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ABSTRACT Air traffic flow management is one of the most important operations in terminal airports
heavily relying on advanced intelligence transportation techniques. This work considers a two-stage runway
scheduling problem given a set of flights with uncertain arrival times. The first-stage problem is to identify
a sequence of aircraft weight classes (e.g., Heavy, Large and Small) that minimizes runway occupying
time (i.e., makespan). Then the second-stage decision is dedicated to scheduling the flights as punctually
as possible after their arrival times realized, which translates into determining a sequence of flights for each
aircraft category such that the total deviation time imposed on the flights is minimized. Instead of an exactly
known probability distribution, information on uncertain parameters is limited (i.e., ambiguous), such as
means, mean absolute deviations and support set of random parameters derived from historical data. Under
this information on the random parameters, an ambiguous mixed-integer stochastic optimization model is
proposed. For such a problem, we approximately construct a worst-case discrete probability distribution
with three possible realizations per random parameter, and adopt a hybrid sample average approximation
algorithm in which genetic algorithms are used to replace commercial solvers. To illustrate the effectiveness
and efficiency of the proposed model and algorithm, extensive numerical experiments are carried out.

INDEX TERMS Runway scheduling, stochastic optimization, ambiguity set, approximation, genetic algo-
rithm.

I. INTRODUCTION
The demand of passengers on air transport is increasing
with the growth of national economy. In China, for example,
the passenger traffic increases from 138.3 millions of 2005 to
488.0 millions of 2016 with 12.22% average annual growth
rate [1]. Globally, the annual travelers total of 2018 was up
by about 6.5% compared to 2017, and the traffic volume
is expected to reach over 6.4 billion by 2030 [2]. The ever
growing demand of air transport is growingly increasing
the pressure on airport operations due to restricted airdrome
capacity and air traffic controller’s ability. The ever growing
traffic bring about high congestion, the main reason of flight
delay, in the terminal area due to the limited airport resources.

The associate editor coordinating the review of this manuscript and
approving it for publication was Chao Chen.

To improve the efficiency of transportation system, some
intelligence support projects have been developed, such as
routing planning [3], ride-on-demand [4] and car GPS [5],
[6] in vehicle traffic, Next Generation Air Transporta-
tion System (NextGen) [7] and Single European Sky Air
Traffic Management (ATM) Research (SESAR) [8] in the
domain of aviation optimization. Recently, ATM Technology
Demonstration-1 (ATD-1) [9] project was performed by the
NASA Ames Research Center, and Time-Based Flow Man-
agement (TBFM) is one of the technologies embedded in the
ATD-1, which is used operationally for scheduling arrivals to
major airports based on airport conditions, airport capacity,
required spacing, and weather condition [10]. As an integral
part of operational optimization of the TBFM, the runway
scheduling problem (RSP) is defined as follows. The service
time on a runway for each plane, in a given set of flights,
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TABLE 1. Separation requirements (in seconds).

whether it is arriving, leaving or a mixed-mode, should be
determined within a specified planning horizon. Meanwhile,
a predetermined time window and separation requirements
between the leading and following aircraft should be satis-
fied. In line with [11], the minimum separation time matrix
associated with the aircraft weight class (i.e., aircraft cate-
gory) is given in Table 1.
A great majority of operation circumstances in the existing

literature are assumed deterministic (i.e., flights’ arrival times
are known in prior). However, some researchers argue that
there are considerable uncertainty in the RSP (e.g. [12], [13]).
For example, fluctuations in weather, complexity of airport
surface operations and human factors involving in air traffic
management all play important roles to the punctuality of
flights. So inevitable is it for decision models that implicitly
or explicitly take the uncertainties into account to develop
more adoptable and practical scheduling schemes for the
TBFM.

To handle the RSP with uncertain characteristics, stochas-
tic programming (SP) approaches (or recourse models) are
usually adopted. Specific probability distribution models are
always used to portray the randomness of uncertain param-
eters, in the belief that historical data is abundant and reg-
ularity. It is generally assumed that the distribution pat-
tern of arrival time is exactly known and the uncertainty
is described in scenario-based way. The strategy to imple-
ment the two-stage stochastic optimization approach in a
runway scheduling comparing with the deterministic method
is shown in Figure 1. The two-stage optimization approach
for runway scheduling deals with the tactical level decisions
that generate a robust aircraft weight class sequence (i.e.,
here-and-now decisions) by using some possible scenarios
while actual arrival time is unknown. After the uncertain
parameter of arrival time is revealed we are allowed to take
recourse actions (e.g., real scheduling of specific flights) with
the aim of minimizing deviation time. Furthermore, the two-
stage optimization approach planned ahead of flights arriving
contributes to relieving decision making workload during
real-time scheduling.

In fact, however, practical applications in runway schedul-
ing may add one difficulty to general two-stage stochastic
programming models. Specifically, there is so limited uncer-
tain information available in a short period (e.g., the his-
tory data of the same flight within one season) so that it
is impossible to know the specific probability of random
parameters. In addition, though large amounts of data are
available, there are even no suitable probability distribution
models to fit these information well due to the lack of closed

FIGURE 1. An illustration of the application to runway scheduling by
two-stage optimization approach.

form expression. For these reasons, we propose an ambiguous
two-stage stochastic programming model involving integer
decision variables, in which the probability distribution on
random parameters is partially known. There is no specific
probability distribution function to express the randomness
of parameters. In the stochastic programming (SP) literature
ambiguous recourse models are called minmax problems,
whereas they are called distributionally robust optimization
in the robust optimization (RO) problems [14]. No mat-
ter the optimization methods used, the goal of ambiguous
recourse models is to find a robust solution with minimizing
the expected cost of worst-case on all possible probability
distributions of random parameters.

Motivated by the more practical approach for practition-
ers, in this work, we consider the case of ambiguous dis-
tribution characterized by partial distribution information on
flight’s arrival time, and concentrate on solving the ambigu-
ous stochastic runway scheduling problem (ASRSP) by using
heuristic algorithm to boost the TBFM technique used in
intelligence air transportation system. The efficient schedul-
ing of landing aircraft on a single runway here is mainly dis-
cussed. The objective of the ASRSP is twofold, the first goal
is to minimize runway occupying time, and the second goal
is to minimize the total deviation time for all flights in second
stage. The ambiguity set we used contains information on
means, mean absolute deviations (MAD) and support set of
the random parameters. These information can be estimated
from historical data.

