
Received January 30, 2020, accepted March 15, 2020, date of publication March 31, 2020, date of current version April 14, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984600

Systematic Partitioning and Labeling XML
Subtrees for Efficient Processing of
XML Queries in IoT Environments
FARAG AZZEDIN , SALAHADIN MOHAMMED, MUSTAFA GHALEB ,
JAWEED YAZDANI, AND ADEL AHMED
Information and Computer Science Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia

Corresponding author: Farag Azzedin (fazzedin@kfupm.edu.sa)

This work was supported by the King Abdulaziz City for Science and Technology (KACST) through the Science and Technology Unit at
King Fahd University of Petroleum and Minerals (KFUPM), as part of the National Science, Technology and Innovation Plan, under
Grant 11-INF1657-04.

ABSTRACT With the advent of IoT, storing, indexing and querying XML data efficiently is critical.
To minimize the cost of querying XML data, researchers have proposed many indexing techniques. Nearly
all the techniques, partition the XML data into a number of data-streams. To evaluate a query, existing
twig pattern matching algorithms process a subset of the data-streams simultaneously. Processing many
data-streams simultaneously results in some or all of the following four problems, namely, the accessing of
many data nodes which don’t appear in the final solution of a given query, the generation of duplicate results,
the generation of huge number of intermediate results, and the cost of merging the generated intermediate
results. To the best of our knowledge, all the existing twig pattern matching algorithms suffer from some
or all of the above mentioned problems. This paper proposes a new twig pattern matching algorithm called
MatchQTP which processes one data-stream at a time and avoids all the above mentioned four problems. It
also proposes a new indexing technique called RLP-Index and a newXML node labeling scheme called RLP-
Scheme, both of which are used by MatchQTP. Unlike the existing indexing techniques, RLP-Index stores
a subset of the data nodes. The rest of the data nodes can be generated efficiently. This minimizes storage
space utilization and query processing time and makes RLP-Index the first of its kind. Many experiments
were conducted to study the performance of MatchQTP. The results show that MatchQTP is very efficient
and highly scalable. It was also compared with four algorithms, three of which are used frequently in the
literature to compare the performance of new algorithms and the fourth algorithm is the state-of-the-art
algorithm. MatchQTP significantly and consistently outperformed all of them.

INDEX TERMS IoT, XML indexing, twig queries, XML query processing, tree-pattern matching, node
labeling.

I. INTRODUCTION
With the advent of Internet of Things (IoT), more and more
heterogeneous devices generate and transmit data in certain
formats defined by manufactures or alliances [1], [2]. The
vision of IoT results in connecting various smart devices.
As stated in [2]–[4], the number of interconnected devices
is expected to reach 20 billion by 2020. Therefore, it is
important to efficiently process the huge data generated from
heterogeneous devices. These devices are the data sources

The associate editor coordinating the review of this manuscript and

approving it for publication was Fabrizio Marozzo .

utilized by smart applications. The value of these IoT smart
applications comes from the quality and the efficiency of
the data generated by these devices. Data efficiency is crit-
ical and it presents a challenge for IoT applications due to
the massive number of heterogeneous devices with specific
characteristics. Furthermore, since the data is in different
formats, it is critical to have a common data specification for
message exchange. For the time being, there are two major
languages for data exchange, namely eXtensible Markup
Language (XML) and JavaScript Object Notation (JSON)
[1], [2]. XML has more complete definition on data for-
mat. Furthermore, the Web Ontology Language (OWL) is

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61817

https://orcid.org/0000-0001-9712-439X
https://orcid.org/0000-0003-2842-6532
https://orcid.org/0000-0001-7887-1314

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

a Semantic Web language developed to represent complex
and yet rich knowledge about things and their relations.
As such, the OWL format is the most used technique to
describe sensor-generated data due to its ability to simplify
both reasoning and semantic interoperability among smart
devices [1], [2].

Unfortunately, the huge volume of XML data generated
by IoT devices, makes the efficient storage and process-
ing of XML data a necessity. As a result, a number of
multi-model and native XML database management systems
have emerged [5]. Furthermore, exchanging large datasets
using a verbose language such as XML is not efficient [6].
In addition, IoT-generated data faces the issues of interoper-
ability and reusability [7].

As we know that an XML dataset, denoted as X, can
be modeled as a tree, XML-tree, Figure 1a. A node in X
(data-node) represents an element or an attribute or a value.
An edge in X represents a parent-child relationship between
two nodes.

XML queries are typically written in XPath [8] or
XQuery [9] and they can also be represented as a small
tree (a twig) pattern. A node in a twig pattern (Qnode) rep-
resents an element name or an attribute name or a value.
An edge in a twig pattern represents a parent-child (PC)
or an ancestor-descendant (AD) relationship between two
Qnodes. Figure 1b is an example of a twig pattern. The single
lined edges are PC edges whereas the double lined edges are
AD edges.

The central issue in XML query processing is finding all
the matches of a given query twig pattern (QTP) in X; thus,
many researchers have proposed a number of twig pattern
matching algorithms (TPMAs) [10]–[12]. The cost of pro-
cessing a QTP is the sum of the I/O and the CPU costs
incurred to answer the QTP. Since the I/O cost of a QTP is
much higher than its CPU cost, the overall cost of a QTP is
approximated by its I/O cost.

To minimize the I/O cost of a QTP, many researchers
have proposed a number of indexing techniques [10]–[12].
The techniques partition the data-nodes into a number of
data-streams. To identify the structural relationship between
data-nodes of different streams, many node-labeling schemes
have been proposed [13], [14].

Existing TPMAs access a subset of the node-streams
to answer a QTP. Generally, TPMAs who access fewer
data-nodes incur less I/O cost and thus they are more effi-
cient. Accessing multiple node-streams simultaneously, dur-
ing QTP processing, generates duplicates and intermediate
results. Duplicate removal and the merging of intermediate
results are the two major components of the CPU cost of
a QTP, and thus they must be minimized or avoided.

In this work we are proposing a new TPMA, a new index-
ing technique, and a new node-labeling scheme. Compared
to the existing indexing techniques, the proposed technique
partitions data-nodes into the highest number of data-streams.
During QTP evaluation, the proposed TPMA reads only the
data-streams that contain the output nodes, which reduces

the I/O cost of the QTP significantly. Nearly all the existing
TPMAs process many data-streams at a time; and as a result,
they match data-nodes in different data-streams, generate
duplicates and intermediate results. The proposed TPMA
access only one data-stream at a time, and thus, it doesn’t
match data-nodes in different data-streams, and it doesn’t
generate duplicates or intermediate results. The main contri-
butions of the proposed work are:
• A new node labeling scheme, called RLP-Scheme. The
scheme is similar to the Dewey [15], but each node label
contains more information than that of Dewey.

• A new indexing technique called RLP-Index, which
partitions the data-nodes into the highest number of
data-streams when compared to the existing approaches.
In this technique, only a subset of the data-nodes are
labeled and stored, the others can be efficiently com-
puted. This is the first storage technique which uses this
approach.

• A new TPMA that never accesses a data-node that is
not part of the final solution, unless, the QTP has value
predicates. It is the first TPMA that processes only one
data-stream at a time to answer a QTP. To the best of our
knowledge, it is also the first TPMA to avoid duplicate
removal and the matching of data-nodes across multiple
data-streams.

• Experimental results and performance analysis of the
proposed TPMA.

The rest of the paper is organized as follows. Literature
review is discussed in Section 2. The importance of XMLdata
in IoT is detailed in Section 3. The proposed node labeling
scheme and the proposed storage organization are outlined
in sections 4 and 5 respectively. Section 6 presents the pro-
posed TPMAwhile the performance analysis of the proposed
TPMA is discussed in Section 7. Section 8 concludes the
paper.

