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ABSTRACT In this work, we present and evaluate a three dimensional Convolutional Neural Network
algorithm to accurately detect EEG abnormalities frommulti-channel EEG signals. This research synthesizes
several heterogeneous datasets, constructs a dataset 10 times larger than other datasets of its kind, uses all
channel EEG signals as input, and preprocesses them into data structures that can reflect EEG spatio-temporal
character, constructs and trains a 28-layer deep residual network, automatically extracts high-level features,
and recognizes EEG anomalies. We collect and reorganize several heterogeneous data sets, and convert
two-dimensional signal segments to three-dimensional frames after preprocessing. Thus we build a dataset
of 14049 annotated samples with shape 512∗11∗11∗1, of which 8866 are abnormal. On this dataset, we train
a 28-layer convolutional network with residual blocks which classify EEG segments as normal or abnormal.
Prediction on independent test sets using this trained model achieved an accuracy of 96.67%. The AUC is
99.93% and the RMSE is 0.0032. We compared the results of several methods and found that 3D frame data
structure and deeper CNN model is better. The performance of our model also outperforms other related
researches on EEG classification.

INDEX TERMS Electroencephalogram (EEG), deep learning, 3D CNN, ResNet, EEG classification.

I. INTRODUCTION
Electroencephalogram (EEG) is the most efficient medical
imaging tool to analyze and interpret the characteristics of the
brain disorder which helps the physician to diagnose the level
of consciousness, sleep disorders, epilepsy, tumors, lesions
etc [1]–[2]. EEG is more and more widely used because of
its unique advantages such as non-invasive, low cost, high
time resolution and easy to use. At present, the role of EEG
is greatly underestimated.

In clinical practice, brain wave abnormality detection from
EEG recordings is usually performed by expert technicians
and physicians given the high error rates of computerized

The associate editor coordinating the review of this manuscript and
approving it for publication was Michael Friebe.

interpretation [3]. Direct visual inspection is dull, time-
consuming, inefficient, and lacks unified objective criteria,
which can easily lead to misjudgments and omissions. The
consistency among assessors (IRA) is also low. Automated
examination is difficult because of the complexity of EEG
signal itself, the polymorphism of abnormal discharge wave,
the difference of fluctuation patterns among patients, and the
presence of noise.

The research methods of EEG automatic detection are
mainly divided into two categories.

1. Heuristic manual feature design and traditional machine
learning methods. Conventionally, time or frequency
domain features in EEG were extracted manu-
ally. Meanwhile, classifiers such as Support Vector
Machine (SVM) and K-Nearest Neighbors (KNN)
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were implemented. Researchers must devote numerous
efforts to find and design various features from origin
noisy signals. And the computation of these features is
time consuming [4].

2. Deep learning is applied to automatic feature detection
and hierarchical feature extraction. This method does
not carry out manual feature extraction and selection,
but uses the network to automatically learn features and
then classify and recognize them. Many of these studies
only use single channel EEG signal as input and discard
othermulti-channel signal information [5]. Some studies
incorporate multi-channel signals, but only consider the
time factor and drop the location information between
channels [6]. Some take spatial factors into account,
but adopt shallow network structure, which cannot fully
extract higher-level features [7]–[8]. In addition, large
amounts of data are essential for deep learning, which is
the shortcoming of many studies that only use a single
open data set.

II. DATA
A. SIGNAL DENOISING AND ARTIFACTS ELIMINATION
The EEG signal recorded on the scalp surface is very
weak, usually only tens to hundreds of microvolts (µV).
It is particularly susceptible to external and internal noise,
such as muscle, eye, heart activity, line interference, elec-
trode noise, electromagnetic interference in the environment,
etc [14]–[15]. Therefore, before further analysis, the EEG
signal is first de-noised and de-falsified. In this study, we use
the wavelet transform and hierarchical threshold scheme to
de-artifact and de-noise EEG. The original EEG signal is
decomposed into 8 layers of wavelet coefficients by wavelet
transform, each layer of coefficients is denoised by hierar-
chical threshold (HT), and then the denoised EEG signal is
reconstructed by the threshold coefficient [16]–[17]. It lays a
good foundation for further EEG feature learning, extraction,
and classification.