To our best knowledge, it is the first time to consider
an ambiguous stochastic optimization problem with random
aircraft arrival time in RSPs. The main contributions of this
work are summarized as follows:

1) We address the ambiguous two-stage stochastic
programming runway scheduling problem which
aims to improve the runway operations with par-
tial distribution information available. In this work,
a worst-case discrete distributions of uncertain param-
eters is approximately constructed in case of partial
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distribution information. The proposed model in favor
of improving runway scheduling effectiveness by com-
paring with the current practice.

2) We develop a hybrid sample average approxima-
tion (HSAA) solution algorithm for resolving the
nature of uncertainty. In contrast with general SAA
algorithm, the improvement includes a nested genetic
algorithm GA) used to replace commercial solvers that
fail to solve large problems and clustering sampling
methods applied to choose more representative scenar-
ios. The HSAA can solve problem with up to 60 flights
and 50 scenarios.

3) Extensive numerical experiments are carried out to
illustrate the computing efficiency and effectiveness
of the proposed solution algorithm by comparing with
standard solvers. Comparisons between random sam-
pling and clustering sampling are performed to demon-
strate the effectiveness of HSAA algorithm.

The remainder of this article is organized as follows.
in Section II, a literature review of the RSP is given.
The mathematical formulation and solution approach for
the ASRSP are given in Section III and IV respectively.
In Section V, we carry out a lot of numerical experiments
to demonstrate the performance of the proposed model and
algorithm. Finally, Section VI concludes this work and indi-
cates some related directions for future research.

II. LITERATURE REVIEW
There are two mainstream modeling methods for RSPs. One
popular approach is heuristic or meta-heuristic designed to
meet the stringent computation time feature required by the
real-time nature. Another is exact-based perspective, which
consists of two classic types: dynamic programming (DP) and
mixed-integer programming (MIP) [15].

It is general to interpret the RSP as a classic machine
scheduling problem with sequence-dependent set-up times
and makespan/total tardiness objective function. In the con-
text of RSP, runways are equivalent to machines, aircraft
equal to jobs and time separations between consecutive air-
planes on the same runway correspond to the set-up times.
The first MIP model of the RSP on a single runway is pre-
sented by [16], and a branch-and-bound (B&B) algorithm is
developed to solve the single RSP. Then Beasley et al. [17]
generalizes the single-runway RSP to multiple runways sce-
nario, and this extension is the most cited MIP model to
date. Considering the speed of fuel consumption and safety
requirements, the RSP formulation is further extended by [18]
via taking runway-dependent time windows and separation
times constraints into account. Focusing on the implicit
homogeneity assumption on inbound aircraft, Briskorn and
Stolletz [19] proposes a modification of the MIP formula-
tion that explicitly takes aircraft weight class into consid-
eration. Recently, a time-indexed formulation is developed
by [15] to achieve a good trade-off between solutions quality
and computing effort. In addition, some other surrounding

features and operation characteristics are considered in the
enhanced RSP, such as runway scheduling problem with
holding pattern [20], integrated airport taxiway routing and
runway scheduling [21], rolling planning horizon runway
scheduling [20] and mixed-mode RSP [22]. In the domain
of model’s solving efficiency, branch-and-price (B&P) algo-
rithm, dynamic constraint generation algorithm, heuristi-
cally pruning rules, polynomial-time heuristic algorithm are
developed [23].

For DP approaches, Dear and Sherif [24] firstly introduces
constrained position shifting (CPS) constraints into aircraft
sequencing and scheduling problem for high density termi-
nal airports. Then, Balakrishnan and Chandran [11] devel-
ops a unified framework for the RSP with CPS constraints.
To solve the RSP efficiently with different weight classes,
limit time windows and multiple runways characteristics,
Lieder et al. [25] presents a DP algorithm which uses a
new dominance criterion that eliminates states from the state
space. Similarly, considering the additional diagonal sepa-
ration constraints in safety requirement, Lieder and Stol-
letz [26] presents a DP approach for the mixed-mode aircraft
scheduling. However, in the above endeavors, the optimiza-
tion objective is always single. The interests of different
stakeholders are considered simultaneously by [27] and [28]
with a multi-objective DP algorithm.

Though the MIP and DP approaches are prevailing for the
RSP, the computing times are too prolonged to the real-time
application. In terms of the dilemma, there are some scholars
dedicating to designing heuristic/metaheuristic algorithms
with high computational efficiency for real-time scheduling.
Beasley et al. [29] and Atkin et al. [30] respectively employ
a population heuristic algorithm and a hybrid metaheuristic
approach to aid the runway scheduling at London Heathrow
Airport. Pinol and Beasley [18] designs two heuristic algo-
rithms, the so-called scatter search and bionomic algorithm
for themulti-runway case of the static RSP. Recently, a hybrid
metaheuristic algorithm based on tabu search and variable
neighbourhood search is developed by [31], which is utilized
to solve a integrated aircraft scheduling and routing problem.
Simulated annealing (SA)method is utilized by [2] to delivers
quick schedules for a mixed-mode RSP considering the CPS
constraints and the dynamic nature of airport.

Uncertain factors, as opposed to the deterministic opera-
tional environment, existing in the runway scheduling oper-
ations are gradually attracting the attention of interested
researchers. Such as, the robust RSP [23], [32], [33], and
two-stage stochastic decision procedures [12]. However,
the probability distribution of uncertain parameters, in [12],
is assumed exactly known, and the scale of problem that
can be solved is small. There are few works to tackle the
assumption that the distribution of uncertain parameters is
unknown in the RSPs. In other research domains, to enhance
the robustness of the solutions under the uncertain probability
distribution of random parameters, a class of distributionally
robust models (DRM) is proposed. DRM describes the uncer-
tainty of input parameters by an ambiguity set consisting of
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partially distribution information. The ambiguity distribution
set is different according to the known parameter information.
The existing methods for constructing the ambiguity set of
distribution includes: exact first and second moments, direc-
tional deviations and mean absolute deviation (MAD).

The computation using the exact algorithm in the two-stage
optimization is costly as the complexity of the computation
increases with the number of scenarios. Moreover, the com-
puting time required increases dramatically with the size of
the model due to the RSP is NP-hard problem [34]. For
these reasons, several meta-heuristic approaches have been
recently proposed in the RSP model, such as, Simulated
Annealing (SA) [2], Genetic Algorithm [18], [29], Artificial
Bee Colony (ABC) algorithm [23].

III. PROBLEM FORMULATION
In this section, we firstly introduce an ambiguity set depend-
ing on the partially known descriptive statistics of uncer-
tain arrival time and establish the two-stage mathematical
formulation of ASRSP. Then we present the approximate
worst-case discrete probability distribution for the ASRSP in
accordance with given information.