II. RELATED WORK
To reduce the cost of a QTP, TPMAs use indexing tech-
niques which partition the XML data-nodes into a number of
data-streams. To preserve the structural relationships between
data-nodes in different streams, nodes are labeled using one
of the many node-labeling schemes. In this section, we will
briefly review the main approaches of storage techniques,
node-labeling schemes, and TPMAs.

A. MAIN XML DATA STORAGE APPROACHES
The main XML data storage approaches are text file
approach, object-oriented approach, relational approach and
native approach. Out of these approaches, the native approach
is the most efficient and that is why the proposed algorithm
is based on this approach [12].

The main indexing techniques in the native approach can
be classified as tag-based, tag-level-based, ancestor-based,
and ancestor-descendant-based.

In the tag-based approach, nodes having the same
name (tag) are put into the same data-stream [16], [17].

61818 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

FIGURE 1. A sample XML-tree and a sample QTP.

For example, in Figure 1a, all the four B nodes are stored
in one data-stream and all the six C nodes are stored in
another data-stream. Nodes in a stream are sorted in ascend-
ing order of their label. Node labeling is discussed in the next
subsection.

In the tag-level-based approach, nodes having the same
name and level are stored in the same data-stream [18], [19].
For example, in Figure 1a, the three B nodes at Level 1 are
stored in one data-stream whereas the B node at level 3 is
stored in a different data-stream.

In the ancestor-based approach, nodes having the same
name and the same ancestors names are stored in the same
data-stream, [20]–[24]. For example, the six C nodes of 1a
are stored in three different data-streams. The four C nodes
whose ancestors are A and B are stored in the same data-
stream, the one C node whose ancestors are A and C are
stored in another data-stream, and the one C node whose
ancestor is only A is stored in a third data-stream.

In the ancestor-descendant-based approach, nodes with
similar ancestors and descendants are stored in the same
data-stream [25], [26]. For example, the first two B nodes are
stored in the same data-stream and each of the other two B
nodes is stored in a separate data-stream.

The proposed storage approach is different from the above
mentioned approaches. In this approach, two nodes are stored
in the same data-stream if they have the same ancestors
and descendants, and their ancestors have the same descen-
dants. Also, in this approach, nodes are labeled using the
proposed new node labeling scheme RLP-Scheme, and the
nodes with the same label are stored in the same data-
stream. This approach creates more data-streams than the
other approaches. In general, TPMAs that use storage tech-
niques that partition nodes in more streams are more efficient.

B. XML NODE-LABELING APPROACHES
The above mentioned indexing approaches partition
data-nodes into a number of data-streams. To preserve the
structural relationships of data-nodes in different streams,
each node is systematically labeled. XML node labeling
schemes can be classified into three approaches, namely,
range-labeling, prefix-labeling, and multiplicative-labeling.

In range-labeling, each data-node n is labeled three num-
bers, namely, n.start , n.end , and n.level, where n.start <
n.end [27]–[29]. If node p is a parent of node c, then p.start <
c.start , p.end > c.end , p.level = c.level − 1. The level of
the root node is 0. If nodes s1 and s2 are siblings, and s1 is on
the left of s2 in X̃, then s1.end < s2.start .
In prefix-labeling, a node at level k is labeled a string of k

numbers (self labels) separated by a delimiter. For example,
a node n at level 3 is labeled x.y.z, where x is the self label
of its ancestor node at level 1, y is the self label of its parent
node, and z is its own self label. No two siblings are assigned
the same self label [30]–[32].

In multiplicative-labeling, each node is labeled a number.
The label of a parent node can be computed from that of its
child nodes using a function [33]–[35].

The propose node-labeling scheme is a hybrid of multi-
plicative and prefix labeling approaches, and is explained in
Subsection VI.

C. TPMAs
Recent years have witnessed dramatic growth in the amount
of research on TPMAs [10]–[12]. Existing TPMAs can
be classified in to four main approaches, namely, the
relational, the navigational, the sequence-based, and the
join-based [10]–[12].

A relational based algorithm uses a relational query pro-
cessor to evaluate a given QTP [36], [37]. In general, pro-
cessing QTPs using relational query processor is very costly
because of the number of mappings and join operations that
are performed. The mappings are: schema mapping, data
mapping, QTP mapping, and result mapping. If the XML
schema is complex, the schema mapping results in many
relational tables. This adds significantly to the cost of the
QTP because of the number of join operations that must be
performed.

In the navigational approach, TPMAs typically traverse
each input XML-tree in preorder and test each node to check
if it satisfies the QTP constraints [12], [38]. TPMAs proposed
prior to 2002 were all navigational. In general they are less
efficient than the join-based algorithms.

Sequence-based algorithms such as PRIX [39] and
ViST [40] convert QTPs and XML documents into sequences

VOLUME 8, 2020 61819

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

and then find QTP matches using subsequence matching.
However, a set of costly post-processing steps is required
to remove false positive candidates and identify the exact
matches.

The join-based approach is based on joining data nodes
satisfying the structural relationship constraints specified by
a given QTP. This approach can be further classified into two
approaches, namely, the binary join approach [28], [41]–[43]
and the holistic join approach [15], [16], [26], [44]–[46].

In the binary join approach, algorithms find all occurrences
of a structural relationship between two nodes. A complex
QTP is broken down into a set of basic binary structural
relationships, such as, PC and AD relationships between
pairs of nodes. They suffer from producing huge intermediate
results that don’t contribute to the final solution. On the other
hand, algorithms using the holistic join approach attempt to
evaluate a QTP without breaking it into basic binary struc-
tures [19], [23]–[25], [37], [47], [48].

A survey of existing TPMAs can be found in [10]–[12].
Out of the existing TPMA approaches, the holistic approach
is the most efficient [12]. The proposed TPMA is a holistic
algorithm.

III. XML IN IoT
Currently [49], there are many IoT interoperability proposals
supporting XML data format as shown in Table 1. These
proposals can be divided into three categories, namely, IoT
standard frameworks, projects, and platforms.

IoT generated data in XML format becomes a vital chal-
lenge due to the small-sized and yet huge-volume. One
approach is proposed by [50]. This approach optimizes stor-
ing and accessing XMLfiles in HDFSwith the help of a novel
unified-indexing service system [51].Using this approach, the
performance of service discovering is improved [7]. XML is
also used to represent IoT sensor models. This representation
is proposed in [52] to allow the description of basic sensor
characteristics such as amount of data and its production
frequency.

Using indexing functions to ease IoT data processing,
authors in [53] represent data using XML format for the
reason that XML is becoming the universal standard for
data exchanging. In addition, authors provide classification
techniques to efficiently handle IoT data. These techniques
include classification to enable diverse indexing for service
providers and service consumers.

Authors in [54] propose an XML-based scheme to store
IoT-generated data in cloud environments. This storage
scheme is proposed since XML data model plays a vital role
as an intermediate language during the full-fledged transfor-
mation to another data model format [55].

A predictive analysis model for service consumers is pro-
posed in [56]. This cloud-enabled IoT-based model utilizes
IoT devices as well as cloud computing and XML Web ser-
vices for faster, secure and reliable data handling. This model
enables quick and reliable notification system for abnormal-
ity or complications during physical activities [56].

FIGURE 2. S-trees.

Authors in [57] outline a novel architecture for enabling
service consumers to construct IoT applications. The config-
uration settings are stored in XML format and are enabled by
cloud-based web applications. Raspberry PI is utilized with
Flask MVC to seamlessly use IoT resources represented in
XML format.

