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ABSTRACT Community detection is a key aspect for understanding network structures and uncovers
the underlying functions or characteristics of complex systems. A community usually refers to a set of
nodes that are densely connected among themselves, but sparsely connected to the remaining nodes of the
network. Detecting communities has been proved to be a NP-hard problem. Therefore, evolutionary based
optimization approaches can be used to solve it. But a primary challenge for them is the higher computational
complexity when dealing with large scale networks. In this respect, a COMpression based Multi-Objective
Evolutionary Algorithm with Decomposition (Com-MOEA/D) for community detection is proposed where
the network is first compressed to a much more smaller scale by exploring network topologies. After that,
a framework of multi-objective evolutionary algorithm based on decomposition is applied, in which a local
information based genetic operator is proposed to speed up the convergence and improve the accuracy of
the Com-MOEA/D algorithm. Experimental results on both real world and synthetic networks show the
superiority of the proposed method over several state-of-the-art community detection algorithms.

INDEX TERMS Network compression, multi-objective optimization, community detection, social
networks.

I. INTRODUCTION
Many real-world systems such as information, biological,
transportation systems and social networks can be modelled
as networks, which appropriately describe system elements
and the relationships between them. Exploring network topol-
ogy structures helps us to better understand system functions
and characteristics, and community detection has become
an important tool to study the mesoscopic structures of net-
works. Communities usually refer to a set of nodes that
have denser connections inside the set but sparser links out-
side. For example, in friendship networks, a community may
refer to a collection of people that are tightly connected
by common interest; in biological networks, a community
usually represents one functional unit. Therefore, detecting
communities not only has great theoretical importance, but
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also has wide applications in real-world such as recommen-
dation systems [1], link prediction [2], epidemic spreading
modelling on networks [3], detection of terrorist groups from
networks [4] etc.

Recently, a number of work with regard to the design of
efficient community detection algorithms have been devel-
oped. Detailed surveys describing these methods can be
found in [5]–[8].

Community detection has been proved to be a NP-Hard
problem [9], so it cannot be strictly solved by applying
deterministic methods. Therefore, a number of commu-
nity detection algorithms including optimization based and
heuristic-based algorithms are proposed. For optimization
based algorithms, to optimize modularity is a kind of pop-
ular method. Newman [10] first put forward a fast algo-
rithm to efficiently find communities in large scale networks
by joining communities in pairs with the goal of optimiz-
ing modularity function. Inspired by Newman’s idea, the

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 62137

https://orcid.org/0000-0002-0847-5962
https://orcid.org/0000-0002-6163-2314


Z. Liu et al.: Compression-Based MOEA for Community Detection in Social Networks

Clauset et al. [11] proposed a modified version that is called
fast greedy algorithm. Blondel et al. [12] gave a much more
faster community detection algorithm by optimizing local
modularity, which is usually named as Louvain. As to the
heuristicmethods, the label propagation algorithm (LPA) [13]
is a nearly linear time method even though the results are
not always steady. Infomap [14] is also an effective algorithm
that makes use of information theory. There also exist some
algorithms that apply local information of networks, such
as the divide and agglomerate algorithm [15] that employs
nodes’ similarities and the dynamic expansion algorithm that
considers neighbor’s power [16].

As a representative of optimization algorithms, evolution-
ary computation based community detection algorithms have
displayed competitive performance in finding communities.
They have powerful search and optimization abilities inspired
by the process for natural evolution. Such algorithms can be
classified into two categories based on the number of objec-
tives, which are single-objective and multi-objective opti-
mization based community detection algorithms. As to the
single-objective optimization methods, the community detec-
tion problem is only formulated to one objective function, and
then this function is solved by applying iterative evolutionary
computation process. For example, GACD [17] obtained
good community results by optimizing modularity func-
tion Q, while Tang etc. [18] proposed to optimize Surprise.
Meme-net [19] got network partitions by maximizing modu-
larity density. The other category is based on multi-objective
evolutionary algorithms (MOEAs), where more than one
objective is simultaneously optimized. Pizzuti [20] first pro-
posed to detect communities by optimizing two objectives
using evolutionary algorithm, which is called MOGA-Net.
It has been shown that its performance is better than
single-objective EA algorithms. After that, a number of
MOEAs have been proposed. For example, Gong et al. [21]
developed a community detection algorithm driven by the
framework of MOEA based on decomposition (MOEA/
D-Net). Recently, several other decomposition based
MOEAs, named LMOEA [22], MODBSA/D [23] and
RMOEA [24], have been developed. They all adopted the
general framework of decomposition based multi-objective
evolutionary algorithms to detect communities, and experi-
mental results showed their effectiveness and efficiency.

MOEA based community detection algorithms have
advantages in two aspects. At first, the adoption of
multi-objectives means the evaluation of communities from
different views, which can overcome some limitations that are
introduced by single-objective. For example, only optimizing
the modularity function can bring about resolution limit [25].
Besides, the MOEA based algorithms return a set of solu-
tions instead of only one solution. Each solution represents
a tradeoff among multiple objectives and we get a series
of community detection results, thus can choose different
solutions according to different requirements.