A. AMBIGUOUS TWO-STAGE STOCHASTIC
MATHEMATICAL MODEL WITH PARTIAL DISTRIBUTION
INFORMATION
Instead of using a exactly known probability distribution
(e.g., the inter-arrival time is assumed as exponential distri-
bution), in our work we relax this assumption that the proba-
bility distribution of random parameter is exactly known. It is
more intuitive for practitioners that the distribution informa-
tion of aircraft arrival time is partial known and it belongs to
one ambiguity set F containing all possible distributions P.
These descriptive statistical information consist of mean

valueµ, mean absolute deviation (MAD) d of random param-
eter and support set [a, b]. The reasons why we use these
descriptive statistics to construct the ambiguity set not only
is these data can be easily collected from tower control
department of airport, but also we can, under this information
on the random parameters, use a result of of Ben-Tal and
Hochman [35] to prove that the approximate worst-case dis-
tributions are discrete with at most three possible realizations
per random parameter.

Let ei, i = 1, 2, ..., |I | denotes the arrival time of aircraft i,
where I is the set of all flights. The partial distribution infor-
mation on aircraft arrival time ei constituting the ambiguity
set are detailed as follows:

1) Mean values: ui = EP[ei], µi denotes the mean value
of each flight i ∈ I .

2) Mean absolute deviations (MAD): di = EP[|ei − µi|],
di denotes the MAD of each flight i ∈ I .

3) Support sets: [ai, bi], ai and bi respectively represent
the lower and upper bound of ei, where i ∈ I .

4) Covariance between ei and ej: covi,j =
EP
[
(ei − µi)(ej − µj)

]
, where i, j ∈ I .

In the literature, such as Balakrishan and Chandran [11]
and Solak et al. [12], the schedules are generated assum-
ing a Poisson arrival process corresponding to exponential
inter-arrival times. The Poisson arrival process means that
flight arrivals occur independently in the disjoint time inter-
val. Due to our work is trying to extend the work of [12],
we adopt the independent assumption throughout the paper.
Assumption 1: The estimated arrival times of all flights in

a time horizon are independent, that is, the covariance matrix
of random arrival time ei is a diagonal matrix.

Based on the above four blocks, and independent assump-
tion of flight arrival time, the ambiguity set F is defined in the
following.

F =

P
∣∣∣∣∣∣∣∣
EP[ei] = µi, ∀i ∈ I
EP[ei − µi] = di, ∀i ∈ I
ProbP (ei ∈ [ai, bi]) = 1, ∀i ∈ I
ei⊥ej, ∀i 6= j

 (1)

where ei⊥ej means that ei and ej are stochastically indepen-
dent.

In line with [12], although the unit of measurement for the
runway occupancy time and total deviation time is identical,
the impact of these values to airport operations is different.
The airport emphasizes on minimizing the runway occupying
time (i.e., makespan), but airlines are pursuing the shortest
deviation time. Therefore, it is better to use economic cost
instead of time to assess the costs of runway occupancy and
deviation time of flights in an economical way.
Input Parameters:
K : set of aircraft weight classes of all landing flights,

indexed by k , l.
I : set of landing flights that can be scheduled in a given

planning time, indexed by i.
P: set of positions in the flight landing sequence, indexed

by p, p ∈ {1, 2, ..., |P|}, where |P| = |I |.
Ik : the set of flights belong to aircraft weight class k , k ∈

K .
nk : the number of landing flights belong to aircraft class k .
dk,l : the safety separation requirements between weight

class of leading and trailing aircraft, k, l ∈ K .
ei: the estimated arrival time of flight i, i ∈ I .
τi: the earliest arrival time of flight i, i ∈ I and τi ≤ ei.
M : a big enough number.
λ: the slope of the runway utilization cost function.
λ+i : the slope of cost function when flight i arrived too

delay, i ∈ I .
λ−i : the slope of cost functionwhen flight i arrived too early,

i ∈ I .
η: the intercept of the runway utilization cost function.
η+i : the intercept of cost function when flight i arrived too

delay, i ∈ I .
η−i : the intercept of cost function when flight i arrived too

early, i ∈ I .
Decision Variables:

xp,k : (first-stage variable) = 1 if aircraft class k is assigned
to position p, = 0 otherwise, p ∈ P, k ∈ K .
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cp: (first-stage variable) the cumulative separation times at
position p, p ∈ P.

g: (first-stage variable) the runway occupying cost.
yp,i: (second-stage variable) = 1 if flight i is assigned to

position p, = 0 otherwise, i ∈ I , p ∈ P.
tp: (second-stage variable) the time of position p, p ∈ P.
ti: (second-stage variable) the landing time of flight i,

i ∈ I .
θ+i : (second-stage variable) the delay time of flight i, i ∈ I .
θ−i : (second-stage variable) the early time of flight i, i ∈ I .
h+i : (second-stage variable) the cost of delay time.
h−i : (second-stage variable) the cost of early time.
Given the ambiguity set and the notations, the formulation

of two-stage ambiguous stochastic RSP can be described as
follows:

(ASRSP) min g+ sup
P∈F

EP[Q(x, e)] (2a)

subject to
∑
k∈K

xp,k = 1, ∀p ∈ P (2b)∑
p∈P

xp,k = nk , ∀k ∈ K (2c)

dk,l(xp,k + xp+1,l − 1) ≤ cp+1 − cp,

∀p ∈ P\{|P|}, ∀k, l ∈ K (2d)

λc|P| + η ≤ g (2e)

xp,k ∈ {0, 1}, 0 ≤ cp,

∀p ∈ P, k ∈ K (2f)

where F represents an ambiguity set for probability distribu-
tion P, the second-stage recourse function Q(x, e) for evalu-
ating the cost of deviation time is defined as a function of the
first-stage variable x and random parameter e. When flight
arrival time vector e is revealed, the second-stage problem is
given as follows:

Q(x, e) = min
∑
i∈I

(h+i + h
−

i ) (2g)

subject to
∑
i∈Ik

yp,i = xp,k ,

∀p ∈ P, k ∈ K (2h)∑
p∈P

yp,i = 1, ∀i ∈ I (2i)

τiyp,i ≤ tp, ∀p ∈ P, i ∈ I (2j)

cp+1 − cp ≤ tp+1 − tp,

∀p ∈ P\{|P|} (2k)

tp −M (1− yp,i) ≤ ti,

∀p ∈ P, i ∈ I (2l)

ti ≤ tp +M (1− yp,i),

∀p ∈ P, i ∈ I (2m)

θ+i − θ
−

i = ti − ei, ∀i ∈ I (2n)

λ+i θ
+

i + η
+

i ≤ h
+

i , ∀i ∈ I (2o)

λ−i θ
−

i + η
−

i ≤ h
−

i , ∀i ∈ I (2p)

yp,i ∈ {0, 1}, 0 ≤ tp, ti, θ
+

i , θ
−

i ,

∀p ∈ P, i ∈ I (2q)