IV. THE PROPOSED NODE LABELING SCHEME
This section explains the proposed node labeling scheme,
RLP-Scheme. But before explaining the scheme, let us define
some terms and notationswhich are used frequently in the rest
of this paper.
• R: The root node of X.
• Ri: The ith child of R, for i = 0, 1, . . . |R|, where |R| is
the count of the children of R.

• S-tree: A subtree of X whose root node is a child of R.
• S = {S1, S2, . . . , S|R|}: The set of S-trees in X, where Si
is an S-tree whose root node is Ri. Si consists of Ri and
all its decedents. For example, the XML-tree of Figure 2
consists of four S-trees, namely, S1, S2, S3, and S4.

• Labeled-Path:A sequence, /tag0/tag1/ . . . /tagn, from
R to node n, where tag0 is the tag of the root node R [23].
For example, in figure 1(a), /A/B and A/B/C are exam-
ples of labeled-paths.

• RLP: Root-to-leaf labeled-path. For example,
in Figure 1(a), Path /A/B/C is RLP and path /A/B/D is
another RLP.

• P = {P1,P2, . . .P|P|}: The set of all distinct RLPs in X,
where |P| is the count of distinct RLPs in X.

RLP-Scheme assigns each S-tree, RLP, and node in X
an ID. The ID of Si is i, where i is an integer number in
{0, 1, . . . , |R|}. The ID of Pi, ρi, is a binary number of size
|P| bits and is computed using Equation 1.

ρi = ToBinary(2i) (1)

where ToBinary() is a function that coverts a decimal
number to a binary number. For example, X of Table 2
has five RLPs, namely, P1=‘‘‘/A/B/C’’’, P2=‘‘‘/A/B/D’’’,
P3=‘‘‘/A/B/C/B’’’, P4=‘‘‘/A/C/C’’’ and P5=‘‘‘/A/C/D’’’ and
their IDs are, 00001,00010, 00100,01000, and 10000 respec-
tively. Table 2 shows all the RLPs in the XML-tree
of Figure 2.
The ID of a node n in Si has the form [i,8[n]], where

8[n] is a sequence of self-labels separated by a delimiter.

61820 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

TABLE 1. IoT interoperability proposals supporting XML data format.

TABLE 2. RLPs.

The self-label of a node is a binary number of size |P| bits,
and it is computed from the RLPs that the node belongs to.
A leaf-node belongs to one RLP and an inner node can belong
to many RLPs. Let SL[n] denote the self-label of node n.
If n is the leaf-node of Pi, then SL[n] is computed using
Equation 2.

SL[n] = ρi (2)

If n is an inner-node, then its SL[n] is computed from all its
RLPs using Equation 3.

SL[n] = SL[n1]‖SL[n2]‖ . . . ‖SL[n|n|] (3)

where nj is the jth child of n, |n| is the count of children of n,
and ‘‘‘‖’’’ is the logical OR operator. The8[n] of any node n
is computed using Equation 4.

8[n] = 8[parent[n]].SL[n] (4)

where parent[n] is the parent node of n. The ID of the root
node, R, is 0 and the ID of a value node is the same as that
of its parent node. Table 3 shows the S-trees, tags, self-labels,
8s, and IDs, of the nodes in the XML-tree of Figure 2.

To minimize the size of bits in a self-label, RLPs can be
partitioned into groups. Then, the ID of Pi in Group g can
be represented as [g, ρi], where g is a group number and
is an integer number between 0 and G − 1, and G is the
number of RLP groups. For example, the five RLPs in X can

TABLE 3. Trees, tags, self-labels, 8s, and IDs, of the nodes in the
XML-tree of Figure 2.

be partitioned into two groups based on the tag of Ri. RLPs
‘‘‘/A/B/C’’’, ‘‘‘/A/B/D’’’, and ‘‘‘/A/B/C/B’’’ have the same
Ri tag,‘‘‘B’’’, so they belong to the same group, Group 1.
Similarly, RLPs ‘‘‘/A/C/C’’’ and ‘‘‘/A/C/D’’’ have the same
Ri tag,‘‘‘C’’’, so they belong to the same group, Group 2. The
ID of ‘‘‘/A/B/C’’’ will be [1, 001] and that of ‘‘‘/A/C/D’’’ will
be [2, 10]. For simplicity, in this paper we will assume that
all the RLPs are in one group,and thus, the group number
can be ignored. Let us now define ‘‘‘identical S-trees’’ and
‘‘‘identical nodes’’’ terms which are used frequently in the
rest of this paper.
Definition 1 (Identical nodes): Nodes n and m are identi-

cal if 8[n] = 8[m].
Definition 2 (Identical S-trees): S-trees Si and Sj are iden-

tical, if for every node in Si there is an identical node in Sj and
for every node in Sj there is an identical node in Si.
RLP-Scheme has two advantageous properties that no

other node labeling scheme has. The first advantage is that,
from the ID of a node, the RLPs of the node and that of its
ancestor nodes can be computed. This property can speedup

VOLUME 8, 2020 61821

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

query processing because it can minimize the number of
nodes accessed. The second advantage of RLP-Scheme is that
it saves a lot of storage space and CPU time when storing and
processing an XML-tree with many identical S-trees. If an
XML-tree has many identical S-trees, and if each of these
S-trees has no identical nodes, then it is enough to store only
the IDs of the these S-trees, and the 8 values of the nodes of
only one of these S-trees. The storage of S-trees with identical
nodes will be explained in the next section. For example,
in DBLP dataset, one S-tree has more than 80,000 identical
S-trees. If each of these S-trees has 50 non-identical nodes,
then, it is enough to store 50+80,000=80,050 IDs instead
of 50∗80,000=4,000,000 IDs. Also during query processing,
a given query is only matched against one of these 80,000
identical S-trees, which minimizes query cost significantly as
explained in subsequent sections.

V. THE PROPOSED STORAGE STRUCTURE
XML-trees can contain many repeated subtree structures.
We can take advantage of these repeated subtree structures to
minimize storage space and speedup query processing time.

To evaluate XML queries efficiently, two new algorithms
and a new node labeling scheme are proposed in this work.
The first algorithm, RLP-Index, takes as input X and gen-
erates an index of X called X̃. The second algorithm,
MatchQTP, takes as input X̃ and a QTP, and gives as out-
put the solution of the QTP, ‖QTP‖. The proposed node
labeling scheme, RLP-Scheme, assigns nodes of identical
subtree structures the same label. It is used by RLP-Index to
identify identical subtree structures. But before explaining the
proposed algorithms and the proposed node labeling scheme
in detail, let us define some terms and notations that are used
in the rest of this paper.
• R1,R2, . . . ,R|R|: The children of R where |R| is their
count. For example, B1, B2, B3 and C5 of Figure 2.

• Identical siblings: Sibling nodes with identical subtree
structures. Nodes n1 and n2 are identical siblings if the
children of n1 have the same name as the children of n2,
and it is also recursively true for all their decedents.

• Dtree: A subtree of X rooted at Ri. A Dtree rooted at Ri
contains all the decedents of Ri in X. For example, the
subtrees S1, S2, S3, and S4 of Figure 2 are Dtrees.

• Ttree (Template tree): A subtree created from a Dtree
by merging all the identical siblings in the Dtree. For
example, in the XML-tree of Figure 1a, there are four
Dtrees and three Ttrees.

• Dnode, Tnode: A Dtree node and a Ttree node respec-
tively.

• Qnode, Qroot, Qtarget:AQTP node, a QTP root node,
and a QTP output (target) node respectively. For exam-
ple, in QTP ‘‘‘//A[//B]/C’’’, A, B, and C are Qnodes; A
is the Qroot; and C is the Qtarget.