The MOEAs have demonstrated their competitive perfor-
mance in coping with the community detection problem,

and in this paper, we also adopt the general framework of
decomposition based MOEA (MOEA/D) and propose a net-
work compression based multi-objective evolutionary algo-
rithm, termed Com-MOEA/D, to further improve the quality
of detected communities as well as the efficiency. Specifi-
cally, the main contributions of the paper are summarized as
follows.
• A network compression method based on node pairs’
similarities is proposed in the preliminary stage. Nodes
with relative higher similarities are pre-partitioned into
a group and then generate each group to be a new node
in the compressed network. Thus the original network is
transformed into a smaller scale one. This is efficient for
large scale networks.

• Based on the compressed network, a multi-objective
evolutionary algorithm based on decomposition is pro-
posed to solve community detection problems. It adopts
the same framework as MOEA/D, and has two contra-
dictory sub-objectives.

• A random walk based population initialization method
is adopted, which helps to generate competitive individ-
uals.

• A local information based mutation strategy is proposed
in evolutionary process, which aims to improve the accu-
racy and accelerate the convergency of the algorithm.

• The effectiveness and efficiency are tested on both syn-
thetic and real world networks. Experimental results
show that the proposed algorithm performs better
than the state-of-the-art MOEAs and some classi-
cal algorithms for community detection in social
networks.

The remainder of this paper is organized as follows.
In section II, the community detection problem is formulated
and related work on MOEAs is introduced. Section III gives
a detailed description of the Com-MOEA/D algorithm. After
that, Section IV describes the efficiency and accuracy of
Com-MOEA/D algorithm comparing with state-of-art meth-
ods. Not only real-world networks but also synthetic networks
are tested. Finally, Section V concludes the paper and dis-
cusses the future work.

II. PROBLEM DEFINITION AND RELATED WORK
In this section, the problem definition for community detec-
tion based on multi-objective optimization methods is first
given, and then the related work onMOEA based community
detection algorithms is presented.

A. PROBLEM DEFINITION
The main task of community detection algorithm is to divide
the whole network into subgraphs requiring that nodes inside
the subgraphs are tightly connected, whereas nodes in differ-
ent subgraphs should be sparsely linked. The nodes in such
subgraphs constitute communities. Therefore, it is natural to
formulate community detection problem as a multi-objective
optimization problem, where the objectives represent the
requirements of communities.
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In this paper, the network is represented as a graph
G(V ,E), where V = {v1, v2, . . . , vN } denotes a finite set of
nodes that models objects and E = V × V (|E| = m) rep-
resents the set of edges describing relations between objects.
A = (Ai,j)N×N is the adjacency matrix ofG, where Ai,j = 1 if
there is a connection between nodes vi and vj, and 0 otherwise.
Communities in network G are usually subgraphs of nodes
densely connected interior, but sparsely linked with others.
Let C = (C1,C2, . . . ,CNc ) be a set of Nc communities
of G. Note that we focus on the non-overlapping commu-
nity detection in undirected and unweighted graphs, i.e.,
Ci ∩ Cj = ∅,∀i, j ∈ {1, 2, . . . ,Nc}.

Since community detection in networks is a NP-hard prob-
lem, approximation algorithms can be used to solve it. One
of them is the multi-objective optimization based algorithms,
which evaluate community qualities from various criteri-
ons through defining multi-objectives and have good perfor-
mance. Here we formulate this problem into a bi-objective
minimization problem, in which two objectives are termed
as Kernel K-Means (KKM) and Ratio Cut (RC). They are
formally defined as follows:

minimize F(C) = (KKM (C),RC(C)) (1)

KKM (C) = 2(N − Nc)−
Nc∑
i=1

L(Ci,Ci)
|Ci|

(2)

RC(C) =
Nc∑
i=1

L(Ci, C̄i)
|Ci|

. (3)

KKM is first proposed by Angelini et al. [26]. From the
definition, we can see that the right hand of KKM represents
the sum of the density of the link of intra-communities, and
RC can be treated as the sum of the density of the link of inter-
communities. What’s more, it has been shown that KKM is a
decreasing function of the number of communities. However,
RC has an opposite trend. That’s to say, these two objectives
are conflict with each other. Minimizing the two objectives
can ensure the requirements for communities. So far, these
two objectives have been used in MOEA based community
detection algorithms such as [27], [28] and achieve relative
good performance. Therefore, we also adopt KKM and RC as
objectives.

B. RELATED WORK ON EVOLUTIONARY BASED
COMMUNITY DETECTION ALGORITHMS
In recent years, solving community detection problem by
applying evolutionary computation based methods have
attracted great interests of researchers. Evolutionary compu-
tation that is inspired by the process of natural evolution has
shown great advantages in coping with complex optimization
problems [29], especially for multi-objective optimization
problems. Detecting communities in networks can also be
defined as an optimization problem. Therefore, a number
of methods adopting evolutionary algorithms to tackle it are
developed. These methods are classified into single objective
and multi-objective methods.

Single objective optimization algorithms optimize only
one objective function. The main differences among them
lie in the representation mechanisms, evaluation functions,
different optimization methods and specific search opera-
tors. Most single-objective evolutionary algorithms detect-
ing communities are based on the genetic algorithm (GA).
GA-net [30] is a genetic algorithm for optimizing a commu-
nity score function, and it adopted the locus-based represen-
tation scheme which well preserved the network topology.
After that, Li et al. [31] proposed a GA based community
detection algorithm with the optimization of modularity
function Q, which applied the label-based representation
mechanism. In [32], a heuristic initialization procedure was
proposed to diversify the population along the whole search
space. Besides, an effective mutation operator was also
designed to improve the efficiency and stability of the algo-
rithm. Gong et al. [33] developed a memetic algorithm with
optimization of modularity density [34], in which it used
the label based representation approach and two-way cross-
over as well as the neighbor-based mutation. In [35], a multi-
agent genetic community detection algorithm was proposed
by optimizing modularity function.

