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ABSTRACT This paper proposes an intelligent framework to predict and automatically regulate earth
pressure using a deep learning technique during earth pressure balance shield tunneling. A prediction
model was proposed by integrating a new cost function (relative mean square error) with a gated recurrent
unit (GRU). The moving average smoothing method was also incorporated into the GRU model to reduce
the noise of the dataset and improve the accuracy of the proposed model. A real-time dynamic regulation
model for adjusting the operational parameters was proposed by integrating the GRU model into a genetic
algorithm-based optimizer. By adjusting the operational parameters, the dynamic regulation model regulates
the excessive predicted earth pressure within a suggested range. The proposed prediction and regulation
models were applied to a metro tunnel construction in Luoyang, China. The results show that the proposed
models provide good guidance for automated tunnel construction.

INDEX TERMS Automatic regulation, earth pressure, gated recurrent unit, genetic algorithm, shield
tunneling.

I. INTRODUCTION
Rapid urbanization brings about the large-scale construction
of underground infrastructures such as metro lines [1]–[3]
and deep excavations [4]. However, issues caused by large-
scale construction [5] such as ground settlement [6]–[9], rain-
triggered floods [10]–[14], and soil liquefaction [15], [16]
lead to significant social, economic, and environmental
losses. Several efficient and safe construction techniques
have been proposed to solve these issues andmitigate relevant
hazards. For one, earth pressure balance (EPB) shield tunnel-
ing is widely used in the construction of metro lines because
of its minimal disturbance to the environment. During EPB
shield tunneling, the excavated materials, when combined
with various additives, fill up the soil chamber to provide
support pressure to the excavation face [17]. The pressure
generally fluctuates because of the dynamic construction of
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the EPB machine, which disturbs the original soil stress
distribution in the ground and thus contributes to ground
settlement [18]–[25].

Considering the vital effect of earth pressure at the exca-
vation face to maintain face stability and control ground
deformation, the balance of earth pressure has been investi-
gated by mechanical analysis, numerical analysis, and arti-
ficial intelligence (AI) technology. Mechanical analysis is
mainly based on mechanical equilibrium to calculate earth
pressure distribution [26]–[28]. Using numerical simulations
such as finite element methods, numerical analysis has been
employed to evaluate the relationship between earth pressure
and shield operational parameters such as the screw conveyor
speed, the advance rate and rotational speed of the cutter
head [29], [30]. However, analyses using mechanical and
numerical methods have been based mostly on a number
of assumptions quite different from the actual construction
process. Moreover, current methods cannot be employed to
provide a dynamic control of tunnel operational parameters.
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Therefore, in recent years, AI methods have been proposed to
investigate the earth pressure and automatic control of tunnel
operational parameters based on in-situ construction data.

AI technology applied to the field of EPB tunneling mainly
uses fuzzy control [31], artificial neural networks [32], [33],
random forests [34]–[36], or support vector machines [37].
Fuzzy control has been successfully utilized in the shield
tunneling process [38] and improved by hybrid fuzzy control-
based methods [39], [40]. However, methods based on fuzzy
control rely highly on expert knowledge, fail to tune in a short
time, and are less robust. Yeh [41] first applied artificial neu-
ral networks to predict earth pressure in a soil chamber and
used a grid searching function to find the optimal speeds of
the shield jack and screw conveyor. The adaptive neuro-fuzzy
inference system (ANFIS) which combines the advantages
of fuzzy reasoning and a neural network has been utilized
to control earth pressure [42]–[44]. Shi et al. [45] used the
ANFIS to establish a non-linear mapping between the inputs
(real-time monitored thrust, advance-rate and earth pressure)
and the outputs (speed of screw conveyor). Li and Shao [46]
used the ANFIS to predict the earth pressure of five points
on a bulkhead and used the ant colony system algorithm to
optimize the speed of the screw conveyor. Liu et al. [37]
adopted a least squares support vector machine combined
with particle swarm optimization to find optimal construction
parameters. However, conventional machine learning meth-
ods ignore the sequential characteristics of earth pressure
owing to the nature of the architecture. Therefore, recurrent
neural networks are widely used to consider the sequential
characteristics related to tunneling [47]. Gao et al. [48] com-
pared different types of recurrent neural networkmethods and
conventional machine learning methods to determine the best
model of a gated recurrent unit (GRU) in the prediction of
earth pressure. However, existing research on earth pressure
has ignored that tunneling construction is a dynamic and
sequential problem. Furthermore, the errors that may be con-
tained in the monitored earth pressure are seldom considered
when preparing training and test sets.