In above formulation, objective (2a) minimizes the sum of
runway occupying cost and the worst-case expected deviation
cost. Constraint (2b) enforces that only one aircraft weight
class is assigned to each position. Constraint (2c) ensures
that all number of each aircraft weight class assigned in the
sequence is equal to the number of flights which belong to
the aircraft weight class. The separation time requirement
between consecutive flights is satisfied by constraint (2d).
For example, if aircraft category k is assigned to position p
(xp,k = 1) and followed by aircraft category l (xp+1,l = 1),
the safe separation distance between position p and p + 1
should not be less than dk,l . The cost of runway occupy-
ing time is evaluated by constraint (2e) in economical way.
The possible aircraft weight class assignments are given by
the first-stage decision variable xp,k , and the second-stage
assignment decision is linked to the first-stage through con-
straint (2h). Constraint (2i) ensures each flight to be assigned
exactly one position in the sequence in the second-stage
decision. Constraint (2j) guarantees that each flight can
not land before its earliest time τi. Separation requirements
between consecutive flights are forced by constraint (2k).
Constraints (2l) and (2m) determine exact landing time for
flight i. Constraints (2n)-(2p) calculate the second-stage cost
of deviation time for each flight i. The domains of all variables
are ensured by (2f) and (2q) together.

B. APPROXIMATE WORST-CASE DISCRETE DISTRIBUTION
In ASRSP, the unspecific distribution P of aircraft arrival
time is main challenge for solving this problem. Recently,
Postek et al. [14] proposes a discrete distribution approxima-
tion, based on marginal distributions of random parameters
for the two-stage ambiguous stochastic integer programs with
mean-MAD information. Inspired by the research endeavor,
we adopt the methodology used in [14] to this work.

1) TWO-STAGE AMBIGUOUS CONTINUOUS RECOURSE
MODEL
First, we relax the integer decision variables in the sec-
ond stage, the model of ASRSP translates into a two-stage
ambiguous continuous recourse model. In accordance
with [14], for the ambiguity set F in equation (1), the worst-
case distribution Pē turns out to be same for every first-stage
decision so that the relaxed ambiguous recourse model in (2a)
reduces to

min g+ sup
Pē∈F

EPē [Q(x, ē)] (3)

subject to constraint (2b)-(2f) and (2h)-(2p)

0 < yp,i < 1, 0 ≤ tp, ti, θ
+

i , θ
−

i ,

∀p ∈ P, i ∈ I (4)

where each component of ē follows a known discrete distri-
bution with almost three realization. Its proof combines the
fact that second-stage value function is convex with results
from Ben-Tal and Hochman [35], who provides closed-form
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expressions for the worst-case expectations maximizing and
minimizing the expectations of convex and concave func-
tions. This result is detailed below.
Proposition 2: According to Ben-Tal and Hochman [35],

Given function f (e) of one-dimensional random variable e is
convex, and the ambiguity set F of the distribution P of e.
There is

sup
P∈F

f (e) = p1f (a)+ p2f (µ)+ p3f (b), (5)

where

p1 =
d

2(µ− a)
, p2 = 1−

d
2(µ− a)

−
d

2(b− µ)
,

p3 =
d

2(b− µ)
(6)

The worst-case distribution Pē is a three-point distribution
on {a, µ, b} with probability values p1, p2, and p3 respec-
tively. Equation (5) considers only one sample random vari-
able with dimension ne = 1. For ne > 1, covariance between
different variables should be taken into consideration, as this
proposition is extended multi-dimensions situation.

pi1 =
di

2(µi − ai)
, pi2 = 1−

di
2(µi − ai)

−
di

2(bi − µi)
,

pi3 =
di

2(bi − µi)
, i = 1, 2, ..., |I | (7)

According to equation (7), ambiguity set F and indepen-
dent assumption of flight arrival time, we can obtain the joint
probability distribution of all aircraft arrival time ei. Then
the worst-case expectation of f (e) equation (8) is calculated
based on equation (6) by enumerating over all 3|I | scenarios
of outcomes ai, µi, bi of each elements ei.

sup
P∈F

f (e) =
∑

α∈{1,2,3}|I |

|I |∏
i=1

piαi f (ε
1
α1
, ..., ε|I |α|I | ), (8)

where

εiα1 = ai, εiα2 = µi, ε
i
α3
= bi, ∀i ∈ I (9)

The worst-case distribution Pē of random parameter ēi is a
marginal distribution with P{ei = ai} =

di
2(µi−ai)

,P{ei =
µi} = 1 − di

2(µi−ai)
−

di
2(bi−µi)

,P{ei = bi} =
di

2(bi−µi)
, i =

1, 2, ..., |I |.
Example 3: Suppose there are two flights, I = {1, 2}. The

partial probability distribution information of each flight are
a1 = 5, b1 = 10, µ1 = 8, d1 = 2; a2 = 6, b2 = 12, µ2 =

9, d2 = 1. According to (7), the three-points marginal distri-
bution of e1 over a1, µ1 and b1 with mass 2/6, 1/6, and 3/6,
respectively. e2 follows a three-points marginal distribution
over a2, µ2 and b2 with mass 1/6, 4/6, and 1/6, respectively.

2) TWO-STAGE AMBIGUOUS MIXED-INTEGER RECOURSE
MODEL
The difficulty of having integer decision variables y in the sec-
ond stage is that the second-stage value function Q(x, e)
is generally not convex so that the result of Proposition 2
cannot be applied. There are two approaches to deal with this
difficulty for two-stage ambiguous mixed-integer recourse
models in [14]. The first is using a value function Q̂(x, e) that
is convex to approximate Q(x, e). The other one is keeping
the Q(x, e) but treats that Pē as an approximate worst-case
probability distribution in the ASRSP. In this article, we take
the latter approximation. Therefore, corresponding solutions
are approximate worst-case solutions with the approximate
three-point discrete distribution.

It can be observed that there are 3|I | possible scenar-
ios in the approximate worst-case probability distribution.
Practically speaking, it is intractable to enumerate all the
scenarios costly for capturing the uncertainty. Hence, in our
work, we propose a hybrid sample average approxima-
tion (HSAA) algorithm, by capturing as more scenarios as
possible, to obtain more approximate solutions.