Compared with single-objective optimization algorithms,
MOEAs have also shown their superiorities in community
detection. The first work of formulating community detec-
tion as a multi-objective problem was developed by Pizzuti
[20], termed MOGA-Net, where two objectives, community
score and community fitness, were simultaneously consid-
ered. Its optimization method was the fast non-dominated
sorting genetic algorithm (NSGA-II) [36]. From the detailed
experimental results shown in [37], we can see that
MOGA-Net outperformed the single-objective EA based
community detection algorithms, and got more accurate
community structures. Due to the competitive performance,
a number of MOEA based methods have been developed to
improve the quality of community detection.

Inspired by [20], Shi et al. [38] proposed a multi-objective
community detection (MOCD) algorithm based on PESA-II,
where two-phase strategy was proposed. At first, MOCD
optimized two conflicting objectives (intra-link and inter-
link), then returned a set of Pareto optimal solutions. After
that, solution selection is performed. Experimental results
also showed its effective and efficiency in both real world and
synthetic networks. What’s more, Gong et al. [21] developed
a multi-objective evolutionary algorithm based on decom-
position (MOEA/D-Net) to solve the community detection
problem. It defined two objectives, negative ratio association
(NRA) and ratio cut (RC). Empirical results indicated that
the performance of MOEA/D-Net was not only better than
the single-objective EAs, but also superior over the non-EA
community detection algorithms.

Due to the advantage of MOEA/D-Net, more decompo-
sition based MOEAs for community detection have been
developed. Gong et al. [27] further developed a MOEA com-
munity detection algorithm adopting discrete particle swarm
optimization, named MODPSO. The main novelty of this
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work lied in the use of a specific solution encoding, as well as
the redefinition of the velocity that accelerated the search of
the algorithm. Experimental results also displayed its superi-
ority.More recently, two other decomposition basedMOEAs,
named LMOEA [22] and MODTLBO/D [39], were pro-
posed, where a local information based individual updating
strategy and discrete teaching-learning based optimization
algorithm are applied to get high quality communities.

There also exist other MOEA based community detection
algorithms, which were designed based on different swarm
intelligence algorithms. For example, Chen et al. [40] pro-
posed an algorithm based on ant colony optimization which
applies the associate degree between nodes as a heuristic
function. The HSA-CLS [41] is a modified harmony search
algorithm with a chaotic local search for community detec-
tion. And firefly mechanism is also adopted in community
detection problem, such as [42]. Those bio-inspired mecha-
nisms are well suited for network partition.

The MOEAs mentioned above have demonstrated their
competitiveness in a variety of complex networks, but they
face great challenges when dealing with large scale networks.
This is mainly due to the representation difficulty and large
search spaces. In order to cope with this problem, a net-
work compression based MOEA/D algorithm, termed Com-
MOEA/D is proposed. At first, a compression method is
proposedwhich condensed the original network into a smaller
scale one. Based on the compressed network, we continue to
employ the general framework ofMOEA/D to detect commu-
nities. What’s more, a local information based mutation oper-
ator is designed to accelerate the convergency of population
and acquire good community partitions for complex network.
The proposed network compression stage can reduce the
network scale, therefore suitable for large-scale networks.

III. THE PROPOSED COM-MOEA/D ALGORITHM
In this section, we give a detailed description of the com-
pression based multi-objective evolutionary algorithm for
community detection (Com-MOEA/D). At first, the network
compression process is introduced, which condenses a net-
work into a smaller scale one. After that, how to apply the
general framework of MOEA/D to detect communities in
compressed network is presented, in which a local infor-
mation based mutation operator is proposed to improve the
accuracy and accelerate the convergence of the algorithm.

A. NETWORK COMPRESSION
By exploiting network topologies, it is found that some nodes
are tightly connected, thus forming into inseparable groups.
The tightly connected nodes in such group are always groups
kept in the same community, no matter what kind of commu-
nity detection algorithm is applied. Our compression process
is motivated by this phenomenon. Through examining the
local information of nodes, the groups that contains strongly
connected nodes are detected. Each group can be treated
as a whole in community detection. Therefore, the pro-
posed compression operation first calculates each node pairs’

FIGURE 1. A toy example of a network with 13 nodes and its
corresponding compression result with threshold α = 0.7.

connectivity strength, and then condenses the strongly con-
nected nodes into one node, thus generating a new network,
namely, the compressed network Gc.
As to how to evaluate node pairs’ connectivity strength,

the node similarity indexes are preferred, which calculates to
what extent the two nodes are close to each other. There exist
an abundance of similarity indexes using local or global net-
work topology information, such as Salton [43], Jaccard [44],
Katz [45] etc.

AA index is one of them which is proposed by
Adamic and Adar [46]. It considers the common neighbors’
effect, and the effect is measured by node’s degree. It believes
that the contribution of small degree node is greater than that
of the big one. The definition of AA index is as

Sim(v1, v2) =


∑

v∈CNv1v2

1
lg(kv)

, if Av1,v2 = 1;

0, Otherwise,

(4)

where kv is the degree of node v, and CNv1v2 represents the
common neighbors of node v1 and v2. Liu et al. [15] have
shown the effectiveness of applying AA index in community
detection, here we also adopt this index. Note that only when
two nodes are connected, do we calculate their similarities.