The objective of this study was to develop a real-time
dynamic regulation model (DRM) for operational param-
eters by integrating a GRU neural network into a genetic
algorithm (GA) to dynamically predict the earth pressure
during tunneling and recommend optimized operational
parameters for an EPB tunneling machine. The paper is
organized as follows: following the Introduction, Section II
introduces the GRU-based DRM framework and the method-
ology of the GRU and the GA and defines the different
cost functions. Section III introduces the preparation of the
datasets, the data smoothing method, and the GRUmodelling
details. Section IV compares the improved performance of
the GRU models with the proposed relative mean square
error (REMSE) cost function compared with other cost func-
tions based on smoothed and unsmoothed datasets to obtain
the best model. Section V illustrates the performance of the
DRM for the dynamic adjustment of operational parameters

to regulate the earth pressure for a real tunneling case in
Luoyang, China.

II. METHODOLOGY
A. GRU-BASED DRM FRAMEWORK
To realize the automatic regulation of earth pressure, the
GRU-based DRM framework consisted of three main sec-
tions: data pre-processing, the GRU model for earth pressure
prediction, and the DRM for earth pressure regulation as
shown in Fig 1.

During EPB shield tunneling, excavated materials in the
soil chamber are plasticized with additives such as foam and
slurry and then used tomaintain the stability of the excavation
face. The process of balancing the earth pressure at the exca-
vation face by adjusting the input and output of excavated
materials is known as earth pressure regulation. Generally,
the earth pressure monitored at a bulkhead is approximated as
the earth pressure of the excavation face and is a significant
assumption for earth pressure regulation. Themonitored earth
pressure is closely associated with the shield operational
parameters including the advance rate and screw conveyor
speed. Therefore, operational parameters recorded by the
data acquisition system of the EPB shield machine combined
with the geometric and geological parameters of the tunnel
establish the database in real time as shown in Fig. 1.

The GRU model was developed using a continuously
updated database to reflect the non-linear mapping between
the operational parameters and the earth pressure. The GRU
model was improved by a new proposed cost function
(REMSE) and a data smoothing technique called moving
average smoothing (MAS) was used in this research to obtain
the best prediction model (Model A in Fig. 1).

The DRM of operational parameters were built based
on the prediction model. By combining the historical
database, the current geological and geometric information,
and the preset operational parameters, Model A predicts the
earth pressure of the next segment. If the earth pressure is
beyond the suggested range, the preset operational parame-
ters are optimized by the GA-based optimizer in the DRM.
The optimized preset operational parameters are then recom-
mended for the construction of the next segment, and the con-
struction database is updated with the monitored data of the
next segment. This process continues until all the segments
have been completed, thus realizing construction automation
and intelligence.

B. GRU METHOD
1) GRU RECURRENT NEURAL NETWORKS
GRU neural networks are composed of an input layer, hid-
den layers, and an output layer [49] as illustrated in Fig. 2.
In the input layer, the sequential input data are labelled as
X = (x1, x2, . . . ,xt ), where xt ∈Rn refers to the input
feature vector at the t-th time step. The input data pass into
the recurrent hidden layers via the weighted connections.
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FIGURE 1. Frame of earth pressure prediction and regulation during tunneling.

The recurrent hidden output state at the t-th time step
(ht in Fig. 2) is operated on by the GRUs and updated over
time. The input of the GRUs contains not only the input
at the current time step (t) but also the hidden state at the
previous time step (t - 1). The output of the GRUs then passes
to the fully connected hidden units or to the output layer
directly. The GRU neural network used in this study was the
many-to-one type.