A. THE PROPOSED INDEX STRUCTURE X̃
The proposed index, X̃, has five main components. Its
first component is a DataGuide, DG. In X̃, each DG node

(DGnode) is assigned a unique label, DGnodeLabel.
A DGnodeLabel consists of four numbers and is of the
form [DGnodeNbr, GID, DGnodeSelfLabel, DGnodeID].
A DGnodeNbr is a unique integer number from the set 1,
2, . . ., |DG|, where |DG| is the count of DGnodes in DG;
GID is a group ID; DGnodeSelfLabel is a self-label and is
computed as explained in Subsection VI; and DGnodeID is a
Dewey ID and is used to find QTP matches in DG. Figure 4
shows a DG of the XML-tree of Figure 1a. To speed up query
processing, DG is partitioned into ancestor-based streams.
DGnodes with the same name and the same ancestor names
are put into the same stream, DGnode-stream. The nodes
in a DGnode-stream are sorted in ascending order of their
DGnodeNbr.

The second X̃ component is the T-Tnode table. It has
two columns, namely, DGNodeNbr, and Tnode-stream. The
number of rows in the T-Tnode table is equal to the count
of DGnodes, |DG|. It maps each DGnode to a Tnode-stream.
A Tnode-stream is a sorted list of TnodeIDs. A TnodeID is of
the form [TID, p.s], where TID is the ID of the corresponding
Ttree and p and s are as explained in SubsectionVI. TID is
a unique integer number that identifies a Ttree. Table 4(a)
is an example of T-Tnode table populated from the sample
XML-tree of Figure 1a.

The third component of X̃ is a table called T-Dtree. It has
three columns, namely, TID, TStructure, and Dtree-stream.
For each Ttree, we store its ID in TID, its structure in TStruc-
ture, and the IDs of its corresponding Dtrees inDtree-stream.
Table 4(b) is as example of a T-Dtree. Each row in this table
contains a Ttree and its corresponding sorted list of Dtrees,
a Dtree-stream. The number of Dtree-streams is equal to
the number of Ttrees. After merging all the identical-sibling
Dnodes in each Dtree of a Dtree-stream, the Dtrees in that
stream become structurally identical to each other and to the
Ttree which is in the same row.

Each Tnode in a T-Tnode table physically points to a
Dtree-stream but logically it points to a Dnode-stream. A
Dtree-stream is physically one stream but it can be mapped
to n Dnode-streams, where n is the number of nodes in the
corresponding Ttree. A DnodeID is of the form [DID, p.s];
and a TnodeID is of the form [TID, p.s]. The value of the
second component of each DnodeID (p.s), is equal to that
of its corresponding TnodeID. For example, in Figure 3,
Ttree [1] corresponds to Dtrees [1] and [2]; and thus, the
second component of TnodeID [1,3.2] is equal to that of
DnodeIDs [1,3.2] and [2,3.2]. Since a DnodeID can be com-
puted from a TnodeID, there is no need to store in X̃ a Dnode
who has no identical siblings.

The fourth X̃main component is called T-identicalSiblings
table. It contains all the identical sibling data-nodes in X
which are at levels 2 or more. It has two columns,
namely TnodeID and Siblings-stream. Each element of a
Siblings-stream is of the form [DID, count] and represents
siblings’ Dtree and count. The DnodeID of each sibling
Dnode in X can be computed from T-identicalSiblings.
A DnodeID is of the form [DID, p.s, order], where p.s is

61822 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

FIGURE 3. The Dtrees and Ttrees of the sample XML-tree of Figure 1a.

FIGURE 4. The DataGuide (DG) of the XML-tree of Figure 1a.

identical to that of the corresponding TnodeID, and order
can be computed from count . Table 4(c) is an example of
T-identicalSiblings populated from the sample XML-tree of
Figure 1a.

The last X̃ table is the values table and it contains all the
values inX, Table 4(d). It has three fields, namely Value TID,
and DnodeID. This table is horizontally partitioned. Each
partition belongs to an RLP whose corresponding data nodes
have values. Values which correspond to the same RLP are
stored in the same partition. Each partition has a name of the
formT-Value-RLPid. For example, the values that correspond
to RLPid [1,2] are stored in a partition called ‘‘T-Value-1-2’’.

B. THE PROPOSED X̃ BUILDER ALGORITHM, RLP-Index
RLP-Index takes as input X and gives as output X̃ and is

depicted in Algorithm 1. The algorithm first initializes all
the components of X̃ at Line 1. It then reads the first Dtree

from X and assigns it a DID, Line 2. At Line 4, RLP-Index
creates a Ttree out of the new Dtree and labels its Tnodes
using RLP-Scheme. If a Ttree identical to the new Ttree is not
already in the T-Dtree table, RLP-Index labels the new Ttree,
adds any new of its labeled paths into DG, and adds its Tnodes
into the T-Tnode table, lines 6 to 10. At Line 11, RLP-Index
adds the new Dtree to the T-Dtree table. If the new Dtree has
identical sibling nodes, then RLP-Index adds their Dtree and
count to the T-identicalSiblings table, Line 12. Any values in
the new Dtree are added into the T-values table at Line 13. At
Line 14, it reads the next Dtree and repeats lines 3 to 15. The
algorithm terminates when all the Dtrees in X are processed.
For example, given the XML-tree of Figure 3, RLP-index

first reads the first Dtree, which is the subtree in the first
dotted circle, and assigns it a DID of 1. It then maps this Dtree
to a Ttree by merging any of its identical siblings. In Figure 3,
the dotted arrow connects each Dtree to its corresponding

VOLUME 8, 2020 61823

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

TABLE 4. T-Tnode, T-Dtree, T-IdenticalSiblings and T-value-1-1 of X̃.

Algorithm 1 RLP-Index
Require: X
Ensure: X̃
1: Initialize(X̃)
2: DID← ReadDtree(X)
3: while DID do
4: T ←MergeIdenticalSiblings(DID)
5: TID← GetTID(T-Dtree,T)
6: if ! TID then
7: TID← GenerateLabel(Ttree, T)
8: DGnodes← Add(DG, TID)
9: Add(T-Tnode, DG, TID)
10: end if
11: Add(T-Dtree, TID, DID)
12: Add(T-identicalSiblings, TID, DID)
13: Add(T-values, TID, DID)
14: DID← ReadDtree(X)
15: end while
16: return X̃

Ttree. Since this is first Ttree created it is assigned a TID
of 1. The Ttree nodes are labeled as shown in the figure and
stored in the T-Dtree table. Since the Dtree has no siblings,
none of its nodes are stored. But the label of the Dtree, which
is also 1, is stored in Table 4(b). After it finishes processing
the first Dtree, the algorithms reads the secondDtree, which is
labeled as [2] in the figure. Since this Dtree has some identical
siblings, it will merge the siblings and then convert the Dtree
to Ttree. The Ttree of this Dtree is identical to that of the first
Dtree and thus there is no need to store its Ttree. It will only
store its label, which is 2. It will also stores the labels of the
siblings in Table 4(c). The algorithm will read the remaining
Dtrees one by one and convert them to Ttrees and store them
in the same way. Table 4 shows all the values that are stored
at the end of the Algorithm.

C. THE PROPOSED TPMA, MatchQTP
MatchQTP takes as input X̃ and a QTP and gives the solution
of the QTP, ‖QTP‖, as output. MatchQTPconsists of two
main functions, namely, MatchQTPValues and MatchQTP-
Structure. MatchQTPis depicted in Algorithm 2. If a QTP has
value predicates, MatchQTP call the function MatchQTPVal-
ues otherwise its calls MatchQTPStructure.