After acquiring similarities, each node chooses to be in
the same community as its most similar neighbor. But if
the similarity value is too small, it makes no sense for node
selection. Therefore, a threshold α is given, which means that
the first α percent of node pairs’s similarities are considered.
Those smaller value are not considered any more.

Algorithm 1 describes the compression process. At first,
each node pairs’ AA similarity values are calculated, and
choose the first α percent of them after eliminating similar-
ity values that equal to zero. After that, each node chooses
to connect with its most similar neighbor. Note that, for
nodes with degree equal to 1, they are directly linked to
its only neighbor. At last, find out the connected compo-
nents and compress each component into one node with
self-loops representing the interior edges of the original
components. Figure 1 shows a toy example of a network
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with 13 nodes and its corresponding compression result with
threshold α = 0.7. After the compression process, node
sets {1, 2, 3, 4}, {5, 6, 7, 8}, {9, 10, 11, 13}, {12}, changes to
corresponding nodes 1′, 2′, 3′ and 4′, with loops representing
interior number of edges.

Algorithm 1 Network_Compression(G, α)
Input: G: original complex network; α: the compression

ratio for edges;
Output: Gc: compressed network;
1: for i = 1 to n do
2: Ni← find node vi’s neighbors;
3: for j = 1 to Ni do
4: CNij ← the common neighbors of nodes vi and
vj;

5: Sim(i, j)←
∑

k∈CNij
1

lgKk
;

6: end for
7: end for
8: αSim ← Choose the first α percent of node pairs’ simi-

larities from Sim;
9: for i = 1 to n do
10: if Ki == 1 then
11: MSNi← Ni;
12: else
13: MSNi← max(Sim(i, ));
14: end if
15: Update adjacency matrix by only retaining

A(i,MSNi) = 1;
16: end for
17: Find out all connected components (CC) of G;
18: Compress each component in CC into one node to rep-

resent the connected components with self-loops repre-
senting interior edges;

B. REPRESENTATION
In this paper, the locus-based adjacency (LAR) encoding
schema is employed to denote community detection solu-
tions. It is first proposed by Yang et al. and now is widely
used in community detection problems. In this representation,
a network partition solution with N nodes is denoted by a
chromosome that has N genes, i.e. a vector with length N .
Each gene corresponds to a specific node of the graph, and its
value indicates the index of one of its neighbors. That’s to say,
if the ith gene takes the value j, then there is an edge between
nodes vi and vj, and these two nodes are actually in the same
community as a result of decoding schema. Figure 2(a) shows
a network with 11 nodes and an individual (i.e. chromosome)
generated for the network. For decoding a solution, a new
graph is generated by connecting each node with the neighbor
indicated by the chromosome. Figure 2(b) shows the graph
of decoded solution. Each connected subgraph indicates a
community that was derived from the individual. Using this
kind of encoding method, the number of communities is
automatically determined, and there is no need to define it

FIGURE 2. (a) Topology of a sample graph with 11 nodes and an example
of the locus-based representation; (b) The decoded graph of the
corresponding individuals.

in advance. This type of representation results in a reduced
search space, and it is well suited for the genetic operators
such as crossover and mutation to produce new individuals.
One more important thing is that the LAR representation will
not destroy the original network’s structure.

C. POPULATION INITIALIZATION
In order to get a population as accurate as possible, a random
walk based method is proposed. Suppose that an agent starts
from an arbitrary node of a network, and then chooses one
adjacent node as the next hop according to transition proba-
bility. If the agent is located in node vi, the transition prob-
ability to neighboring node vj is denoted as pij. Suppose the
adjacency matrix of compressed network is Ac = (wij)n′×n′ ,
then

pij =
wij∑
k wik

, (5)

where n′ is the number of nodes in compressed network.
If we use matrix to represent transition probability, let D =
diag(d1, d2, . . . , dn′ ) and di =

∑
k wik , then the transition

matrix P = (pij)n′×n′ is

P = D−1Ac. (6)

From the point of random walk, if a network has com-
munity structure, and due to the dense interior edges and
sparse exterior ones, a random walker would be easy to visit
nodes in the same community while difficult to reach to the
other communities. That’s to say, if an agent starts from an
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arbitrary node of the network, the probability of staying in the
same community is greater than that of moving out. Based
on the above idea, each gene chooses its value according
to transition probability pij. Therefore, the generated initial
population not only have some accuracy to some extent, but
also show strong diversities.

D. CROSSOVER OPERATOR
Crossover operator is an important operator in the evolution-
ary process, and it’s a global search operator. Two individ-
uals (parents) are input to the crossover operator and one
or two individuals (children) are output. Crossover inherits
good communities from parents and adds new ones. Here we
apply the partial-mapped crossover (PMX) operator. Given
two parental individuals ind1 and ind2, randomly select two
positions of genes, which are pos1 and pos2 respectively.
For each crossover operation, choose a random number rand
from set {1, 2, 3}. rand = 1 means the genes of parent indi-
viduals before pos1 are exchanged, and rand = 2 means the
exchange happens between pos1 and pos2. As to rand = 3,
the genes after pos2 are exchanged. Figure 3 shows an exam-
ple of crossover operator when rand = 2. That means the
exchange part is between position 3 and 6. This operator
has been widely used and efficient for producing random
offsprings.

