2, and P3 of the feature pyramid, respectively.

In Darknet53, the feature maps that are outputted by many
consecutive layers are of the same size. We consider these
layers to be in the same network stage. The final feature map
of each network stage has the strongest semantic information.
Therefore, a new feature map can be generated utilizing a
high-resolution feature map and a feature map after down-
sampling in a network stage. As shown in Fig. 6, a user-
defined reorg layer is adopted to process the high-resolution
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FIGURE 6. A building block illustrating the bottom-up pathway and the vertical connection.

feature maps to make it be the same size as the downsam-
pled feature map, and then, they are connected vertically.
The reorg layer can preserve fine-grained features without
introducing trainable parameters. The specific process of the
reorg layer is described with pseudo-code in algorithm 1, in
which ‘width’, ‘height’, ‘channel’, and ‘num’, respectively,
represent the width, height, channel of the image, and number
of the image in a batch. The parameter stride in each reorg
layer is 2.

E. LOSS FUNCTION
The loss function of MSA_YOLOV3 is defined as follows:

Loss = Errorpoxes + Errotopjecmess + Categorical cross
“4)

Errorpoyes 1s the error sum of squares (SSE) of the coordi-
nate regression, which is used to locate the bounding box.
Erroropjecmess 18 also the SSE, which is the loss of confidence
of the bounding box. MSA_YOLOV3 predicts a confidence
score for each bounding box, in other words, how likely it
is that the bounding box is the target, which can remove
unnecessary anchors and reduce the amount of calculation.
Categorical cross — entropy is used as the cross entropy loss
for the object classification.

The localization loss of bounding box is defined as follows,

Errorpoxes = Acoord Z Z Z IZZJ Z

i=0 j=0 k=0  re(x,y,w,h)

— entropy

(truth” — pre")?

&)

In (5), truth and pre represent the label and prediction
result. Here, Acyorq 1s the weight of the coordinate error. S
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is the number of girds of YOLOV3. A refers to the number
of bounding boxes generated by each grid cell (it is 3 in this
paper), and truth” represents the coordinates of the ground
truth box. In addition, pre” represents the coordinates of the
predicted bounding box. 1 = 1 denotes that the object
falls into the kth bounding box in grid (i, j), and otherwise,
lli = 0. In addition, IUZ = 1 means that only the maximum
of I0U!M™ s taken as the prediction result of each grid
among the A anchor boxes.

The confidence loss of the bounding box is defined as
follows:

s § A
bj
Erroropjectness = Z Z Z ;j J(lm Pr€0)2
i=0 j=0 k=0
bj
+ Anoobj Z Z Z 1" (=pre®y (6)

i=0 j=0 k=0

In (6), pre° is the bounding box confidence, which repre-
sents the probability that there exists an object in an anchor
box. If IOU ;;’;’h of the kth predicted bounding box of grid cell
(i, j) is smaller than the threshold IO U, then anObj = 1.
Since mixup is applied in data augmentation, then 1f the object
is generated by the mixup, then 1" = blending weight;
otherwise 1" = 1.

The categorical cross-entropy is defined as follows:

Categorical cross — entropy
s

_ Z Z 1:;21 Z (—truth® - log(pre®))  (7)

i=0 j=0 k=0 c=0
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Algorithm 1 Reorg Layer

Input: input_batch(width, height, channel, num) and stride Output: output_batch(width/stride, height/stride, channel x

stride x stride, num)
1: for n < 0tonum-1do
for ¢ < 0 to channel x stride x stride-1 do
for h <— 0 to height/stride-1 do
for w < 0 to width/stride-1 do

Rl

/l index of each feature location of the output feature map

¢2 < ¢ mod channel

offset <— ¢ / channel

w2 < w x stride + offset mod stride
h2 < h x stride + offset / stride

Lo

output_index <— w + (width/stride) x (h + (height/stride) x (c + channel x stride x stride x n))

/l index of each feature location of the input feature map

10:
11:

12:  return output_batch

input_index <— w2 4 width x (h2 + height x (c2 + channel x n))
output_batch[output_index] <« input_batch[input_index]

TABLE 1. Ablation experiment.