GRUs import two gate operations: the reset gate (rt ) and
the update gate (ut ). The reset gate squashes the hidden state
at the previous time step to the range [0, 1] to consider the
influence of the historical data. More historical information
will be ignored when the value approaches 1. The update
gate represents the significance of the current information.
The value of the update gate is also scaled to [0, 1]; the
greater the value, the greater the value of output resources
from the current input and the data from the previous hid-
den state is forgotten. The calculations for the GRU neural

network are:

rt = σ (Wr · [xt , ht−1]+ br )

ut = σ (Wu · [xt , ht−1]+ bu)

h̃t = tanh(Wh · [xt , rt � ht−1]+ bh)

ht = (1− ut )� ht−1 + ut � h̃t

σ (x) =
1

1+ e−x

tanh(x) =
ex − e−x

ex + e−x
, (1)

where, subscript t denotes the time step, Wr , Wu, Wh rep-
resents the weights matrixes of the reset gate, the update
gate, the hidden state in the GRU units, respectively, br ,
bu, bh gate, and the hidden state in the GRUs, respectively;
h̃t represents the calculated element of the hidden state (ht );
and the symbol � denotes the Hadamard product (element-
wise multiplication).
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FIGURE 2. Data flow diagram for GRU neural networks (created based on
the concept from [49]).

2) COST FUNCTIONS
A training process of the neural network was performed to
minimize the error between the output and the target value.
Therefore, the error described by the cost function greatly
affects the performance of the trained model. Most GRU neu-
ral networks are conventionally integrated with mean square
error (MSE) or mean absolute error (MAE) cost functions in
the regression tasks to assess the absolute error definition.
However, conventional cost functions ignore the magnitude
diversity of samples, where small-value samples contribute
less to the gradient of weights than do large-value samples.
The diversity induces an uneven gradient descent for different
samples and lowers the convergence rate in the backprop-
agation process. Therefore, a new relative error-based cost
function, the REMSE, was proposed to enlarge the errors
of the small-value samples and thus average the gradient of
the different samples and accelerate the training process [50].
The vanishing gradient problem was also eliminated because
of the enlarged errors in the backpropagation.

The definitions of the MSE, MAE, and REMSE cost
functions are given as:

JMSE0 =
1
N

N∑
i

(yoi − yi)2

JMAE0 =
1
N

N∑
i

|yoi − yi|

JREMSE0 =
1
N

N∑
i

(
yoi − yi
yi

)2

J∗ = J∗0 + λ
∑
j

w2
j (2)

where JMSE0 , JMAE0 , and JREMSE0 represent the MSE, MAE,
and REMSE cost functions, respectively; J∗ represents the
corresponding cost function; N denotes the number of sam-
ples in the training set; yoi refers to the predicted output of
the i-th sample of the model; yi refers to the target value of
the i-th sample; λ denotes the L2 regularisation coefficient to
penalise large weights and reduce overfitting; and wj denotes
the j-th weight in the weight space. A substitute value of 1 is
recommendedwhen yi = 0 as the denominator in the REMSE
cost function.

FIGURE 3. Comparison of MSE, MAE and REMSE cost functions in weight
space (a) MSE vs MAE and (b) MAE vs REMSE.

A series of data pairs were picked to visualise the MSE,
MAE, and REMSE cost functions in the weight space using
a three-layer neural network with one node at each layer as
shown in Fig. 3. The input data were X = [0.1, 0.2, 0.3,
0.4, 0.5], and the target data were y = X2. The results confirm
the similarity between the MSE and MAE cost functions not
only in the slope rate of the surface but also in the value of the
cost function. In contrast, the REMSE cost function presented
fewer plateaus and a higher slope rate than that of the MSE
and MAE cost functions and contributed to a fast gradient
descent and convergence in the backpropagation.
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In this research, the REMSE cost function was integrated
into the GRU neural network for the first time.

C. GA METHOD
The major DRM function of adjusting the predicted earth
pressure to the desired value was equivalent to searching for
the appropriate input of Model A to optimize the output to
the required range. In this research, the GA [51] inspired
by the biological evolution of natural selection and genetic
mechanism of Darwin’s theory was implemented to optimize
the input operational parameters. Conventional optimization
algorithms based on gradient descent are inappropriate in this
system because of the complicated gradient of the output with
respect to the input of the GRU model. Unlike conventional
optimization algorithms such as the calculus-based and grid
search methods, the GA is a type of evolutional optimization
method that does not require a continuous or differentiable
objective function.