FIGURE 3. An example of the partial-mapped crossover operator when
rand = 2.

E. MUTATION OPERATOR
Mutation is another well-known genetic operator, which is
generally applied to the population with the aim of improving
convergence speed. Guimera and Amaral [47] indicated that
the division, mergence of communities and node’s movement
between communities are effective ways of generating new
candidate solutions. In evolutionary algorithms, the crossover
operator is usually treated as the macro operator for indi-
viduals, i.e. the operation for communities. And the muta-
tion operator is used to do micro changes for individuals,
i.e. the operation for single node. Here we propose a local

information based mutation operator to generate offsprings
with effectiveness and efficiency.

To guarantee the generation of a safe-mutated child, the tra-
ditional mutation operator randomly changes the value of a
gene only to that of one of its neighboring nodes. However,
this operation can induce the division or recombination of
founded communities instead of moving only one node, thus
results in the inefficiency of algorithm. Figure 4 describes
such a situation. The example network consists of 11 nodes,
and according to the LAR encoding, it is decoded into
two communities C = {{1, 2, 3, 4, 5, 6}, {7, 8, 9, 10, 11}}.
If node 7 is chosen to be mutated, then it cuts off the connec-
tion with node 9, and chooses to link with node 6. Therefore,
the original two communities join into one. The movement
for only one node induces two communities’ change. But if
node 6 is chosen to be mutated, then it disconnected with
node 2 and links to node 7. Therefore, the new former com-
munities are C = {{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10, 11}}. Such
mutation only induces a movement for only one node.

FIGURE 4. (a) Topology of a sample graph with 11 nodes and an example
of the locus-based representation; (b) The community detection results
induced by the mutation of node 7; (c) The results induced by mutation of
node 6.

To ensure that the mutation operator only brings about
micro changes and improve the accuracy of the algorithm,

62142 VOLUME 8, 2020



Z. Liu et al.: Compression-Based MOEA for Community Detection in Social Networks

a local information based mutation operator is proposed.
That’s to say, we define that the mutation is taken place on the
special node, which we call it boundary independent node.

Boundary independent node. If a node vi is called bound-
ary independent node, it must satisfy the following two
conditions:
1) node vi has connections with other nodes in different

communities;
2) for the LAR representation of individual ind , each gene

doesn’t equal to i, except for the ith gene.
In the network example in Figure 4, how to find the bound-

ary independent nodes?At first, we need to find out nodes that
satisfy the condition 1), and nodes 5, 6, 7 and 8 are the desired
nodes. After that, check them whether they satisfy the second
condition. Then we find out that nodes 6 and 8 are boundary
independent nodes, since for nodes 5 and 7, the mutation
for them would induce more than one nodes’ movement.
We can also find nodes that satisfy condition 2), then check
whether they satisfy the first condition. The mutation process
is shown in algorithm 2. All the boundary independent nodes
performmutation operations. For each one of them, choose to
be in the same community as the node which would induce
the greatest modularity increase Qi. Applying this proposed
operator generates effective solutions.

Algorithm 2 Local_Inf_Mutation(Gc, pi)
Input: pi: an individual; Gc: compressed network;
Output: p′i: an individual after mutation;
1: for i = 1 to nc do
2: if i is boundary independent node then
3: Ni_labels← get the community labels of node i

and its neighbors;
4: max ←−∞;
5: for each r ∈ Ni_labels do
6: Qi← when node i’s label changes to r ;
7: if Qi > max then
8: max ← Qi;
9: labeli← r ;
10: end if
11: end for
12: end if
13: end for
14: p′i← updated individual pi;

F. GENERAL FRAMEWORK OF COM-MOEA/D
The proposed algorithm adopts a similar framework of
MOEA/D, which is presented in Algorithm 3. Let pop
be the population size, and the weight vectors λ =

{λ1,λ2, . . . ,λpop} are a set of weight vectors uniformly dis-
tributed on λ1i +λ

2
i = 1, where λi = 〈λ1i , λ

2
i 〉, λ

1
i , λ

2
i ∈ [0, 1]

and 1 ≤ i ≤ pop. The weight vectors λi are applied to decom-
pose the multi-objective community detection problem into
pop single-objective subproblems according to the following

Algorithm 3 General Framework of Com-MOEA/D
Input: G: original complex network; α: the compression

ratio for edges; maxgen: maximum number of genera-
tions; λ: weight vectors

{
λ1, λ2, . . . , λpop

}
; ns: the size

of neighborhood; pc: crossover probability; P: the popu-
lation

{
p1, p2, . . . , ppop

}
with size pop;

Output: A set of detected communities;
1: GC ← Network_Compression(G, α);
2: P← Pop_Init(Gc, pop);
3: Initialize reference point z∗;
4: for i = 1 to pop do
5: Ni← find the ns individuals from P with the nearest

Euclidean distance to the weight vector λi;
6: end for
7: for i = 1 to maxgen do
8: for j = 1 to pop do
9: Randomly select one individual prand from Nj;
10: if rand_number < pc then
11: Operate crossover operator on pj and prand ,

and generate two children chd1 and chd2 by crossover
operator;