Algorithm 2MatchQTP

Require: X̃, QTP
Ensure: ‖QTP‖
1: if HasValuePredicates(QTP) then
2: MatchQTPValues(X̃, QTP)
3: else
4: MatchQTPStructure(X̃, QTP)
5: end if
6: return

The function MatchQTPValues is depicted in Algorithm 3.
It takes as input a QTP and X̃ and gives as output ‖QTP‖.
At line 1, the algorithm extracts each predicate value (Qvalue)
in the QTP. It then identifies the DGNodeNbr of each Qvalue,
Line 2. It then searches for the first Qvalue in its correspond-
ing T-value, Line 3. If a match is found, it checks if the
corresponding T-tree matches the QTP, Line 5. If they match,
then MatchQTPValues checks if the corresponding D-tree
contains the other Qvalues, Line 7. If the D-tree contains all
the Qvalues, then it is sent to the output, Line 8. At line 11,
MatchQTPValues searches for the next Qvalue. It loops
between lines 4 and 12 until it finds all the QTP matches.

The order MatchQTPStructure moves from one compo-
nent of X̃ to another is depicted in Figure 5. Given a QTP,
MatchQTPStructure first searches DG for a DGTargetNode, a
DGnode that matches a Qtarget. The search then moves to the
target-Tnode-stream, which is a Tnode-stream in the T-Tnode

61824 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

FIGURE 5. The order MatchQTP moves between the main components of X̃.

Algorithm 3MatchQTPValues

Require: X̃, QTP
Ensure: ‖QTP‖
1: QValue← GetQTPValues(QTP)
2: QValDGNbr← GetQValuesDGNbrs(QTP)
3: Record ← GetQValueMatch(QValue[1],

QValDGNbr[1])
4: while Record do
5: DID←MatchQTree(Record)
6: if DID then
7: if MatchAllQValues(DID, QValue, QValueDGNbr)

then
8: Output(DID, QTP)
9: end if
10: end if
11: Record ← GetNextQValueMatch(QValue[1],

QValDGNbr[1])
12: end while
13: return

table that corresponds to the DGTargetNode. As mentioned
above, each DGnode maps to one Tnode-stream, and each
Tnode maps to one Dnode-stream and one Siblings-stream.
For each Tnode, in the target-Tnode-stream, that matches the
QTP, the algorithm sends its corresponding Dnode-stream
and its corresponding sibling nodes to the output. MatchQTP
then moves to the next DGTargetNode and repeats the
above steps again. It terminates when it processes all the
DGTargetNodes.

MatchQTP is depicted in Algorithm 2. At line 2, it finds
the stream of DGtargetNode in DG. It then selects the first
DGtargetNode, Line 3. Let us refer to this DGtargetNode as
the current-DGtargetNode. It then finds all DG subtrees that
match the given QTP and contain the current-DGtargetNode,
Line 5. Let these DG subtrees be denoted as 8i, for i =
1, 2, . . . , |8|, where |8| is their count. Also, let 8̂i denote the
root node of8i;8i,j, for j = 1, 2, . . . , |8i|, denote the nodes
of 8i; β[8i,j] denote the self-label of 8i,j. The self-label of
the root-node of 8i, 8̂i, is computed using Equation 5.

β[8̂i] = β[8̌i,1]‖β[8̌i,2]‖ . . . ‖β[8̌i,|8̌i|
] (5)

where 8̌i,j is the jth leaf node of 8i and |8̌i| is the number
of leaf nodes in 8i. At lines 6 to 15, MatchQTP computes
the self-labels of each 8i using Equation 5. The search
then moves to the Tnode-stream, in the T-Tnode table, that
corresponds to the current-DGtargetNode, lines 16 to 25.

At Line 19, MatchQTP calls the boolean function,MatchTn-
ode to check if the current Tnode belongs to a Ttree that
matches the QTP. MatchTnode will be discussed shortly. If
MatchTnode return true, then a partial output of the QTP
is returned at lines 20 and 21. At Line 23, the search for
QTP matches moves to the next Tnode. When all the Tnodes
that correspond to the current-DGtargetNode are processed,
MatchQTP moves to the next DGtargetNode at Line 26.
It repeats lines 4 to 27many times until it returns the complete
solution of the given QTP.

The function MatchTnode is depicted by Algorithm 5.
It checks if a Tnode belongs to a Ttree that matches a
given QTP. It takes as input a Tnode, 8i, and 8̂i.
At Line 4, the algorithm computes the root level of the
current 8i. At Line 5 it extracts the ancestor of the input
Tnode which corresponds to the Qroot; and at Line 6 its
extracts the ancestors self-label. At lines 7 and 8 it uses
Equation 6 to check if the self-label of the input Tnode
matches β[8̂i]. If they match, it calls the functionMatchTree
to check if the corresponding Ttree matches the QTP, Line 9.
MatchTree is a boolean function and it takes as input a Tnode
and a QTP. It then searches in the T-Dtree for a Ttree of the
Tnode. It returns true if the Ttree matches the QTP otherwise
it returns false. If the current 8i doesn’t match the QTP,
it goes back to Line 3 to check the next one.

M = (β[n̂]&β[8̂1])‖ . . . ‖(β[n̂]&β[8̂|φ|]) (6)

For example, given the Dtrees of Figure 3 and the query
/̈A/B/C/B,̈ the MatchQTP first searches the DataGuide in
Figure 4, for a path that matches the query. It then retrieves
the Nbr of the last node in the path which is 3. Next the
algorithm searches the table T-Tnode, shown in Table 4 (a),
for a row with DGNodeNbr of 3. The data-stream in that row
is [2, 6.4.4]. It then searches the T-Dtree, in Table 4 (b), for a
row with TID 2 and retrieves all the DIDs which are in the
corresponding D-tree-stream column. In this case we only
have one DID which is 3. At last, the algorithm will return
the output of the query as 3.6.4.4 by concatenating the DID
that it retrieved from Table 4(b) and the value 6.4.4 that it
retrieved from Table 4(a).

VI. THE PROPOSED NODE LABELING SCHEME,
RLP-SCHEME
In RLP-Scheme, node labels are computed fromRLPs. In this
scheme, RLPs in X are partitioned into a number of groups.
RLPs with the same Ri node names are put into the same
group. Depending on the application and the characteristics

VOLUME 8, 2020 61825

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

Algorithm 4MatchQTPStructure

Require: X̃, QTP
Ensure: ‖QTP‖
1: ‖QTP‖ ← NULL
2: DGTargetStreamCursor ← GetDGTargetStream(DG,

QTP)
3: DGTargetNbr← GetDGTargetNumber(DG, DGTarget-

StreamCursor)
4: while DGTargetNbr do
5: 8 ← GetMatchingDGSubtrees(DG, DGTargetNbr,

QTP)
6: if 8 then
7: for i = 1 to |8| do
8: 8̂i← GetRootNode(8i)
9: β[8̂i]← NULL;
10: for j = 1 to |8i| do
11: if IsLeafNode(8i,j) then
12: β[8̂i]← β[8̂i] ‖ β[8i,j]
13: end if
14: end for
15: end for
16: TnodeStreamCursor← GetTnodeStream(T-Tnode,

DGTargetNbr)
17: TargetTnode← GetTargetTnode(T-Tnode, Tnode-

StreamCursor)
18: while TargetTnode do
19: ifMatchTnode(TargetTnode, 8, 8̂, QTP) then
20: ‖QTP‖ ← ‖QTP‖ + Output(T-Dtree, Target-

Tnode)
21: ‖QTP‖ ← ‖QTP‖ + Output(T-

identicalSiblings, TargetTnode)
22: end if
23: TargetTnode ← GetTargetTnode(T-Tnode,

TnodeStreamCursor++)
24: end while
25: end if
26: DGTargetNbr ← GetDGTargetNumber(DG, DGTar-

getStreamCursor++)
27: end while
28: return ‖QTP‖

of X, other conditions of partitioning RLPs can also be used.
Each group is then uniquely labeled an integer number from
the set {1, 2, 3, . . ., |G|} where |G| is the number of distinct
Ri node names in X. For example, in X of Figure 1a, there
are two RLP groups because there are two distinct Ri node
names, namely B and C . RLPs ‘‘‘/A/B/C’’’, ‘‘‘/A/B/D’’’, and
‘‘‘/A/B/C/B’’’ belong to Group 1 whereas RLPs ‘‘‘/A/C/C’’’
and ‘‘‘/A/C/D’’’ belong to Group 2.