IV. SOLUTION APPROACH
Here, this paper presents a nested GA to substitute off-the-
shelf solvers in the Optimization Step of HASS algorithm.
Specifically, a nested GA consisting of outer genetic algo-
rithm 1 (GA1) and inner genetic algorithm 2 (GA2) is used
to solve the sample average approximate problem with N
scenarios. GA2 will be applied to determine the optimal
second-stage scheduling decision designed to minimize total
costs of deviation time in line with the first-stage decision.
In other words, GA2 play as a role of solver for estimating
the second-stage function value. The framework of the nested
GA is presented in Figure 5 of Appendix A. The details of two
genetic algorithms are displayed in Appendix A.

In this section, we sequentially introduce general SAA
algorithm framework, sampling methods. Finally, we con-
clude this section with the framework of HSAA algorithm.

A. SAMPLE AVERAGE APPROXIMATION ALGORITHM
FRAMEWORK
The basic idea of the SAA algorithm is to replace the original
distribution of random parameter e with a sample of size
N , that is, es, s ∈ �,� = {1, 2, ...,N }, where N is much
smaller than the reality number of scenarios of e. Then the
determinately equivalent SAA problem (SAAP) of original
problem (2a)-(2q) can be written as follows:

(SAAP)v = min g+
1
N

N∑
s=1

Q(x, es)

for each scenario s ∈ �

subject to constraint (2b)-(2f) and (2h)-(2q)

(10)

In implementation of the SAA algorithm, a lower bound
and a set of upper bounds of the real objective value v are
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FIGURE 2. Illustration of clustering sampling procedure.

obtained. The general framework of SAA algorithm, which
consists of five blocks, is detailed below.

1) (Sampling Step). Choose a sample size N and a num-
ber M denoting the number of replications. For m =
1, 2, ...,M repeat sampling N scenarios from the pop-
ulation of approximate worst-case distribution.

2) (Optimization Step). For m = 1, 2, ...,M repeatedly
solve the SAAP by nested GA and store the optimal
first-stage solution xm and the corresponding objective
value vmN . Compute statistical lower bound v and its
variance σ 2

v by using v = 1
M

∑M
m=1 v

m
N and σ 2

v =
1

M (M−1)

∑M
m=1(v

m
N − v)

2 respectively.
3) (Validation Step). For m = 1, 2, ...,M , generate a

sample of size N ′ (N ′ � N ). Estimate the objective
value vs(xm), s = 1, 2, ...,N ′ for each individual in
the sample with given first-stage solution xm. Esti-
mate the statistical upper bound v(xm) and its variance
σ 2
v(xm)

by using v(xm) = 1
N ′
∑N ′

s=1 v
s(xm) and σ 2

v(xm)
=

1
N ′(N ′−1)

∑N ′
n=1

(
vs(xm)− v(xm)

)2, respectively.
4) Calculate the confidence interval of lower bound and

upper bound via v ± tM−1,α/2σv/
√
M and v(xm) ±

tN ′−1,α/2σv(xm)/
√
N ′ respectively, where the confi-

dence level α = 0.05 is usually adopted.
5) Select a desired upper bound from M number upper

bound values according to some criteria. Compute the
optimality gap by gap = UB−LB

UB ∗ 100%

B. K-MEANS AND K-MEANS++ CLUSTERING SAMPLING
In SAA algorithms, sampling is one very critical proce-
dure in that the selected sample directly determines the
objective value. To improve the accuracy of computational
results with small or moderate sampling size, two cluster-
ing sampling methods applied in the HSAA algorithm to
improve efficiency. Figure 2 shows a clustering sampling
process.

The first clustering sampling method is based on K-means
clustering technique, a set of scenarios are grouped into C
minority separative clusters by K-means clustering method.
For each cluster Ci, We choose a representative data point
si, i ∈ {1, ...,Nk}, depending on the distance between data
point xj and centroid ui. The nearest data point away from the
centroid, marked by red solid circle, as shown in Figure 2-(b),
is preferred as the representative scenario. Finally, we can
obtain a set of typical scenarios� of size Nk that will used in
the HSAA algorithm.

Instead of randomly selecting the k number centroids,
in Kmeans++ clustering sampling, only one is randomly
chosen from data set while the remaining (k − 1) cluster
centers are selected as far from previous centroids as possible.
Besides, the rest of the steps are similar to Kmeans case.

C. HYBRID SAMPLE AVERAGE APPROXIMATE (HSAA)
ALGORITHM
In the HSAA algorithm, in order to improve the comput-
ing efficiency, we develop a nested GA, which algorithm
framework is given in Figure 5 of the Appendix A, to substi-
tute commercial solvers (e.g., Cplex) in Optimization Step.
Once a feasible first-stage solution obtained, GA2 is used
to estimated statistical upper bound in the Validation Step.
The detail of the HSAA algorithm framework is presented
in Algorithm 1. In Algorithm 1, the estimated computing
time can be estimated as follows. Assuming that the run-
ning time of GA2 is 0.01s, for a problem with popsize1 =
50,maxgen1 = 30,N = 30, |K | = 3, the maximal com-
putation time is about 50 · 30 · 30 · 3 · 0.01s = 1350s.
Repeated sampling 10 times, the total computation time for
the Optimization Step in the HSAA algorithm is 13500s.
In the Validation Step, if the sample size N ′ = 1000, the run-
ning time is 10 · 1000 · 3 · 0.01s = 300s.

Algorithm 1 Hybrid Sample Average Approximation Algo-
rithm
Input: replicationM , sample size N , big sample size N ′;
first-stage
Output: solution, lower bound and upper bounds;
1: for m = 1 : M do
2: SN ← generate a sample of size N by using sampling

techniques;
3: Solve the SAAP with sample SN by nested GA;
4: xm← a feasible first-stage solution;
5: end for
6: Estimated the statistical lower bound and associated con-

fidence interval;
7: for m = 1 : M do
8: SN ′ ← generate a sample of size N ′ (N ′ � N );
9: for s ∈ SN ′ do

10: Solve the s-th second-stage problem Q(xm, es) with
given first-stage decision xm by GA2;

11: end for
12: Estimate the statistical upper bound and associated the

confidence interval;
13: end for
14: Select a upper bound with given criterion;

V. NUMERICAL EXPERIMENT
In this section, we conduct a series of numerical experiments
to explain: (1) the efficiency and effectiveness of the proposed
optimizationmodel and solution algorithm. (2) how the dupli-
cation sampling number M and sample size N/Nk affect the
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performance of the HSAA algorithm; (3) the effect of differ-
ent sampling methods on objectives values. We implement all
the numerical experiments in MATLAB 2014b by using PC
with Inter(R) Core(TM) i5-6500U CPU @3.2GHz and 4 GB
RAM.

In Subsection V-A, we detail our experimental data
and parameters pretest results. The improvement of run-
way scheduling comparing current practice and off-the-shelf
solvers are reported in Subsection V-B. In Subsection V-C,
the performance of the HSAA algorithm on parameters M
and N/Nk are discussed. Finally, we analyze the impact of
pending scenarios size N , used in clustering sampling meth-
ods, on computational results.