12: end if
13: chd3← Local_Inf_Mutation(Gc,chd1)
14: chd4← Local_Inf_Mutation(Gc,chd2)
15: Update the reference point z∗;
16: for k = 1 to length(child) do
17: for each index m ∈ NS(i) do
18: if gte(chdk |λ, z∗) < gte(chdm|λ, z∗) then
19: pm← chdk ;
20: end if
21: end for
22: end for
23: Update individuals in Nj;
24: end for
25: end for
26: Pfinal ←MaxModularity(Gc,P);
27: Decode Pfinal , and return communities;

formula:

minimize gte(x|λi, z∗) = max2j=1{λ
j
i · (|Fj(x)− z

∗
|)} (7)

where z∗ = 〈z∗1, z
∗

2〉 is the reference point in which each
z∗j , 1 ≤ j ≤ 2, is the minimal value on the jth objective in
population.

The proposed Com-MOEA/D algorithm consists of the
following three steps. At the very beginning, the original
network is compressed by exploiting network topology in
Algorithm 1. At the second step, a population with pop
individuals is initialized according to the random walk based
scheme and locus-based adjacency encoding method, which
are effective in evolutionary algorithm based community
detection problems. Meanwhile, the reference point z∗ is
initialized by using the best values of KKM and RC in the
initial population. For each weight vector λi, 1 ≤ i ≤ pop,
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the Euclidean distances for all individuals in population P
to weight vector λi are calculated and ns individuals in P
with the nearest Euclidean distances to λi are regarded as
the neighbors of λi, denoted as Ni, where ns is a predefined
parameter.

At the last step, for each individual pj(1 ≤ j ≤ pop) in
population P, randomly selects one individual ind from Nj.
Apply these two individuals to generate the children chd
by the defined crossover and the local information based
mutation operators. If the Tchebycheff value of chd is better
than any individual ind ′ inNj, then replaces ind ′ with chd and
updates reference point z∗. The COM-MOEA/D keeps going
until the maximum number of generations is reached.

The time complexity of the Com-MOEA/D algorithm is
mainly composed of two stages. The first stage is to compress
networks, and needs atmostO(dmax×m) operations for calcu-
lating similarities andO(αm) operations for choosing the first
α percent edges. The following is the multi-objective opti-
mization stage, in which the population initialization requires
O(pop×n′) operations. After that, choosing ns nearest neigh-
bors needs O(pop2) operations. At each iteration, we need
to perform the crossover and mutation operator pop times at
the worst case. Each crossover and mutation need O(1) and
O(n′) at worst. What’s more, calculating the modularity cost
O(m) operations. According to the operational rules of the
symbolO, the worst case’s time complexity can be simplified
as O(maxgen× pop× m).

IV. EXPERIMENTAL RESULTS AND ANALYSIS
In this section, to show the effectiveness and efficiency of the
proposed algorithm, a series of experiments are performed.
We compare our Com-MOEA/D algorithm with three state-
of-the-art evolutionary based algorithms and three classical
but effective ones.We first introduce the experimental design,
which includes the comparison algorithms, evaluation met-
rics and data sets. And then the experimental results on both
real-world networks and synthetic networks are analysed in
detail. Finally, the parameter sensitivity is discussed.

A. EXPERIMENTAL DESIGN
1) COMPARISON ALGORITHMS
In the experiments, the comparison algorithms are among
the Com-MOEA/D and popular EA based multi-objective
optimization algorithms, as well as classical ones. They
are MOGA-Net [20], MODPSO [27], MOEA/D-Net [21],
and three representative algorithms including Louvain [12],
LPA [13] and LeadingEigen [48].

The compared four EA based community detection algo-
rithms all belong to multi-objective optimization. The param-
eters of them are set according to recommendation in each
reference, which are shown in table 1. MOGA-Net is an
efficient community detection algorithm that optimizes the
community score and community fitness and adopts the
NSGA-II to solve the optimization problem. MOEA/D-Net
is a decomposition based multi-objective evolutionary

TABLE 1. The parameter settings for MOEA based comparison algorithms.

algorithm with optimization of two conflicting objectives,
termed as Negative Ratio Association (NRA) and Ratio
Cut (RC). MODPSO is a multi-objective algorithm based on
PSO to optimize KKM and RC . As to the three other classical
algorithms, Louvain optimizes the modularity function Q
with high accuracy, LPA is a very fast algorithm that update
labels according to neighbors’ status, and it has near linear
complexity. LeadingEigen algorithm adopts networks eigen-
vector to detect communities that are very efficient especially
for real world networks.

2) EVALUATION MEASURES
To evaluate the performance of algorithms, two metrics are
adopted to report comparison results. They are modularity
(Q) [10] and Normalized Mutual Information (NMI ) [49].
Modularity Q is a metric that provides a numerical value that
represents the quality of community detection results. It is
defined in Equation 8.