FIGURE 4. GA optimizer flowchart of operational parameter regulation
during tunneling.

Fig. 4 shows the flowchart of the GA optimizer in the
DRM.When the predicted earth pressure (EP) fromModel A
is beyond the suggested range [EPl, EPu], the GA optimizer is
called to optimize the preset operational parameters. Specific
operational parameters selected by a correlation analysis (see
Section III D) are optimized to adjust the earth pressure
instead of tuning all the input parameters. The GA optimizer
is used to generate a population by adding a small random
amount to the original preset parameters, and then the fit-
ness is calculated for each one. A better fitness indicates an
adjusted earth pressure closer to the midpoint between the
lower and upper limits. Then, those candidates with the top

fitness are selected to produce a new generation, and simul-
taneously the offspring go through the process of crossover
and mutation. Iteration continues until some candidates meet
the earth pressure requirement. Finally, the optimized param-
eters are selected from the candidates with the lowest change
rate compared to the original preset value because a large-
scale parameter adjustment during construction is usually not
desirable.

III. DATA PREPROCESSING AND MODELLING
A. DATA SOURCE
The GRU-based DRM was verified by an EPB tunnel-
ing case of the Luoyang Metro Line 2 located in Henan
Province, China. The tunnel section from Luoyang Railway
Station to Airport Road Station was investigated in this study
(Fig. 5 (a, b)). The size of the EPB shield machine was 6.44 m
in diameter and 9.00 m in length with a cutter head opening
ratio of approximately 50%. The construction included two
parallel lines: the west line with a length of 1173.21 m
and the east line with a length of 1172.00 m. The width of
each segment was 1.50 m, and each line was composed of
approximately 780 segments. The outer diameter and inner
diameter of a segment were 6.20 m and 5.50 m, respectively.

The effect of groundwater was ignored because the ground-
water table (19.47–21.05 m below ground surface) was below
the tunnel structure (maximum cover depth of 14.20 m). The
strata in this section was divided into eight classes (Fig. 5 (b)).
A few underground caves were discovered in the loess strata.
The depths of the cave bottoms ranged from 3.80 m to
10.00 m, and the cave height was generally between 0.80 m
and 1.50 m. The tunnel passed mainly through a silty clay
stratum.

B. DATA PREPARATION
In the case of earth pressure regulation, the database of the
GRU model consisted of the geometry of the tunnel and the
geological conditions and tunneling operational parameters.
Raw training data and test data were collected every minute
from the construction of the east line (765 constructed seg-
ments) and west line (773 constructed segments).

Geometric parameters include the shape, size, and cover
depth of the tunnel segments. Only the cover depth (CD) of
the tunnel was considered as the geometric parameter because
the shape and diameter remained unchanged for each seg-
ment. CD is defined as the distance from the ground surface
to the top of a segment extracted from the geological profile.
Generally, it has a positive correlation with earth pressure
according to the soil mechanism.

Geological parameters refer to the stratum parameter and
include the geometric and mechanical parameters.

Earth pressure is related to the physical and mechani-
cal parameters such as the thickness, cohesion, and internal
friction angle of each stratum. For one particular soil stra-
tum, only the thickness varied with the tunnel, whereas the
other physical andmechanical parameters remained the same.
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FIGURE 5. Site review: (a) plan view of tunnel section and (b) geological profile of site.

Therefore, only the thickness of each stratumwas considered.
The excavation process of the EPB shield caused a continuous
disturbance to the surrounding soil and changed the soil stress
distribution in certain areas. A depth of 40 m (about six times
the diameter of the tunnel segment) of strata was considered
to be a disturbed area to eliminate the boundary effect.