Each RLP is assigned a unique ID, RLPid. An RLPid is
of the form [g,s], where g is a group number and s is a self-
label. A self-label of an RLP in group g is a unique binary
number of size |g| bits, where |g| is the number of distinct
RLPs in group g. For each self-label, one of the g bits is set

Algorithm 5MatchTnode

Require: CurrentTnode, 8, 8̂, QTP
Ensure: MatchFound
1: MatchFound← FALSE
2: i← 1
3: while i <= |8| && NOT MatchFound do
4: QrootLevel← GetRootLevel(8i)
5: k← GetAncestor(CurrentTnode, QrootLevel)
6: n← GetSelfLabel(k)
7: m← n && β[8̂i]
8: if m == β[8̂i] then
9: MatchFound←MatchTree(CurrentTnode, QTP)
10: end if
11: i++
12: end while
13: return MatchFound

to 1 and the rest are set to 0. For example, in Figure 1a, the
self-labels of the three RLPs in Group 1 are 001, 010, and
100. The advantage of putting RLPs into different groups is
to minimize the number of bits needed by the self-labels.

In RLP-Scheme, a node is assigned an ID, a nodeID, of the
form [g,p.s] where g is its group number, p is the self-label
of all its ancestors, and s is its self-label. A leaf node belongs
to one RLP whereas an inner node may belong to more than
one RLPs. The self-label of a leaf node is equal to the self
label of its RLP. The self-label of an inner node n is the sum
of the self-labels of its distinct RLPs and can be computed
using Equation 7.

β[n] = β[n1]‖β[n2]‖ . . . ‖β[n|n|] (7)

where β[n] is the self-label of node n, ni is the ith child of n,
|n| is the count of the children of n, and ‖ is the logical OR
operator. For example, Figure 2 shows nodes labeled using
RLP-Scheme. From the self-label of a node, all the RLPs of
a node can be identified. Since the nodeID of a node includes
the self-labels of its ancestors, from the nodeID of a node, the
RLPs of each of its ancestors can also be identified.

RLP-Scheme is depicted in Algorithm 6. It takes as input
a Dtree and gives as output a labeled Dtree. At Line 1,
it initializes a DataGuide [58], a stack, a string variable called
RLP, and an array called Dnode. At Line 3, it assigns the
ith node of Dtree to Dnode. The RLP of the new Dnode
element is updated at Line 4. If the new Dnode element is
a leaf node, and the new RLP is not in the DataGuide, it
labels the new RLP and stores it in the DataGuide, Line 6.
The new Dnode element is then labeled with the label of its
corresponding RLP. At Line 7, the parent of the new Dnode
element is popped from the stack. The label of the parent is
updated by ORing it with the label of the newDnode element,
Line 8. Then the parent is pushed back to the stack, Line 9.
If the new Dnode element is an inner node, then its label is
initialized to a 0 and it is pushed into the stack. If there is
any node in the stack whose level is greater or equal to the

61826 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

level of the new Dnode element, then the node is popped
from the stack and its label is ORed to the label of its parent,
lines 11 and 17. At Line 18, RLP-Scheme prefixes the label
of each Dnode element with the label of its ancestors.

Algorithm 6 RLP-Scheme
Require: Dtree
Ensure: Labeled Dtree
1: Init(DG, Stack, RLP, Dnode, Level)
2: for i = 1 to |Dtree| do
3: Dnode[i]← Dtree.GetNode(Dtree, i)
4: UpdateRLP(Dnode[i])
5: if IsLeaf(Dnode[i]) then
6: β[Dnode[i]]← UpdateDG(RLP)
7: ParentNode← Pop()
8: β[ParentNode]← β[ParentNode] || β[Dnode[i]]
9: Push(ParentNode)
10: else
11: ClearStck(Level, β[Dnode[i]])
12: β[Dnode[i]]← 0
13: Push(Dnode[i])
14: end if
15: Level← GetLevel(Dnode[i])
16: end for
17: ClearStack(Level, 0)
18: AddAncestorLabels(Dnode)
19: return Labeled Dtree

VII. PERFORMANCE ANALYSIS
Many experiments were conducted to study the performance
and scalability of the proposed algorithm, MatchQTP. It
was compared with four state-of-the-art TPMAs, namely
TwigStack [16], TwigList [59], TJFast [45] and CIS-X [21].
But before we discuss the experimental results, let us go
through the experimental setup.

A. EXPERIMENTAL SETUP
All the experiments were conducted on Windows 7 system
with a 2.5 GHz Intel Core2 CPU, 4 GB RAM. We used C#
to implement the four TPMAs as well as the proposed algo-
rithm. To evaluate the performance of the proposed algorithm,
the parameter ‘‘‘query execution time’’’ was used. Execution
time of a query is the sum of the CPU and I/O costs of the
query. Each query execution time reported in this paper is the
average of 10 runs. Before each run, the memory was flashed
to get rid of cached pages.

1) EXPERIMENTAL DATASETS
The experiments were done using four datasets, namely
DBLP [60], [61], XMark [62], TreeBank [61], and
DONS [63]. The DBLP and TreeBank datasets are real world
benchmark datasets and XMark is a benchmark synthetic
dataset.We chose these datasets since they cover a wide range
of structural characteristics used in the literature. DONS
is a combination of real and synthetic dataset. It contains

TABLE 5. Some statistics of the experimental datasets.

TABLE 6. Experimental queries.

more identical siblings than the above three datasets. The
real data in the DONS dataset was taken from the Disease
Outbreak Notification System (DONS) database application
that was developed in King Fahd University of Petroleum and
Minerals (KFUPM) [63]–[65]. The DONS application was
first developed as a relational database application. It is now
in the process of developing it as an XML database applica-
tion. Table 5 shows some characteristics of the experimental
datasets.

2) EXPERIMENTAL QUERIES
Many of the queries used in this work were selected from
those in [21], [22], [59]. Table 6 shows all the experimental
queries.

B. EXPERIMENTAL RESULTS AND ANALYSIS
1) CONSTRUCTION TIME OF X̃
Table 7 shows the construction times of X̃. In the con-
ducted experiments, the maximum construction time was
only 89 seconds, which implies that the proposed algorithms
are practical. The construction time of X̃ is low because X
is scanned only once. The construction time also depends on
the size of X and the number of Ttrees in X̃. If the number of
Ttrees in X̃ is low then the construction time is higher. This

VOLUME 8, 2020 61827

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

TABLE 7. X̃ construction time (sec).

is because the Table T-TDtree is implemented as a hash table.
Each time RLP-Index reads a new Dtree fromX, it must store
it in the hash table. If the new Dtree hashes to an existing
Ttree, then this may result in collision, and thus the structures
of the Dtree and the corresponding Ttree must be compared.
But if the Dtree doesn’t hash into any of the existing Ttrees,
then no collision resolution is needed and the Dtree is stored
directly in to the hash table. As can be seen from the Table 5,
the sizes of XMark and DONS are nearly the same; but X̃
construction time of DONS is higher than that of XMark. This
is because DONS results in more collisions and has many
identical siblings than XMark.