Q =
Nc∑
s=1

[
ls
m
−

(
ds
2m

)2
]

(8)

where Nc is the number of detected communities, ls is the
number of interior edges in community Cs, and ds is the sum
of nodes’ degrees in Cs.
NMI is another metric that based on the Shannon entropy

and shows the extent of similarity between two communities
X and Y . Note that, in this paper, the partition X is referred to
the detected communities and Y represents the ground-truth
communities. NMI is computed as:

NMI (X ,Y ) =
2× I (X ,Y )
H (X )+ H (Y )

(9)

where I (X ,Y ) is the mutual information which is defined as:

I (X ,Y ) =
∑
ij

Pijlog(Pij/(Pi+P+j)) (10)

and H (X ) is the entropy function that is:

H (X ) = −
∑
i

Pi+log(Pi+) (11)

where Pi+ =
∑

j Pij,P+j =
∑

i Pij, and Pij =
nij
N is the

probability for a randomly drawn node belonging simultane-
ously to the ith and jth community, nij is intersection of two
communities. Under this normalization, NMI takes its value
in the range of [0, 1].
For networks without ground-truth, the modularity value is

used to evaluate the community detection results. However,
for those having ground-truth communities, such as synthetic
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LFR networks, both the NMI and Q are adopted as the eval-
uation metrics. No matter for NMI or Q, the larger value
signifies the better detection results.

3) DATASETS
The experiments are not only taken on the real-world
networks, but also on synthetic networks. For real-world
networks, the three well-known, frequently-used
real-world networks, including Karate, Dolphins, American
college football clubs, are tested in our experiments. Besides,
the networks such as books about US politics, Email, Net-
work scientists cooperation network etc are also adopted
for experimentation. The description of datasets are shown
in Table 2.

TABLE 2. The description of real-world networks.

For synthetic datasets, we use the LFR (Lancichinetti-
Fortunato-Radicchi) networks [57], which are the most fre-
quently used benchmarks in testing community detection
algorithms. That’s because LFR networks can simulate some
characteristics of real-world networks. For example, the dis-
tribution of nodes’ degrees and community sizes are power
laws with tunable exponents. The detailed parameters of LFR
benchmark are displayed in table 3. For each tested network,
20 independent runs are performed for each algorithm, and
themean value is attained. As to the comparison, the solutions
with the largest Q or NMI are reported in the results.

TABLE 3. Parameters for the LFR benchmark.

B. EXPERIMENTS ON REAL-WORLD NETWORKS
In this section, the proposed Com-MOEA/D algorithm and
six other compared algorithms are tested on eleven real-world

networks with scales from tens to ten thousands. Those
networks can be divided into two categories, according to
whether the network has ground truth or not. The first five
networks in table 2 belong to the category that have ground
truth partitions, so both NMI and Q are computed. For others
which do not have the ground truth, only Q is considered.
The compression ratio is set to 0.4 for all tested networks,
which can almost compressed the original network scale into
a half. Table 4 and 5 display the community detection results.
Note that, here we only show the best modularity value Q
and corresponding detected community numbers Nc for each
network and each algorithm.

From table 4 and 5, we see that the proposed Com-
MOEA/D outperforms other algorithms for six of eleven
networks, not only for modularity value Q, but also for NMI.
These results demonstrate the effectiveness of the proposed
algorithm on the real-world networks. The competitive results
are mainly due to the mechanism of network compression
at the very beginning, which combine the tightly connected
nodes into one inseparable group. Figure 5 shows the com-
parison of NMI values after network compression and the
final ones on the real-world networks with known ground
truth when compression ratio equals to 0.4. As can be seen
from figure 5, all the NMI values achieved by the compressed
network are more than a half of the final results. That’s to say,
the compression process not only reduces the network scale
but also help us get more accurate preliminary partitions.

FIGURE 5. The comparison of NMI values after network compression and
the final ones.

From the experiments, we know that Zachary’s karate club
network is a most often used empirical network in commu-
nity detection, and it was first compiled by Zachary when
observing the relationships among karate members in a US
university. The network consists of 34 nodes and 78 edges,
and is divided into two communities. Although our algorithm
only gets a moderate modularity value, but as to the NMI
value, our method together with four EA based algorithms
and LPA can all get the communities the same as the ground
truth. Since the EA based algorithms can get a series of
solutions, we can choose one according to different criterions.
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TABLE 4. Comparisons of modularity values of Com-MOEA/D algorithm on real-world networks with six other methods.

TABLE 5. Comparisons of NMI values of Com-MOEA/D algorithm on real-world networks with six other methods.

For Louvain and LeadingEigen algorithms, although they get
the higher modularity value, theNMI values are not desirable.
The dolphin network is formed by the frequency of the

bottlenose dolphins playing together. The Com-MOEA/D
can divide it into 4 communities when choosing the best
modularity value. However, when choosing the biggest NMI
value, our algorithm can also get the same partitions as the
ground truth. TheAmerican college football network displays
115 football teams’ matches during the fall season in 2000,
and it actually has 12 groups. Our Com-MOEA/D can get the
modularity value that are almost the same as other algorithms,
but as toNMI, our algorithm outperforms others. The political
books data was compiled by Kreb, and it can be divided into 3
groups according to the books’ attitudes. Ourmethod together
with others can get relative good results, but when it comes
to NMI, all the algorithms do not perform so good. The email
network describes the email interchanges among members of
a university. Louvain algorithm gets the best result, but LPA
can hardly detect the community structures. The netscientist
network’s community detection results have little difference.

The Co-authors network is a subset of the cooperators for
papers in management science and engineering in China from
the year 2000 to 2016. It is an ego-network, and actually
has 11 groups. From table 4 and 5, we can see that our
method outperforms others. The GR_QC, GC_Hep_TH and
GC_Hep_PH are authors’ collaboration network compiled
by Leskovec etc. The community detection results show that
our algorithm performs as good as Louvain. That’s maybe
due to the fact that coauthor networks has some mode of
coauthorship, and such relation can be detected easily at the

compression stage. Other algorithms get much more numbers
of communities.