B. DATA RECONSTUCTION
EEG signal is very weak, which needs millions of times
amplification to display. The core of the EEG instrument
is the amplifier. An amplifier constitutes a channel. Ampli-
fiers can be connected by different lead modes. Reference
leads reflect the absolute potential difference between a sin-
gle recording point and the reference point, while bipolar
leads record the potential difference between two points.
The placement of electrodes is generally referred to as the
10-20 system recommended by the International Electroen-
cephalographic Society or the 10% system recommended
by the American Electroencephalographic Association [21],
as shown in Fig. 1a and b respectively.

We have collected many heterogeneous annotated data sets
[2]–[10]. They have different channels (22∼40), different
sampling frequencies (250∼512), and have different lead
modes (some are reference leads and others are bipolar leads).

FIGURE 1. Name and location of electrode.

TABLE 1. Name revisions referring to 10% system of the American EEG
association.

Considering the distribution of data and the possibility of
conversion, we unified the frequency to 256Hz and the chan-
nel to 22 bipolar leads (See Appendix 1 for sample bipolar
lead data andAppendix 2 for reference leads with 32 channels
as an example). Through interpolation or down sampling, all
EEG data were sampled at a frequency of 256 Hz.

The method of reconstructing reference leads to bipolar
leads is slightly complicated. Firstly, the channel name of the
EEG signal is read from the source file, and the reference
lead name is revised by referring to the 10% system of the
American EEG Association. As shown in Table 1.

Secondly, the mapping relationship between the bipolar
lead channel and the reference lead channel is determined.
The formula is: Xj-Yj= EEG Xj-REF- EEG Yj-REF
The examples of mapping relationship are shown

in Table 2.
This research intends to use a three-dimensional convolu-

tion neural network to process time-series data. The data are
reconstructed and unified into 22∗sampling points, and then
divided into EEG segments with the growth of 2 seconds.
In order to avoid over-fitting, we have made accurate
segmentation without overlapping. With a 2-second time
window and a 2-second sliding step, the EEG segment is
captured by moving along the time direction. Because there
are 256 sampling points per second, the structure of each EEG
segment is like 22 ∗ 512, and contains only one type of EEG
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TABLE 2. Schedule 4 examples of electrode lead names and conversion
relationships.

signal (normal/abnormal). As for the length of time window,
we have done experiments of one second, two seconds, five
seconds, ten seconds and twenty seconds respectively. The
experimental results show that two seconds is a better length
of time window.

After shuffling the signal segments and their labels,
the training set and test set are cut out. Thus we got a dataset
of 14049 annotated samples, of which 8866 are abnormal.
2810 samples were selected as test sets and did not participate
in model training.

C. DATA PREPROCESSING BASELINE SUBTRACTION
The individual differences in EEG signals are very large,
especially in children and adults.We use the subtracting base-
line procedure to eliminate individual differences. Firstly,
the individual baseline is obtained by averaging the first N
sampling points of each EEG record, and then all sampling
points are subtracted from the baseline to obtain a new signal
sequence.

EEG signals have a 2-D shape of channels∗time, which lost
the topological position information of the electrodes. Each
channel has only one or two adjacent electrodes, while the
physical electrodes have 4-8 adjacent electrodes. To include
this information, according to the electrodeposition distribu-
tion of the 10-20 system, the channel sequence is reduced to
the electrodeposition matrix sequence. The mapping relation-
ship is shown in Figure 2.

The number in the lower right corner matrix is the number
of the left channel, indicating the actual position of each
channel. Each sampling point has 22 channels of potential
data, mapped to an 11∗11 matrix (frame) according to the
position relationship so that the two-dimensional channel
sequence can be converted into a three-dimensional frame
sequence (512∗11∗11), as shown in Figure 3.
In this way, signals that come from physically adjacent

channels are still adjacent in the frame, so the spatial infor-
mation can be retained. The two-dimensional original data is
transformed into three-dimensional training input, as shown
in Figure 3.

D. MODEL ARCHITECTURE AND TRAINING
We use a 3-D convolutional neural network to learn the
features of ECG and classify whether it is normal or not.
CNN is well suited to identify simple patterns in data and

FIGURE 2. Mapping relationship between channel number and electrode
position.

FIGURE 3. Converting a two-dimensional signal segment (22∗512) to
three-dimensional frames (512∗11∗11).

then to form more complex patterns at higher levels. The 3D
CNN is very effective when the feature of interest is obtained
from the short (fixed length) fragments of the whole data set
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FIGURE 4. Residual block structure.