Real-time operational parameters are usually regulated
manually by experienced engineers and can be directly col-
lected through the acquisition system. Operational parame-
ters include: 1) physical parameters: cutter head speed (CS),
advance rate (AR), and penetration rate (PR) and speed of
the screw conveyor (SCS), 2) mechanical parameters: cutter-
head torque (CT) and thrust (T) and grouting pressure (GP),
and 3) soil modification materials in the chamber: bentonite
volume (BV), foam liquid volume (FLV), and foam air vol-
ume (FAV). Physical parameters such as CS, AR, and PR
determine the speed of soil excavation. A higher excavation
speed means more soil into the chamber, causing a higher
monitored earth pressure. In contrast, SCS determines the
speed of soil discharge. A higher discharge speed results in
more soil being transported out of the chamber and reduces
the monitored earth pressure. Mechanical parameters reflect
the interaction between the cutting face and the surrounding
strata. The magnitude of these parameters also has a direct
impact on the soil stress state.

Before the raw data were imported into the GRU model,
data pre-processing was performed and involved the follow-
ing steps.

1) STEP 1: REMOVAL OF EMPTY PUSH DATA
Raw data include both working-state data and empty push-
state data. Empty push data account for a large proportion of

the dataset. The first step is to remove the empty push data
according to

Q = f (CS) · f (AR) · f (PR) · f (CT) · f (T)

f (x) =

{
0, x = 0
1, x 6= 0

, (3)

where f (x) is a function to seek the 0 element in variables (CS,
AR, PR, CT, and T), and Q is a product operation of multiple
f (x). When Q = 0, at least one of the variables equals 0 and
can be removed as empty push data.

2) STEP 2 EXCLUSION OF OUTLIER DATA
For each segment, outlier data which deviate more than three
times the standard deviation away from the average value are
eliminated according to the Pauta criterion [52].

3) STEP 3 UNIFICATION OF DATASET SIZE
Limited by the acquisition of real-time geological param-
eters, the geological parameters in the input data are only
extracted from the geological profile for each segment. The
data recorded by the tunneling system are converted to the
average value for each segment.

4) STEP 4 NORMALISATION
To improve the training process, the dataset is normalized
to the interval (0,1) by dividing 1.2 times of the maximum
value, which could retain the original characteristics of the
raw dataset and also achieves a faster convergence.

The training dataset contained 763 samples from the east
line, and the test dataset included 771 samples from the
west line.
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C. DATA SMOOTHING (MAS METHOD)
In the soil excavation of EPB tunneling, the cutter head
continually rotates to cut out the soil. The excavated soil
rolls into the chamber in a non-static equilibrium state. The
monitored earth pressure is not equivalent to the real earth
pressure because of the disturbed state. Therefore, the devia-
tion between the monitored and real earth pressure adds noise
to the datasets, slows down the training process, and reduces
the accuracy of the GRU model. To eliminate the effect
of noise and improve the performance of the GRU model,
MAS was implemented. Two types of datasets (smoothed
and unsmoothed) were prepared to investigate the influence
of data smoothing on the prediction accuracy of the trained
model (Section IV B). The moving window width of MAS is
defined as 3 because the range of influence of the disturbed
earth pressure has been proven to be limited to three seg-
ments. The smoothed data xt at time step t equals the average
of the data at time steps t - 2, t – 1, and t . The MAS method
effectively reduced the noise of the dataset, and the standard
deviation (STD) decreased as shown in Table 1.

TABLE 1. Statistics of input and output variables of GRU model.

D. GREY RELATIONAL ANALYSIS
Grey relational analysis (GRA) proposed by Deng [53] has
been useful in determining the complicated interrelationship
between multiple variables. In this research, GRA was used
to measure the correlation or grey relational grade (GRG)
between the output (earth pressure) and the input variables
(operational parameters) of the GRUmodel according to their

development trend over time. The most relevant parameters
were determined to guide the earth pressure regulation by the
DRM. Data were first normalized to avoid different units and
reduce the variability. The normalisation formula is

x̃i(k) =
max(xi)− xi(k)

max(xi)−min(xi)
, (4)

where x̃i(k) is the normalized value of the i-th input variable
at the k-th segment, xi(k) is the original value of the i-th
input variable at the k-th segment, and k = 1, 2, . . . ,N is
the number of segments.