2) PERFORMANCE ANALYSIS OF MatchQTP
MatchQTP was compared with TwigStack, TwigList, TJFast,
and CIS-X. The experimental results of the comparison is
shown in Figures 6 to 10. Since the range of processing time
was very large, a logarithmic scale was chosen for the figures.

MatchQTP vs. TwigStack:As can be seen from Figure 6,
MatchQTP outperformed TwigStack by a factor of 26 on the
average. TwigStack uses tag-based streams and thus it creates
few number of data-streams. Each stream, on the average,
contains many data nodes. If a QTP contains n distinct node
names, then TwigStack reads the corresponding n streams.
Many of the nodes it reads don’t contribute to the final answer.
It performs a very expensive containment join operation
between nodes of different streams. It also generates many
intermediate results and performs path merging. MatchQTP
reads only data nodes that appear in the final output. For
example, in processing D1 Twigstack read 12 times more
data nodes than the proposed algorithm. MatchQTP doesn’t
produce intermediate results, it doesn’t perform any merge
operation between data nodes or paths, and it only reads the
data-streams that belong to the target node.

MatchQTP vs. TwigList: TwigList, like TwigStack, uses
tag-based streams and thus both of them have the same num-
ber of data-streams. To process a QTP of n distinct nodes,
it reads n data-streams. Unlike TwigStack it doesn’t suffer
from huge intermediate results but it must perform many
containment joins. It also processes many data nodes which
don’t appear in the final solution of a given query. As shown
by Figure 7, MatchQTP outperforms TwigList by a factor
of 22.

MatchQTP vs. TJFast: Like TwigStack and TwigList,
TJFast also uses tag-based streams; but it uses different node
labeling scheme called extended Dewey [45] to reduce the
number of data-streams it reads. If a node n is labeled using
extended Dewey, then from the label of node n, the labels
and the names of its ancestors can be extracted. This enables
TJFast to process any QTP by reading only the data-streams

FIGURE 6. Execution times of TwigStack and the proposed algorithm.

that correspond to the QTP leaf nodes. During query process-
ing, TJFast performs expensive ancestors extraction, string
matching, and path merging operations. It also generates
large intermediate results and processes many data nodes
which don’t appear in the output of a given QTP. For shal-
low queries, the cost of ancestors extraction, string match-
ing, and path merging might cancel the benefit of reading
fewer node streams. MatchQTP outperforms TJFast because
it reads only the data-stream of the target node, generates no
intermediate results, and doesn’t perform ancestors extrac-
tion, string matching, and path merging. Figures 8 show
that MatchQTP significantly outperforms TJFast. The figure
shows that, on the average, MatchQTP is 20 times faster
than TJFast.

61828 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

FIGURE 7. Execution times of TwigList and the proposed algorithm.

MatchQTP vs. CIS-X: CIS-X uses path-based streams.
It processes many data-streams simultaneously and perfor-
mance path merging. It also accesses many data-nodes that
are not part of the final solution. MatchQTP processes one
data-stream at time and thus no path merging is needed. It
also doesn’t access data-nodes that are not part of the final
solution. Figure 9 shows the processing times of MatchQTP
and CIS-X. On the average MatchQTP is 2.6 times faster
than CIS-X.

FIGURE 8. Execution times of TJFast and the proposed algorithm.

Cost of QTPs with value predicates: A number of
experiments were conducted to study the performance of
MatchQTP when evaluating QTPs with value predicates. The
sameQTPs shown in Table 6were used for the experiment but
one or two of the Qnodes were converted to value predicates.
Let Q and Q̂ be two structurally identical QTPs in which Q̂
has value predicates whereas Q has none. In almost all the
experiments, the cost of each Q was greater or comparable to
that of Q̂. The cost depended on the selectivity of Q̂. If the
selectivity is high, then the cost of Q̂ was significantly lower
than that of Q; and if the selectivity is very low, then the cost
of Q and Q̂ was nearly the same.

VOLUME 8, 2020 61829

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

FIGURE 9. Execution times of CIS-X and the proposed algorithm.

FIGURE 10. Average Processing time of MatchQTP.

Dataset structure effect on performance: The struc-
ture of a dataset affects the cost of processing QTPs using
MatchQTP. During query processing, MatchQTP performs
QTP matches only with DG and Ttrees. A dataset with

FIGURE 11. Scalability of MatchQTP.

many Ttrees results in more matching operations than one
with smaller number of Ttrees. Each Ttree corresponds to
one Dtree-stream; so a QTP which matches many Ttrees
causes many random disk reads which adds to the I/O cost
of the QTP. Another factor that adds to the cost of a query
is the size of a DataGuide. On the average, finding QTP
matches in a small DataGuide is less costly than in a bigger
DataGuide. Datasets with small number of distinct nodes, few
identical siblings, non-recursive paths, and many repeated
subtree structures result in small DataGuide and few number
of Ttrees. Among the 4 experimental datasets, DBLP has the
smallest DataGuide and the smallest number of Ttrees. That
is why the query cost of MatchQTP on a DBLP dataset is
very low. The number of Ttrees in the DONS dataset is nearly
the same as that of DBLP; but it has a bigger DataGuide and
has many identical siblings. The average number of nodes
in a DBLP Ttree is 9 whereas in DONS is 61. That is why
query processing on a DONS dataset is more costly than on
a DBLP dataset, 10. The number of Ttrees and the size of
the DataGuide of the XMark dataset are higher than those
of DONS. TreeBank has the highest number of Ttrees and
the biggest DataGuide than the other 3 datasets. Figure 10
shows the average query cost on each dataset. The results
show that DBLP has the lowest and TreeBank has the highest
average query cost. The figure also shows that on the average

61830 VOLUME 8, 2020

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

MatchQTP is 26, 22, 20, and 2.6 times faster than TwigStack,
TwigList, TJFast, and CIS-X respectively.

Scalability of MatchQTP: To show the scalability of
MatchQTP, a number of experiments were conducted on the
DBLP andXMark datasets. The size of DBLP datasets ranged
between 127 and 510 Megabytes and the size of XMark
datasets ranged between 112 and 508Megabytes. The queries
listed in table 6 were used for the experiments. The results
are shown in Figure 11. The sub-linear growth in processing
time shows that MatchQTP is scalable. MatchQTP uses a
DataGuide and Ttrees to find QTP matches. If the size of the
DataGuide and the number of Ttrees remain the same, then
the QTP processing time doesn’t change much. The number
of Ttrees and the size of a DataGuide depends on the structure
of the XML-tree and not in the size of the dataset. If an XML
document grows in size but its structure remains the same,
then the size of its DataGuide and the number of its Ttrees
will not change.

VIII. CONCLUSION
Internet of Things is an environment where smart services are
enabled by smart devices and appliances. The value of these
smart applications comes from analyzing the data generated
by these smart devices and appliances. Handling this data
efficiently is crucial to the success of IoT-enabled smart appli-
cations. Lack of efficient data handling renders the usability
of IoT smart applications and hence IoT smart applications
become unreliable. XML is frequently used by IoT devices
to exchange data; thus, it is important to efficiently process
XML data.

This paper proposes a new XML node labeling scheme
called
RLP-Scheme, a new storage structure called RLP-Index, and
a new twig pattern matching algorithm called MatchQTP.
RLP-Index uses RLP-Scheme to partition data nodes into
many streams. It stores a subset of the data-nodes. The rest
of the data-nodes are stored implicitly. This makes it the
first of its kind. This also minimizes storage space and QTP
processing time.