TABLE 3. The details of CNN strcture.

and the location of the feature in the fragments are not highly
correlated [18]–[20].

The high-level architecture of the network is shown
in Figure 4. The network receives input (sample number, 512,
11, 11, 1) and outputs category prediction (sample number,
2) for each sample.

The depth of the deep learning network has a great
influence on the final classification and recognition effect.
Tomake the optimization of such a network tractable, we sim-
ilarly employ shortcut connections to those found in the
Residual Network architecture [3]–[19].

The network consists of two types of Residual block:
one is identity block (A), each with two convolution layers,
as shown in Figure 4 (a); and the other is a convolutional
block (B). In the main path of this kind of block, the input is
firstly pooled. The convolution operation with the same coef-
ficients is carried out on the corresponding fast connection
path to achieve the purpose of reducing sampling, as shown
in Figure 4 (b).

Before each convolutional layer, we apply Batch Nor-
malization, rectified linear activation and Dropout, adopting
the pre-activation block design. The whole network consists
of 9 identity blocks and 3 convolutional blocks. Its structure
is shown in Figure 5. Among them ‘‘×3’’ means that the
three residual blocks of ‘‘B-A-A’’ are stacked and repeated
three times. The size of the filters in each layers are shown
in Table 3. The number of filters in each convolution layer
is shown on the right side of Figure 5 (numbers after @),
started at 32, and doubled every four residual blocks. The
last full connection layer is activated by SoftMax, giving the
classification of each EEG time segment.

The network model is implemented by Keras in-depth
learning framework. We train the networks from scratch,
using x_train (11239, 512, 11, 11, 1), y_train(11239, 2),
optimizer=Adam(0.001), loss=‘‘categorical_crossentropy’’,

FIGURE 5. Model Architecture (3D-CNN 28).

FIGURE 6. Model Architecture (2D-CNN 4).

metrics=[‘‘accuracy’’,rmse]. After experimental compari-
son, Batch-size is set to 64 and Epoch is set to 50.

III. EXPERIMENTS AND RESULTS
A. EXPERIMENTS
To verify the validity of the model, we have carried out
several representative experiments asymptotically in terms
of data volume, convolution type, and network depth. All
experiments use the same training set and test set, and only
slightly change the shape and format of the input data. Firstly,
a shallow network structure consisting of only four convo-
lution layers was constructed; network structure is shown
in Figure 6.

Firstly, half of the training data were used to learn and
classify (2D-CNN 4h), and the accuracy rate of the test
set is 89.26%. Secondly, all the data were used to train
(2D-CNN 4). The accuracy was improved by 2 percentage
points. Then, using the same deep network structure men-
tioned above (Figure 4), but only doing two-dimensional con-
volution (2D-CNN 28), the accuracy is improved by nearly
two percentage points, that is, the high-level features of time
dimension are not excavated except for the first level. Finally,
the three-dimensional deepmodel of this paper is used to train
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TABLE 4. Expermintal design, loss and accuracy of each model on test set.

FIGURE 7. The accuracy and loss in training process.

(3D-CNN 28) and mine the spatial and temporal characteris-
tics at the same time.

We split the dataset into a training and validation set. The
training set contains 90% of the data. The parameters, accu-
racy and loss rates of several models are shown in Table 4.

It can be seen that the amount of data has a greater impact
on the training effect, using as much data as possible to train
the network; besides, the effect of deep network is better than
that of shallow model; moreover, three-dimensional convo-
lution is more effective than two-dimensional convolution,
which further improves the accuracy. In our other project,
we also try to use one-dimensional convolution depth network
to detect EEG abnormalities [22], and the results show that
the effect of three-dimensional convolution is still better.

B. TRAINING
The model of this research (3D-CNN 28) is training on a
server equipped with 24G Nvidia M6000 GPU. It takes about
18 hours to train 50 epochs.

We uses the following evaluation indicators to visually
show the performance of the model training process. The
accuracy and loss of the training set and the verification set
are shown in Figure 7 respectively.