The next step is to calculate the absolute deviation 1oi of
the input variable xi and the output variable xo and determine
the maximum and minimum values of 1oi Then, the grey
relational coefficient ξi (k) is calculated as

ξi(k) =
1min + ξ1max

1oi(k)+ ξ1max
where,1oi(k) = |xo(k)− xi(k)| , ξ = 0.5, (5)

The final step is to calculate the GRG. The GRG denoted
by γi, represents the level of correlation between the output
variable xo and the input variable xi. The formula is

γi =
1
m

m∑
k=1

ξi(k), (6)

The results of GRA and other statistics of the input and
output variables of the smoothed and unsmoothed training
set are shown in Table 1. The thickness of each stratum was
omitted in Table 1.

E. GRU MODELLING
Fig. 6 shows the four-layer architecture of the network con-
sisting of one input layer, one GRU layer, one fully con-
nected layer, and one output layer. The input layer contained
22 nodes consisting of 10 operational parameters, 1 geometric
parameter, 10 geological parameters, and the earth pressure
measurement of the previous segment. The number of nodes
in the hidden layers was determined by the trial and error
method. Twenty nodes in each layer were observed to obtain
the minimum MSE. The output layer had only one node for
earth pressure. The momentum stochastic gradient descent
algorithm was adopted with the hyper-parameter α = 0.9
to accelerate convergence. In addition, the particle swarm
optimization method was implemented to optimize the initial
learning rate to 0.01877, multiplying a scaling index of 0.5
after each 2,000 epochs. Here, multiple trials have found
that an L2 regularisation of 0.001 is the most conducive to
model training. The number of training epochs was set to
8,000, after which no significant decrease inMSE or REMSE
was observed. The time step was set to 5 [48] to contain the
input variables of the current and the previous four segments.
The random normal initialisation method and a batch size
of 100 were adopted according to the results of trial and error.
Each experiment was repeated three times, and the results are
the average of the three experiments for each model.
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FIGURE 6. Architecture of GRU model for earth pressure prediction
(recreated on the concept of [48]).

FIGURE 7. Performance comparison of GRU model using different cost
functions.

IV. GRU MODEL RESULTS AND DISCUSSION
A. IMPROVEMENT BY REMSE COST FUNCTION
Fig. 7 shows the MSE and REMSE values between the target
(yi) and the output (yoi) of the GRU models with different
cost functions (namely, MSE model, REMSE model and
MAEmodel) during the training process. As Fig. 7 illustrates,
regardless the cost function used, the converged MSE was
lower than the REMSE. This is easily proved by the definition

of MSE and REMSE given in (2). MSE denotes the absolute
error, whereas REMSE denotes the relative error. When yoi
approaches yi, the absolute difference becomes much smaller
than the relative difference.

From the perspective of convergence rate, the REMSE
model had a more rapid decline in both MSE and REMSE
than that of the MAE and MSE models. From the perspective
of convergence, theMSEmodel had the largest error assessed
by MSE or REMSE. In contrast, the REMSE model outper-
formed the other models both in the final convergence value
and the stability of convergence. Both the convergedMSE and
REMSE values of the REMSE model in the training dataset
were lower than that of the MAE model, and the REMSE
model exhibited the least fluctuation during the convergence
process. TheMSE values of the different models were similar
for both the training and test datasets as shown in Table 2.
However, the REMSE model obtained the smallest REMSE
value in the training and test datasets, which confirms the
effectiveness of the REMSE cost function. To conclude,
the REMSE model outperformed the other models in conver-
gence speed, error value, and stability calculation. Therefore,
the REMSE cost function was utilized as the cost function for
the best model.

TABLE 2. MSE and REMSE error of different GRU models.

B. IMPROVEMENT BY MAS METHOD
The unsmoothed dataset was first used to train and test the
GRU model. Results reveal that the average absolute rela-
tive error of prediction of the unsmoothed training dataset
was 5.35% and that of the unsmoothed test dataset was
10.64%. Even though the predicted earth pressure presented
a trend consistent with that of the target value, a large devi-
ation between the predicted and target values still existed.
With repeated experiments and particle swarm optimization,
we are confident that the deviation was associated with
dataset noise. The earth pressure was monitored by the stress
gauges installed on the bulkhead. Monitored earth pressure is
usually considered to be equivalent to the real earth pressure
based on static equilibrium. In fact, the soil in a chamber
is always in a disturbed state because of the rotation of
the cutter head and the simultaneous mixture with various
additives. The disturbance breaks the static equilibrium and
introduces excessive noise to the monitored earth pressure.
The noise creates poor dataset quality and accounts for the
poor performance of the trained model.