YOLOV3(544x 544)

MSA_YOLOV3(544x 544)

Mixup v v v v
SPP v v
Augmented Path N N
TT100K test mAP(IOU=0.5) 0.804 0.829 0.842 0.858 0.863
TABLE 2. Test results of SPP_YOLOV3 on TT100K. TABLE 4. Comparison between YOLOv3 and MSA_YOLOV3.
TP FP FN Precision Recall
BnOps  Speed FPS mAP
YOLOV3 6242 1820 1464 0.77 0.81 YOLOV3 544x544  112.196  0.024s 41.67 0.804
SPP_YOLOV3 6557 2243 1149 075 0.85 Ours 544x544 137.975 0.042s 2381 0.863

TABLE 3. Test results of YOLOv3 on TT100K after applying image mixup
technology (P: Precision, R: Recall, Iters: Iterations).

TP FP FN P R Iters
YOLOv3 5989 2317 1717 0.72  0.78 32500
Mixup+YOLOv3 6242 1820 1464 0.77 0.81 30700

In (7), truth® = 1 if the label of an object is c; otherwise,
truth® 0; pre€ refers to the predicted probability that
an object belongs to class c. YOLOV3 adopts binary cross-
entropy as the loss function for the object classification. Dur-
ing the experiments, we determined that multiple prediction
categories of traffic signs can be generated for the same
predicting box, which is because the binary cross-entropy
with logistic activation is used for multi-label classification.
Therefore, the categorical cross-entropy with softmax activa-
tion is introduced to replace the binary cross-entropy in the
original loss function when performing multi-class classifi-
cation.

IV. TEST ANALYSIS
The detection performance of MSA_YOLOV3 on small
objects is evaluated on the TT100K [11] dataset. The model
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is implemented based on the Darknet52 neural network [35]
and runs on the Ubuntu 16.04 PC equipped with Tesla
P100 GPU and CUDA 9.2. During the process of training
MSA_YOLOv3 and YOLOV3, the initial learning rate is set
to 0.001, and the learning strategy of steps is adopted. The
SGD optimizer with a momentum of 0.9 is utilized to adjust
the parameters of the network. Moreover, we use a weight
decay of 0.0005 to prevent model overfitting. We initialize
the weight using the pre-trained model on ImageNet [36], and
each training batch contains 64 images. The input resolutions
of training and testing images are both 544 x 544.

A. ABLATION STUDIES

We investigate the effectiveness of different components of
MSA_YOLOvV3. As shown in Table 1, “Mixup” refers to the
use of the mixup algorithm to train YOLOV3, in which the
distribution of the blending ratio is drawn from a beta distri-
bution B (1.5, 1.5). The mixup helps to improve the detection
mAP of YOLOV3 for 2.5%, because the model is trained on
virtual examples that are constructed as the linear interpola-
tion of two random examples from the training set and their
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(d)

FIGURE 7. The upper row presents the experiment results of YOLOv3, and the lower row presents the detection results of YOLOv3 after performing data
augmentation. The green box presents the correct prediction of the traffic signs, the red box represents the missed detections, and the blue box

represents the false detections.

TABLE 5. Detection results of traffic signs with different sizes.