Two other indicators RMSE and AUC are also defined in
the training process. We use root mean square error (RMSE)
to measures the deviation between the predicted value and the
true value, as shown in Formula 1.

rmse(y_true, y_pred) =

√√√√1
n

n∑
i=1

(y_pred − y_true)2 (1)

AUC value is the area covered by the ROC curve. The big-
ger the AUC value is, the better the classification effect is.

FIGURE 8. The RMSE and AUCin training process.

TABLE 5. Obfuscation matrix ontest set.

TABLE 6. Model performance on test set.

The callback function is used here, and each epoch is calcu-
lated once. The change process of AUC and RMSE is shown
in Figure 7, the below two curves are RMSE and average
RMSE, and the above two curves are AUC and average AUC.
The accuracy rate of the last epochs is 99.86, the AUC is
99.93 and the variance is reduced to 0.0032.

C. RESULTS
Test sets are independent data that do not participate in model
training. The trained model is used to predict on the test set,
and the tabulated confusion matrix is presented in Table 5.
It can be seen that 98% of abnormal EEG signals are correctly
classified as abnormal, and 96% of normal EEG signals
are correctly classified as normal. The performance of the
proposed model is summarized in Table 6.

IV. ANALYSIS
EEG signal is weak and vulnerable to interference. In this
study, we firstly use a hierarchical threshold scheme to de-
artifact EEG signals and try to eliminate the interference of
other non-EEG signals.

The individual differences in EEG signals are quite large,
especially in children and adults. We use the subtracting
baseline procedure to eliminate individual differences. The
data set used in this study contains both children’s and adults’
EEGs, but we do not distinguish age groups. The results show
that the baseline subtraction (2D-CNN 4h and 2D-CNN 4
in Table 3) achieves the purpose of eliminating individual
differences. The original data with great differences are com-
bined with training models to achieve better classification
accuracy.

Besides, the reconstruction and pre-processing of multiple
heterogeneous data sources not only increases the amount of
training and testing data but also improves the training and
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TABLE 7. Comparison between our work and other related research.

classification effect, as well as the generalization ability and
robustness of the model.

Two-dimensional EEG data structure loses the position
information of electrodes. We transform the two-dimensional
channel sequence (512∗22) into a three-dimensional frame
sequence (512∗11∗11) by restoring mapping. Then we use
3D-CNN to capture the temporal and spatial dynamic
changes of EEG signals simultaneously. The experimental
results show that the three-dimensional convolution is more
effective than two-dimensional and one-dimensional convo-
lution (2D-CNN 28, 3D-CNN 28 in Table 4).

The depth of the neural network has a great influence on
the performance of the model, such as 2D-CNN 4 and 3D-
CNN 28 in Table 4. The effect of the deep network is better
than that of the shallow model. We also compared other
similar studies using three-dimensional convolution neural
network to classify EEG (such as 5-layer 3D CNN [8] 73.1%,
8-layer 3D CNN + 2LSTM [7] 88.9%, 28-layer 3D CNN
[our] 97.9%). The model depth and the final classification
accuracy are shown in Table 7. It can be seen that the recog-
nition and detection of EEG using a deeper CNN is the right
direction. It is also the consensus of the research community
to make the neural network deeper, because the deeper the
layers are, the more high-level features can be learned. In this
paper, the ResNet residual unit is introduced to solve the
problem of deep network degradation and vanishing gradient.

We also compare our model with five different related
approaches. Although these models are based on differ-
ent data sets and have different research fields, they all
attempt to use CNN for EEG classification and recognition.
Table 7 summarizes the classification accuracy of these stud-
ies. Table 6 demonstrates that the 28-layer 3D CNN method
outperforms the others and improves the average accuracy by
nearly 7-15%.

V. CONCLUSION
In this paper, we develop a model to automatically extract
Spatio-temporal features and classify EEG segments as nor-
mal or abnormal from multi-channel signals. Main points
to the performance of the model are 3D frame data struc-
ture, a very deep convolutional network with residual blocks,
three-dimensional conversion of EEG Signals and a relatively
large integrated data sets. We achieved a high average accu-
racy at 88.7%, AUC at 0.9993, and a low RMSE at 0.0032.

Further work includes clinical verification, research on the
interpretability of deep learning model, and explore the basis
of the model to give the diagnosis results.

APPENDIX
Appendix 1. The data example: 22 channel bipolar lead.

Appendix 2. The data example: 32 channel reference lead.
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