To eliminate the noise and improve the prediction accuracy,
the MAS method was implemented to smooth the datasets
before training (Section III C). Fig. 8 shows the prediction

VOLUME 8, 2020 64317



M.-Y. Gao et al.: Real-Time Dynamic Earth-Pressure Regulation Model for Shield Tunneling

FIGURE 8. Results of GRU model trained by smoothed training set using (a) smoothed test set and (b) unsmoothed test set.

of smoothed and unsmoothed test datasets of the GRU
model with MAS. The average absolute relative error of
the smoothed test set was 4.98%, and when the origi-
nal unsmoothed test set was imported to the GRU model,
the average absolute relative error of the unsmoothed test set
was reduced from 10.64% to 8.64%.

To examine the correlation of the predicted and the mon-
itored earth pressure, the coefficient of determination (R2)
was used. For a good regression model, the value of R2 is

between 0 and 1, and the closer it is to 1, the better the model.
The formula is

R2 = 1−

m∑
i
(yi − yoi)2

m∑
i
(yi − y)2

, (7)

where, ȳ is the average of the actual value.
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The correlation between the predicted and monitored
earth pressure of GRU models with and without MAS
method is shown in Fig. 9. Most of the scattered points
in Fig. 9 (a) are deviated from the line y = x, which
indicates the overall great difference between the predicted
value and monitored one. By implementing MSA method,
the scattered points in Fig. 9 (b, c) converge towards
y = x. For the unsmoothed test set, R2 increases from
0.49 to 0.63. And R2 for smoothed test is increased to 0.88
significantly.

V. DRM FOR OPERATIONAL PARAMETERS
A. GA STOPPING CRITERIA
The GA stopping criteria should be associated with the reg-
ulation standards of earth pressure in the DRM and consider
not only the desired earth pressure but also the error from the
prediction of the GRU model.

The earth pressure regulation in tunneling construction
commonly refers to the limit state control method based
on Rankine’s earth pressure theory [54]. The earth pressure
of soil in the natural state is called static earth pressure
(P0). During tunneling, the rotation and squashing of the
cutter head disturbs the static equilibrium state of soil and
results in an active (Pa < P0) or passive (Pp > P0)
earth pressure. When the earth pressure in a soil chamber
decreases and causes the soil in front of the chamber to
reach the ultimate equilibrium state, the earth pressure at
the excavation face becomes active. On the contrary, when
the earth pressure in a soil chamber increases and causes the
soil in front of the chamber to reach the ultimate equilib-
rium state, the earth pressure at the excavation face becomes
passive. The calculations for earth pressure in different
states are

P0 = K0σz = K0γ z

Pa = σz tan2(45◦ −
ϕ

2
)− 2c tan(45◦ −

ϕ

2
)

Pp = σz tan2(45◦ −
ϕ

2
)+ 2c tan(45◦ −

ϕ

2
), (8)

where K0 is the coefficient of lateral pressure, σz is the
vertical stress at depth z, γ is the unit weight of the soil,
C is the cohesion of the soil, and ϕ is the internal friction
angle.

In tunneling construction, the earth pressure is expected
to be set within a range [Pa, Pp] as small as possi-
ble to reduce cutter wear and energy consumption. Zizka
and Thewes [55] suggested that the earth pressure should
be set near the static earth pressure with a maximum
deviation of 30 kPa. Considering the prediction error of
the GRU model, the median relative error of −3.50% of
the predicted earth pressure compensates for the output
of the GRU model in the DRM. The following formulas give
the adjusted upper and lower bounds considering the median

FIGURE 9. Correlation of predicted and monitored earth pressure for
models: (a) GRU without MAS (unsmoothed test set), (b) GRU with MAS
(unsmoothed test set), and (c) GRU with MAS (smoothed test set).
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relative error:

|P0i − yi| ≤ 30kPa

e =
yoi − yi
yi

⇒ yi =
yoi

1+ e
⇒ (1+ e)(P0i − 30) ≤ yoi ≤ (1+ e)(P0i + 30),

(9)

where P0i is the static earth pressure for the i-th segment,
yi and yoi are the actual monitored earth pressure and output
of model A for the i-th segment, respectively, and e is the
median prediction error rate.