A. DATA DESCRIPTION AND PARAMETER PRETEST
The unit cost of runway utilization is taken λ = 10, the unit
cost of delay and early is λ+i = 2·ki and λ

−

i = ki, respectively,
where ki = 1, 2, 3, respectively represents weight class small,
large and heavy. The distribution of the flight weight classes
for all instances is uniform. The means µi, i = 1, 2, ..., |I |,
of aircraft arrival time (time unit is seconds) are obtained
according the arrival rate. Estimated arrival time ei is con-
tained in a F ambiguity set with ai = µi−U[300, 900], bi =
µi + U[300, 900], di = 300, where U[300, 900] denotes the
uniform distribution within interval [300, 900]. The aircraft’s
earliest landing time τi is no more than 30 minutes ahead of
the estimated arrival time.

In the GA1 and GA2, selective pressure coefficient α, pop-
ulation size (popsize) and number of iterations (maxgen) are
three key arguments, which have significant impact on con-
vergence time and solution quality of the HSAA algorithm.
According to parameter pretest results, (α1 = 0.0001, α2 =
0.0001) is chosen as thewell-behaved selective pressure coef-
ficients based on the trade-off between solution quality and
computing time. A sound population size popsize2 = 50 and
iteration numbermaxgen2 ≥ 30 are preferred in theGA2. The
solution quality of GA1 is guaranteed when popsize1 ≥ 50
and maxgen1 ≥ 40.

B. PERFORMANCE ANALYSIS OF THE NESTED GA AND
TWO-STAGE OPTIMIZATION
With the aim of evaluating efficiency of the nested GA
and effectiveness of the proposed two-stage optimization
approach, Computational results by exact method (e.g. MIP
with Cplex) and the current practice of First-Come-First-
Serve (FCFS) (e.g., Balakrishan and Chandran [11] and
Ng et al. [23]) way are taken as references for comparison of
the landing cost and computation time. The description of test
instances is shown in Table 2. Computational results of differ-
ent problem size by the nested GA and the exact method using
Cplex 12.8 from ILOG are presented in Table 3 and Table 4.
After solving the instances through the proposed two-stage
optimization, some far larger samples/scenarios are selected
for evaluating the solution performance in more general situ-
ation. Based on these out-of-sample landing cost, on the other
hand, we can get insights into how the two-stage optimization

TABLE 2. Instances used for model evacuation.

TABLE 3. Comparision of nested GA and MIP with Cplex for the instances
of small sample size.

can improve the runway scheduling efficiency compared with
FCFS. Table 5 reports the out-of-sample results of deviation
costs by the proposed modeling method and the landing cost
by FCFS.

We first investigate the algorithm efficiency of HSAA,
which uses the nested GA to substitute the exact method,
with small sampling size (e.g., sampling size N < 5). These
scenarios is obtained in random sampling way. As shown
in Table 3, Cplex be able to obtain the landing cost for
the instances ‘‘I1-I2’’ with 15 flights within 1,500 seconds.
Column ‘‘Gap’’ records the relatively gap of objective value
between nested GA and exact method, the maximum ‘‘Gap’’
value is 0.11 and its average is 0.07, indicating that the perfor-
mance of nested GA is guaranteed. Particularly, the proposed
nested GA is great better than the commercial solver in
achieving better computational time at the cost of slight loss
of solution quality.

Further, we test the solutions performance with large sam-
pling size N ∈ {10, 20, 50}. The maximum computation time
is 3,600 s. The time limit was chosen in accordance with the
characteristic of the instances. These computational results
are reported in Table 4. Symbol ‘‘-’’ means that there is no
feasible solution before the computer is out of memory. As for
the instances with 15 flights and sampling size N = 10, exact
solver is not able to obtain a global optimal solution within
one hour. On the contrary, the proposed nested GA yields
more close-to-optimal solutions within 1,600 s comparing
to the baseline solutions obtained by Cplex. In addition,
the working computer is out of memory for the exact method
since the number of flights exceeds 15 or sampling size
N > 10. The computational results suggest that the exact
method would be taken into account when the number of
arriving flights and stochastic scenarios is small. Otherwise,
the proposed nested GA is preferable for practical usage.

To demonstrate the effectiveness of the two-stage opti-
mization model, we compare the first-stage solutions perfor-
mance with current practice FCFS by using out-of-sample
tests. Inherited from the first-stage solutions by solving the
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TABLE 4. Comparision of nested GA and MIP with Cplex for the instances
of large sample size.

SAAP (10) with small sample size N = 10, we use N ′ ∈
{500, 1000, 10000} scenarios from the approximate distri-
bution to validate the deviation cost in the second stage.
We directly evaluate the average landing cost by the same N ′

scenarios for current practice in last two columns of Table 5.
It can be found that the deviation costs by exact method are
larger than the nested GA. This observation is similar for
the objective values in Table 4, which further demonstrates
the conclusion that the nested GA outperforms Cplex with
large sample sizes. Moreover, the average deviation costs by
using FCFS are far grater than that by using the two-stage
optimization regardless of which solution method is used.
For example, the total deviation time costs of instance ‘‘I1’’
by using the proposed model are 12,665 and 13,058 respec-
tively for meta-heuristic and exact solution method, which
are much smaller than the FCFS of 12,486,596. The large
differences between our proposed approach and current prac-
tice intuitively illustrate that the two-stage optimization can
improve runway scheduling efficiency, especial in reducing
deviation costs, compared with FCFS fashion. In additional,
compare the column ‘‘Makespan’’ in Table 4 and Table 5,
the average runway occupying cost of FCFS is around
1.5 times that of the two-stage optimization in instances
‘‘I5-I6’’ with a flight size of 60. This observation fur-
ther indicates that the two-stage optimization is better than
FCFS in terms of reducing both runway occupying time and
total deviation time when the number of landing flight is
large.

C. PERFORMANCE ANALYSIS OF THE HSAA ALGORITHM
To measure the performance of the HSAA algorithm,
we firstly introduce two optimility gaps here based on sta-
tistical lower and upper bounds. The illustration of ‘‘opti-
mality gaps" is presented in Figure 3. For the convenient,
we use LBE (UBE ) to denotes lower (upper) bound estimator,

TABLE 5. Comparision of the out-of-sample results.

FIGURE 3. The graphic definition about two optimality gap values.