(0,32] (32,96] (96,400]
YOLOvV3 mAP 0.703 0.857 0.886
YOLOV3 precision 0.641 0.765 0.784
YOLOV3 recall 0.669 0.836 0.883
Ours mAP 0.782 0.910 0.903
Ours precision 0.721 0.842 0.826
Ours recall 0.742 0.895 0.894

confidence. “SPP”” means that we added an improved SPP
block to YOLOV3 (i.e., SPP_YOLOV3). Table 1 presents that
the mAP of SPP_YOLOV3 is 84.2%, which is higher than
that of YOLOv3. The precision and recall of YOLOv3 and
SPP_YOLOvV3 are compared in Table 2. From the experi-
ment, we determined that the local features obtained through
the multi-scale spatial pyramid have rich semantic informa-
tion. If local features similar to traffic signs appear in the
feature map in the test stage, the detection network will
predict that it is a traffic sign. Through this approach, both
the truth positives (TPs) and the general recall are enhanced.
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“Augmented Path” represents a bottom-up augmented path.
Because the feature map generated by the augmented path
not only preserves the fine-grained features that improve the
object localization capability but also improves the accu-
racy of the object classification by its strong representational
capacity, the detection accuracy of AP_YOLOV3 is improved
by 2.9%.

B. DATA AUGMENTATION EXPERIMENT
As shown in Fig. 7, it can be seen that in cloudy weather
conditions (Column 1), the vanilla model misses some detec-
tion; and under incomplete object conditions (Column 2),
there is also missed detection. For images with a complex
background (Column 3), there are many false detections in
the vanilla model. Because the background of the images
becomes complex, and the objects increase after performing
mixup, and the images at the bottom of Column 1 and Column
3 show good detection results. Since random cropping makes
objects in the training set incomplete, the model can detect
the incomplete objects (images at the bottom of Column 2).
Table 3 further proves the validity of the mix technol-
ogy. The model trained with the mix approach shows a 3%
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TABLE 6. Performance of different models on the TT100K test set.

Method mAP Precision Recall Speed FPS GPU

AN+FRPN [12] 0.803 —_— —_— 0.128 s 7.8 Tesla K20

Lu_model [13] 0.870 0.917 0.834 0.26s 3.85 GTX980

Zhu_model [11] 0.927 0.905 0.928 10.83 s —_— Tesla P100

Ours 0.863 0.825 0.841 0.042 s 23.81 Tesla P100
TABLE 7. The recall and precision on each category of TT100K using the model of Zhu et al. [11] and MSA_YOLOV3.

Class i2 i4 i5 il100  il60 il80 io ip pl0 pll pl2 pl19 p23 p26
Zhu recall 0.82 09 095 097 095 096 0.90 0.87 0.96 0.92 0.95 0.93 096  0.92
Zhu precision 0.83 087 095 1.00 097 097 0.79 0.87 0.90 091 0.88 091 091 0.89
Ours recall 0.88 097 096 096 097 097 0.89 0.83 0.80 0.79 0.84 0.86 090 0.86
Ours precision 085 084 092 0.85 095 0.89 0.85 0.90 0.74 0.72 0.78 0.73 0.82 0.81
Class p27 p3 pS p6 pg ph4 ph4.5  phS pl100  pl120  pl20  pl30  pl40  plS
Zhu recall 097 091 096 0.89 09 0.78 0.88 0.89 097 0.98 094 095 095 093
Zhu precision 095 081 089 0.83 091 090 0.82 0.83  0.99 1.00 092 090 093 0091
Ours recall 0.82 084 093 078 094 073 0.88 0.73  0.89 0.86 0.82 0.82 0.77 0.86
Ours precision 083 081 077 072 092 0.82 0.83 0.63  0.88 0.80 075 0.74 074 0.78
Class pl50  pl60  pl70  pl80  pm20  pm30  pmS5  pn pne po prd0  wl13 w32 w55
Zhu recall 092 093 095 097 0.87 0.96 1.00 093 094 078 098 090 0.79 0.93
Zhu precision 091 096 089 091 093 091 0.77 091 093 079 093 090 090 0.76
Ours recall 079 076 083 0.83 0.72 0.88 0.84 090 097 073 092 078 079 0.83
Ours precision 072 076 079 0.72 0.76 0.67 0.71 083 096 076 085 070 091 0.79
Class w57 w59  wo
Zhu recall 095 096 0.60
Zhu precision 090 087 0.63
Ours recall 092 092 057
Ours precision 0.85 073 0.53

improvement in the recall rate and a 5% improvement in the
precision rate. Since the visually deceptive training images
are generated randomly within the neighborhood of the train-
ing sample, the model becomes more robust. From Table 3,
it is easy to deduce that mixup will work better as the training
time increases.