C. EXPERIMENTS ON SYNTHETIC NETWORKS
The synthetic networks are the LFR benchmarks. Those
networks have power-law distributions not only for node
degree but also for the community size, which are similar
to real-world networks. The parameters setting are shown in
table 3. For each set of parameters, 20 networks are gen-
erated and the average community detection results which
are NMI values are shown in figure 6. The uniform trends
of the four panels show the the NMI values decrease as the
mixing parameter µ increases. This is due to the fact that
greater µ means the more ambiguous community structure,
therefore, it’s more difficult to detect accurate communities
as µ increases.

Panel 6(a) and 6(b) show the results for LFR networks with
the same communities distribution that τ2 = 1 but different
network sizes respectively. We can see that our proposed
Com-MOEA/D and Louvain are the first two algorithms in
terms of NMI values, and Com-MOEA/D becomes better
than Louvain when the network size exceeds 1000 except for
mu = 0.6. MODPSO also performs relatively good, better
than the LPA, MOGA-net etc. As to LPA and MOEA/D-net,
the NMI decreases when µ > 0.5, which means as the
community structure becomes more and more ambiguous,
these two algorithms’ performances rapidly decreases. As to
MOGA-net and LeadEigen, they do not perform well on
synthetic networks.
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FIGURE 6. Comparisons of the NMI values among our proposed algorithm and six other algorithms based on LFR network.

Panel 6(b) and show the results of increasing community
size distribution parameter τ2 from 1 to 2. In panel 6(c),
almost all the NMIs are just a little difference than those in
panel 6(b). This means the dissimilarities in community sizes
do not affect the accuracy of the algorithm and the blurred
modularity structure.

With the size increasing of the network, the results for
network scale with N = 10000 are shown in panel 6(d).
We can see that Louvain and Com-MOEA/D still performs
well. LPA is still not good for finding communities when
structures are blur, and LeadingEigen and MOGA-net are not
so good for synthetic networks.

D. THE COMPRESSION RATIO’S EFFECT
In the compression process, the first α percent of non-zero
similarities are chosen. The reduced scale (RS) increases as
the compression ratio rises, which is displayed in Figure 7.
The bigger value of the reduced scale signifies the smaller
scale of the compressed network. But the smaller network
doesn’t mean the better final result. Figure 8 shows the NMI
values with different compression ratios, and we see that

FIGURE 7. The comparison of reduced scales (RS) as compression ratio
increases.

when compression ratio equals to 0.4 or 0.5, can we get the
best final results. When α = 1, the final community detection
results are always not the best. This maybe due to the fact that
all similarities are considered in this circumstance, even when

VOLUME 8, 2020 62147



Z. Liu et al.: Compression-Based MOEA for Community Detection in Social Networks

FIGURE 8. The comparison of NMI values after network compression and
the final ones when N = 1000.

the similarities values are very small, which could induce
false selections. Therefore, we choose to set the compression
ratio to be 0.4 in all the experiments.

E. SIMILARITY INDEXES SELECTION
The similarity index plays an important role in the compress-
ing stage. How to select an effective and efficient index is
crucial to the proposed method. By far, an abundance of
similarity indexes using local information are proposed and
table 6 displayed 6 well-known indexes. In our experiment,
we limit all the indexes to have values bigger than 0 onlywhen
two nodes are connected. To determine which index is most
suitable for our algorithm, we take the AA, CN (Common
neighbors) indexes as well as thoses shown in table 6 into our
algorithm on LFR network with scale N = 1000. The results
are shown in Figure 9.

TABLE 6. Some similarity indexes.

FIGURE 9. The comparison of different similarity indexes.

It is clear to see that AA index outperforms others for
any mixing parameter µ. Then AA index is our first choice.
What’s more, CN index also displays relative good perfor-
mance, but when the community structure becomes more
ambiguous, i.e. µ > 0.5, its NMI value decreases sharply
to 0.4. As to others, they do not exceed AA in our Com-
MOEA/D algorithm. Therefore, we choose AA index to eval-
uate nodes’ similarities in the compression stage.

V. CONCLUSIONS AND FUTURE WORK
In this paper, we have proposed a compression based
Multi-Objective Evolutionary Algorithm with Decomposi-
tion (Com-MOEA/D) for community detection in social net-
works. In Com-MOEA/D, the network is first compressed
to a much more smaller scale by exploring network topolo-
gies. After that, a framework of multi-objective evolutionary
algorithm based on decomposition is applied, in which a
local information based generic operator is proposed to speed
up the convergence and improve the accuracy of the Com-
MOEA/D algorithm. Experimental results on both real-world
and synthetic networks have shown the superiority of the
proposed Com-MOEA/D algorithm.

There still exist some work that deserve to be further
investigated. At first, the proposed Com-MOEA/D algo-
rithm is for undirected and unweighted graph, how to
apply this framework on signed and dynamic network still
needs to be done. What’s more, the proposed algorithm
only considers two objectives optimization, what about
many-objective optimization for community detection prob-
lem? Finally, we would like to consider how to apply the
proposed community detection algorithm into practice, such
as recommendation systems etc.
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