TABLE 6. Impact of duplication number M on HSAA by random sampling.

confidence interval left and right values are abbreviated as
CIL and CIR, respectively. gapE =

UBE−LBE
UBE

· 100% means
the nominal optimality gap based on expectation values;
gapabs =

UBCIR−LBCIL
UBCIR

· 100% reports the absolute optimality
gap value. Following experiments are based on instance ‘‘I3’’.

1) IMPACT OF DUPLICATION NUMBER M ON ALGORITHM
CONVERGENCE
Set sample size N = 30,N ′ = 10000, we test duplication
number M ∈ {5, 10, 15, 20, 25, 30} with random sampling
to get insights into how the duplication numberM influences
the HSAA algorithm. These results are presented in Table 6.
In Table 6, column ‘‘LB" (‘‘UB’’) record lower (upper) bound
information at 95% confidence interval. Gap metrics are
displayed in column 4-5 respectively. Finally, last column
‘‘time’’ records the computation time by seconds.
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TABLE 7. Impact of sampling size N/Nk on HSAA algorithm with different sampling methods.

FIGURE 4. Curve fitting of LB and UB values on sample size with different sampling methods.

It can be observed from Table 6 that the length of the con-
fidence interval of LB is decreasing as duplication numberM
increases. The value range of the lower bound reduces from
[64773, 70161] to [66783, 68059] when M increases from
5 to 30. The shorter the confidence interval, the more accurate
the lower bound. Moreover, the upper bound ‘‘UB’’ generally
decreases when the duplication number M increases. Hence,
as it can be seen from Table 6, the consideration of a larger
M allows for generating a solution with a smaller optimality
gap and a tighter lower bound confidence interval. However,
more computing time is required to solve the SAA problem
when the duplication number M increases. This observation
indicates that a good compromise between the quality of
solution and the computational effort should bemade. Indeed,
when M = 15, a near-optimal solution with gapE < 1% and
gapabs < 3% is obtained within an acceptable computational
time (less than 13 h). Though the quality of solutions con-
sidering more larger M are slightly better than the case with
M = 15, the computational time needed is higher as well.
In practice, it doesn’t make sense to seek a slight increase
in the accuracy of solution at expense of a large amount of
computational time.

2) IMPACT OF SAMPLING SIZE N/Nk
Given M , how many scenarios are enough to obtain guaran-
teed solutions. To illustrate this influence by different sam-
pling size and sampling methods, we analyze a set of sample
sizes N/Nk ∈ {5, 10, 15, 20, 30, 40, 50, 60}, and randomly

generate N = 1000 scenarios from the approximate dis-
tribution as pending sample for clustering sampling meth-
ods. According to the discussion in Subsection V-C.1, Take
M = 15 based on the trade-off between solution quality and
computing time. Experimental results are pictured in Figure 4
and presented in Table 7.

Figure 4 shows how the statistical lower and upper bounds
change as sample size increases. All sampling cases converge
toward an optimal solution as the number of sample size
increases. Figure 4 clearly indicates that the gapE becomes
tight enough for further considerations at a sample size
of 40 scenarios. The tighter gap mainly attribute to the lower
bound increases shown in Figure 4.
It can be observed from Table 7 that as sample size used

in HSAA algorithm increases, the values of gapE by using
the clustering sampling method in general are tighter than the
random sampling way. When sampling size is of large (e.g.,
N/Nk ≥ 40), we can observe that gapE is converging to 0.
The maximal gapE among all sampling cases is smaller than
5%, and the average gapE over different sampling approaches
are of 1.39%, 1.31% and 1.31%, respectively. In addition,
the observation of gapabs is similar for gapE , which decreases
quickly and converges to 2% with sampling size increasing
up to 60. The maximum and minimum gapabs among all
sampling methods are less than 8% and 2%, respectively. The
gapabs of the Random and K-means sampling cases is less
than 3% since the sample size is greater than 30, and the
gapabs reduces to less than 4% in the K-means++ sampling
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TABLE 8. Impact of different N on HSAA algorithm by using clustering
sampling methods (Nk = 20).

case when sample sizeNk ≥ 15. The average values of gapabs
are of 3.44%, 3.45% and 3.25%, respectively. The differences
of computing times among different sampling methods used
in the HSAA algorithm are nearly omitted. Hence, what can
be concluded is that the K-means++ sampling technique
outperforms the Random and K-means sampling methods in
terms of the quality of solutions.

3) IMPACT OF N USED IN CLUSTERING SAMPLING METHOD
ON COMPUTATIONAL RESULT
We discuss here that the impact of pending scenarios size N
on solution quality by using clustering sampling in HSAA
algorithm. What we care about are: (1) how many alternative
scenarios is adequate to extract representative sample with
sizeNk used in theOptimization Step of theHSAA algorithm;
(2) which clustering samplingmethodmakes the HSAA algo-
rithm perform better.

Table 8 reports the solution quality and computation times
for each sample size N with Nk = 20. It can be intuitively
observed that both gapE and gapabs of K-means++ sam-
pling method are less than the values by using K-means
sampling method with the exception of N = 2000. The
average values of gapE and gapabs are of 2.60% and 5.12%
by using the K-means clustering sampling, and are of 1.63%
and 3.91% for the K-means++ sampling, respectively. These
results suggests that K-means++ sampling behaves better
than K-means sampling way in obtaining a tighter objective
value with nearly same computational burden. Additionally,
as shown in Table 8, the larger the number of alternative
scenarios, the smaller the optimality gap. It is intuitive that
the number of alternative scenarios size should be not less
than 500 for a tight optimality gap.

VI. CONCLUSION
This work studies an ambiguous two-stage stochastic run-
way scheduling problem with partial distribution information
available, in which the uncertainty mainly arises from the
random aircraft arrival times. Contrast to the past researches,
we relieve the assumption that the probability distribution
of random parameters is exactly known, but consider the
case that the distribution information of uncertain parame-
ters is partial known. These information consist of means,
support set and MAD. Based on the given information,
a discrete probability distribution with three realizations per

random parameter is approximately established. For solv-
ing the complicated problem, we develop a hybrid sample
average approximate algorithm, into which a nested GA are
embedded. In addition, the performance of three different
sampling methods used to provided random scenarios set are
analyzed. Numerical experiments are carried out to demon-
strate the efficiency and validity of the proposed ambigu-
ous two-stage optimization approach and solution algorithm.
Computational results indicate that the runway scheduling
efficiency and effectiveness by using the proposed model and
algorithm are remarkable; on the other hand, clustering sam-
pling methods, used in the HSAA algorithm, behave better
than the random sampling way in improving approximate
results. In general, this work further contributes to extending
the TBFM, an auxiliary intelligence technique for air traffic
management, to ambiguous stochastic environment in which
only partial descriptive statistics information of uncertain
elements are captured, and to proposing an efficient solution
algorithm.