C. EVALUATION

1) EXPERIMENTAL COMPARISON BETWEEN

MSA_YOLOV3 AND YOLOV3

Table 4 reveals the complexity, speed, and accuracy of
YOLOV3 and MSA_YOLOvV3. Bn Ops (Billions of floating
point operations) describes the complexity of the model.
As shown in the table, the proposed MSA_YOLOV3 is more
complicated, and the detection time is nearly doubled, but the
detection accuracy is greatly improved.

To verify the efficiency of our scheme for small object
detection, the Microsoft COCO benchmark [25] evaluation
metrics are adopted, which divide the traffic signs into three
types according to their sizes: small objects (the length and
width of the object are (0, 32] pixels), medium objects (the
length and width of the object are (32, 96] pixels), and large
objects (the length and width of the object are (96, 400]
pixels). Such an evaluation scheme can evaluate the detection
capacity of the detectors on objects of different sizes. As sug-
gested in Table 5, our model improves the detection capacity
of YOLOvV3 on small and medium-sized traffic signs.
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2) EXPERIMENTAL COMPARISON BETWEEN

MSA_YOLOV3 AND THE OTHER REFERENCE MODELS
Currently, the most accurate model on TT100K is the Over-
Feat framework as improved by Zhu et al. [11]. We re-trained
their model under the same experimental environment. The
results show that the mAP of their model reaches as high
as 0.93, the recall reaches 0.93, and the precision reaches
0.91. However, they must establish an image pyramid to
detect traffic signs of different sizes. The original image
size is 2048 x 2048, while the largest image in the image
pyramid is 8192 x 8192. The detector scans multiple high-
resolution images in the image pyramid, which causes enor-
mous amounts of computation. For the model proposed by Lu
et al. [13], since it avoids scanning and multi-scale detection
on all high-resolution images, their model is two orders of
magnitude faster than that of Zhu et al. [11], taking only
0.3 s to process the same image. Although the experimental
results of Lu et al. [13] appear to be perfect, they fail to meet
the real-time performance requirement. In Table 6, the mAP
of MSA_YOLOV3 is lower than that of [11] and [13], and
MSA_YOLOV3 achieves real-time performance.

Fig. 8 shows the P-R curves of the YOLOv3 model,
the model of Zhu et al. [11] and the proposed model on
large/medium/small traffic signs. Although compared with
the YOLOv3 model, the detection accuracy on small/medium
traffic signs of the proposed model is increased, it is worse
than that of the state-of-the-art model of Zhu er al. [11],
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FIGURE 8. P-R curves of the MAS_YOLOv3 and other reference methods.

especially on detecting small objects. We also present the
recall and precision for each category for Jaccard similarity
coefficient 0.5 in Table 7.

V. CONCLUSION

In the field of traffic sign detection, it is truly a challenge
to reliably detect small signs in real time in high-resolution
images. To address this problem, we use MSA_YOLOV3 to
improve the generalization of the model through data aug-
mentation. Furthermore, the multi-scale spatial pyramid
pooling and augmentation path are added to the origi-
nal Darknet53, which makes MSA_YOLOvV3 outperform
YOLOV3 in detecting small/medium-sized traffic signs. Dur-
ing the experiments, we determined that the augmentation
path of MSA_YOLOV3 will greatly increase the computa-
tional complexity of the model. In the future, we will prune
the augmentation path to eliminate the useless and redundant
features. At the same time, to deploy MSA_YOLOV3 in
mobile scenarios, we must also turn Darknet53 into a
highly compact convolutional neural network. Through these
methods, the computation cost is reduced to make the
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MSA_YOLOV3 applicable on a low/medium-end graphics

card.
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