FIGURE 10. Results of earth pressure regulation by DRM for operational
parameters.

B. DRM PERFORMANCE
The last 50 segments were used to verify the effective-
ness of the DRM for operational parameter adjustments.
According to the results of the GRA in Section III D, four
parameters—SCS, CS, CT, and AR—were selected as the
adjusted parameters because of their higher correlations with
earth pressure. Fig. 10 shows the regulated earth pressure
of the DRM. The predicted earth pressures of the GRU
model for segments A–F exceeded the control range; there-
fore operational parameter regulationwas required. By apply-
ing the DRM for operational parameters, the predicted earth
pressures of segments A–F were successfully adjusted to
the allowed range. In addition, the actual monitored earth
pressure at segments A, B, D, and E exceeded the control
range. This means that four out of six adjusted segments were
successfully predicted to exceed the limit andwere effectively
regulated. However, the regulation of earth pressure relies
heavily on the accuracy of the prediction model. Some seg-
ments exceeded the control range but were not predicted and
correctly regulated.

Fig. 11 shows the corresponding adjustment of opera-
tional parameters for each segment by the DRM. In gen-
eral, the magnitude of rate change of each parameter was

FIGURE 11. Adjustment of specific operational parameters for segments
A-F by DRM during tunneling.

less than 34%, which satisfies the goal of avoiding abrupt
parameter adjustments. Some patterns can also be observed
from the adjustment of different segments. For example, the
adjustment of the parameters for segments A and E had the
same pattern because the geological conditions of A and E
were similar. To increase the earth pressure by more than
10%, the speed of the screw conveyer must decrease by more
than 30%. As a result, less soil is transported out of the
soil chamber, and the cutter-head speed, torque, and advance
rate all increase by different amounts. These three parame-
ters (CS, CT, and AR) are closely related to the excavation
of soil, and a positive increase also means an increase in
the amount of soil in the chamber. Meanwhile, the more the
earth pressure is increased, the greater the magnitude of the
adjustment of these four parameters. For segment C, the earth
pressure was reduced by increasing SCS and decreasing CS,
CT, and AR, which is the opposite of the adjustment for
segments A and E.

The above results show the feasibility of the DRM for the
adjustment of operational parameters to dynamically regulate
earth pressure in real-time. This method gives an opera-
tor practical operational guidance as the adjustment of the
parameters is quantified.

VI. CONCLUSION
This study proposed an intelligent framework to predict and
then automatically regulate earth pressure using the deep
learning technique incorporated with a GA during EPB shield
tunneling. The proposed models were applied to a metro tun-
nel construction field case in Luoyang, China. The following
conclusions were drawn.

(1) The proposed framework integrated an REMSE
cost function with a GRU deep learning technique.
Compared to the GRUmodels based onMSE andMAE
cost functions, the REMSE cost function provides the
best convergence rate, stabilisation calculation, and
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error value. In a GRU, the MAS method reduces the
noise and improves the dataset quality. The smoothed
dataset improved the model performance with R2

increasing by 50% and the average relative error
decreasing by 20%.

(2) Based on the GRU results, the proposed DRM for earth
pressure control regulated the predicted earth pressure
by adjusting the operational parameters. In the DRM,
the suggested earth pressure range was first calculated
using Rankine’s earth pressure theory with consider-
ation of the model prediction error. Then, a GA opti-
mizer was adopted to search for the optimal operational
parameters to output the expected earth pressure with
the least adjustment.

(3) The field observed data frommetro tunnel construction
in Luoyang were used to verify the proposed mod-
els. The results showed that the proposed GRU model
with MAS can predict the earth pressure reasonably
well with the lowest relative error of 4.98% on the
smoothed test set and 8.64%on the unsmoothed test set.
The DRM using GA optimizer automatically regulate
the earth pressure predicted by GRU model to the
suggested range through adjusting four key operation
parameters. The adjustment result is in accordance with
the construction experiences, which confirms the effec-
tiveness of the proposed model.
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