For the future research, it is preferable that the ambiguous
stochastic runway scheduling will be extended to the all day
time horizon, a rolling horizon scheduling planwith uncertain
nature is necessary. To relieve the significant computational
effort required, developing more efficient solution strategies
for the Optimization Step, which is the computing bottleneck,
is meaningful in the HSAA algorithm. Besides, it is quit
considerable that extends the ambiguous two-stage runway
scheduling problem to more general situations by taking into
account the correlation of arrival time.

APPENDIX
THE DETAILS OF GA1 AND GA2
A. GENETIC ALGORITHM 1 (GA1)
The details of GA1 at the outer layer of the nested GA are
presented below.

1) REPRESENTATION OF CHROMOSOME AND POPULATION
INITIALISATION OF GA1
The appropriate encoding here is a 0-1 matric shown
in Figure 6, the first to third rows respectively represent
the assignment decisions of Small, Large and Heavy air-
craft weight classes. Each column represents a gene unit.
Initial population generate randomly with respecting con-
straints (2b) and (2c).

2) FITNESS EVALUATE AND SELECTION OPERATOR OF GA1
Linear transformation of fitness and tournament selection
operator are adopted. Specifically, the estimation of select
pressure difference is given in equation (11), where popsize
denote population size, objvali and bestobjval are individual
i′s objective value and the best value respectively. Fitness
value of individual is evaluated by equation (12), in which
objval is an objective value vector and fi represents indi-
vidual’s fitness value. In equation (12) parameter α ∈

(0, 1) is used to adjust select pressure to ensure population
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FIGURE 5. An algorithm flowchart of the nested GA.

FIGURE 6. Chromosome representation of GA1.

diversity.

pressure =
1

popsize

popsize∑
i=1

objvali − bestobjval (11)

fi = −objvali + max(objval)+ α · pressure (12)

3) ADAPTIVE PROBABILITIES OF CROSSOVER AND
MUTATION
To avoid the premature local convergence arising from
stationary crossover and mutation probabilities, adaptive

probabilities of crossover and mutation approach proposed
by [36] is applied here. The expression for pc and pm are
Eqs. (13) and (14), respectively.

pc =

k1
fmax − f ′

fmax − favg
, f ′ ≥ favg

k3, f ′ < favg
(13)

pm =

k2
fmax − f
fmax − favg

, f ≥ favg

k4, f < favg
(14)

where fmax and favg respectively denotes the maximum and
the average population fitness value, f ′ refers to the larger
fitness value between the paired parent chromosomes to be
crossed, the individual fitness is represented by f , andweight-
ing parameters k1, k2, k3, k4 ≤ 1. In this work, we assign k1
and k3 a value of 1, and we use a value of 0.5 for k2 and k4.

4) CROSSOVER AND MUTATION OPERATION OF GA1
In GA1, two-points crossover operator is used to gen-
erate new offspring, the crossover procedure is detailed
in Figure 7-(a). The repair operation of chromosome is
necessary since the obtained proto-childs may be infeasi-
ble. For example, Proto-child1 is infeasible, because the
constraint (2c) does not meets after crossover operation.
In Proto-child1, the fixed number of aircraft belong to Small
class should be 4 instead of 3. The proto-child1 and proto-
child2 are revised by repairing the genes inherited from the
parents. Figure 7-(b) illustrates the repair operation, ran-
domly select a gene from a collection of genes that can be
repaired and revise it so as to the feasibility constraints are
met. Since we obtain the offspring, a mutation may hap-
pen when mutation probability pm is satisfied. In GA1, two
different genes are selected randomly, then the back gene
unit is inserted into the rear position of the ahead one. This
mutation manipulation can avoid to produce invalid mutation
individuals.

5) STOP CRITERIA
Iteration terminates when the maximum number of evolu-
tionary generations (maxgen) reaches or the reduction of the
best objective value is less than a threshold value (hereafter
referred to as thre) within consecutive iterations (hereafter
referred to as iters).

B. GENETIC ALGORITHM 2 (GA2)
1) REPRESENTATION OF CHROMOSOME AND POPULATION
INITIALISATION OF GA2
Figure 8-(a) shows the aircraft weight class assignment deci-
sion, the first row represents the landing locations (specific
flight’s landing positions), the aircraft weight classes (Small,
Large or Heavy) on these locations are displayed in the sec-
ond row. Landing locations of different aircraft weight classes
are extracted from the first row and displayed in last three row.
For example, the landing locations of small aircraft consist
of positions 1, 2, 4, 6, 7,..., 23, 24. Figure 8-(b) details
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FIGURE 7. Illustration of crossover and repair operations of GA1.

FIGURE 8. Illustration of chromosome representation of GA2.

the flight number (a unique identification for each flight)
of landing aircraft and corresponding aircraft weight class.
According to the above scheduling characteristic, In GA2,
a chain chromosome representation for flight scheduling
over each aircraft weight class is employed. In this coding
method, each chromosome is a sequence of flights to be
landing. The detailed flight landing sequence of second-stage
is shown in Figure 8-(c), the first row in Figure 8-(c) repre-
sents the flight number and the landing sequence. Figure 8-
(d) illustrates the chromosome representation. In population
initialization, individuals are randomly generated with the
aim of covering the entire flights of particular aircraft weight
category.

2) FITNESS EVALUATE AND SELECTION OPERATOR OF GA2
The fitness evaluate method and selection operator is same as
the GA1.

3) CROSSOVER AND MUTATION OPERATION OF GA2
In GA2, Cycle Crossover (CX) is used. Figure 9 illustrates
how to apply CX operator to generate new offspring. The
detail implementations of CX comprises three steps. First,

FIGURE 9. Illustration of crossover operation of GA2.

randomly choose a gene (e.g., 1) from one parent (e.g.,
parent1) and extract an other gene (e.g., 5) located in the
same position from another parent, then return to the par-
ent1 and find out the corresponding position of 5, next
select a gene (e.g., 2) located in position 5 from parent2.
Repeat the previous work until a genes’ loop is formed.
As shown in Figure 9-(a), the selected genes’ loop is 1 →
5 → 2 → 4 → 9 → 1. Second, the proto-child1,
as shows in Figure 9-(b), is generated by inserting the selected
genes from parent1 to the corresponding positions. The
proto-child2 is obtained in the same way. Third, as shown
in Figure 9-(c), the remaining genes in parent2 and par-
ent1 are inserted into proto-child1 and proto-child2 respec-
tively. Finally, the resulting offspring are obtained. Double
point mutation is a mutation operator in GA2, as mutation
probability is met.

4) STOP CRITERIA
GA2 stops when the average fitness of population equals to
the fitness of best individual.
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