MatchQTP, unlike the existing algorithms, processes one
data-stream at a time, generates no intermediate results,
and doesn’t access data nodes which don’t appear in the
final solution of a given QTP. It doesn’t perform any path
merging or path extraction or duplicate removal operations.
MatchQTP was compared with TwigStack, TwigList, TJFast,
and CIS-X and it outperformed them consistently and sig-
nificantly. MatchQTP is also scalable. Its QTP processing
time grows sub-linearly with the size of the corresponding
XML document.

As for future work, the proposed storage structure can be
converted into a key-value store in which TID is the key
and the DID is the value. Also MatchQTP can be converted
to MapReduce algorithm with minor modification. We also
envision that extending MatchQTP to handle QTPs with
all logical operators will improve the efficiency process of
XML data.

REFERENCES
[1] C. Gonzalez, S. M. Charfadine, O. Flauzac, and F. Nolot, ‘‘SDN-based

security framework for the IoT in distributed grid,’’ in Proc. Int. Multidis-
ciplinary Conf. Comput. Energy Sci. (SpliTech), Split, Croatia, Jul. 2016,
p. 1–5.

[2] R. Zgheib, E. Conchon, and R. Bastide, ‘‘Semantic middleware architec-
tures for IoT healthcare applications,’’ in Enhanced Living Environments.
Cham, Switzerland: Springer, 2019, pp. 263–294.

[3] F. Azzedin and M. Ghaleb, ‘‘Internet-of-Things and information fusion:
Trust perspective survey,’’ Sensors, vol. 19, no. 8, p. 1929, 2019.

[4] E. T. Heidt, ‘‘2017 planning guide for the Internet of Things,’’ Gartner,
Stamford, CT, USA, Tech. Rep. G00313353, Oct. 2016.

[5] Db-Engines Ranking. Accessed: Jun. 15, 2017. [Online]. Available:
http://db-engines.com/en/ranking

[6] F.Merciol, A. Sauray, and S. Lefevre, ‘‘Interoperability ofmultiscale visual
representations for satellite image big data,’’ in Proc. Conf. Big Data Space
(BiDS). Santa Cruz de Tenerife, Spain, 2016, pp. 172–175.

[7] H. Cai, B. Xu, L. Jiang, and A. V. Vasilakos, ‘‘IoT-based big data storage
systems in cloud computing: Perspectives and challenges,’’ IEEE Internet
Things J., vol. 4, no. 1, pp. 75–87, Feb. 2017.

[8] W3C. XPath. Accessed: Jan. 1, 2019. [Online]. Available: https://www.
w3.org/TR/xpath-31/

[9] W3C. XQuery. Accessed: Jan. 1, 2019. [Online]. Available: https://www.
w3.org/TR/xquery-31/

[10] S.-C. Haw and C.-S. Lee, ‘‘Data storage practices and query process-
ing in XML databases: A survey,’’ Knowl.-Based Syst., vol. 24, no. 8,
pp. 1317–1340, Dec. 2011, doi: 10.1016/j.knosys.2011.06.006.

[11] M. Hachicha and J. Darmont, ‘‘A survey of XML tree patterns,’’ IEEE
Trans. Knowl. Data Eng., vol. 25, no. 1, pp. 29–46, Jan. 2013.

[12] G. Gou and R. Chirkova, ‘‘Efficiently querying large XML data repos-
itories: A survey,’’ IEEE Trans. Knowl. Data Eng., vol. 19, no. 10,
pp. 1381–1403, Oct. 2007.

[13] H. Su-Cheng and L. Chien-Sing, ‘‘Node labeling schemes in XML query
optimization: A survey and trends,’’ IETE Tech. Rev., vol. 26, no. 2, p. 88,
2009.

[14] T. Härder, M. Haustein, C. Mathis, and M. Wagner, ‘‘Node labeling
schemes for dynamic XML documents reconsidered,’’ Data Knowl. Eng.,
vol. 60, no. 1, pp. 126–149, Jan. 2007.

[15] J. Lu, X. Meng, and T. W. Ling, ‘‘Indexing and querying XML using
extended dewey labeling scheme,’’ Data Knowl. Eng., vol. 70, no. 1,
pp. 35–59, Jan. 2011.

[16] N. Bruno, N. Koudas, and D. Srivastava, ‘‘Holistic twig joins: Optimal
xml pattern matching,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data
(SIGMOD). New York, NY, USA: Association for Computing Machinery,
2002, p. 310–321, doi: 10.1145/564691.564727.

[17] J. Lu, T. Chen, and T. W. Ling, ‘‘TJFast: Effective processing of XML twig
pattern matching,’’ in Proc. Special interest tracks posters 14th Int. Conf.
WorldWideWebWWW, NewYork, NY, USA:ACM, 2005, pp. 1118–1119.

[18] S. Lee, B.-G. Ryu, and K.-L. Wu, ‘‘Examining the impact of data-access
cost on XML twig pattern matching,’’ Inf. Sci., vol. 203, pp. 24–43,
Oct. 2012.

[19] T. Chen, J. Lu, and T. W. Ling, ‘‘On boosting holism in XML twig pattern
matching using structural indexing techniques,’’ in Proc. ACM SIGMOD
Int. Conf. Manage. Data SIGMOD, New York, NY, USA: ACM, 2005,
pp. 455–466, doi: 10.1145/1066157.1066209.

[20] S. K. Izadi, M. S. Haghjoo, and T. Härder, ‘‘S3: Processing tree-pattern
XML queries with all logical operators,’’ Data Knowl. Eng., vol. 72,
pp. 31–62, Feb. 2012.

[21] W.-C. Hsu and I.-E. Liao, ‘‘CIS-X: A compacted indexing scheme
for efficient query evaluation of XML documents,’’ Inf. Sci., vol. 241,
pp. 195–211, Aug. 2013.

[22] S. K. Izadi, T. Härder, and M. S. Haghjoo, ‘‘s3: Evaluation of tree-pattern
XML queries supported by structural summaries,’’ Data Knowl. Eng.,
vol. 68, no. 1, pp. 126–145, Jan. 2009.

[23] R. Bača and M. Krátkỳ, ‘‘Tjdewey—On the efficient path labeling scheme
holistic approach,’’ in Proc. Int. Conf. Database Syst. Adv. Appl. Brisbane,
QLD, Australia: Springer, 2009, pp. 6–20.

[24] R. Bača and M. Krátký, ‘‘On the efficiency of a prefix path holistic
algorithm,’’ inProc. 6th Int. XMLDatabase Symp. Database XML Technol.
(XSym), Lyon, France: Springer-Verlag, 2009, pp. 25–32.

[25] R. Kaushik, P. Bohannon, J. F. Naughton, and H. F. Korth, ‘‘Covering
indexes for branching path queries,’’ in Proc. ACM SIGMOD Int. Conf.
Manage. Data SIGMOD, New York, NY, USA: ACM, 2002, pp. 133–144.

VOLUME 8, 2020 61831

http://dx.doi.org/10.1016/j.knosys.2011.06.006
http://dx.doi.org/10.1145/564691.564727
http://dx.doi.org/10.1145/1066157.1066209

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

[26] X. Wu and G. Liu, ‘‘XML twig pattern matching using version tree,’’Data
Knowl. Eng., vol. 64, no. 3, pp. 580–599, Mar. 2008.

[27] P. F. Dietz, ‘‘Maintaining order in a linked list,’’ in Proc. 14th Annu.
ACM Symp. Theory Comput. STOC, San Francisco, CA, USA, 1982,
pp. 122–127.

[28] Q. Li and B. Moon, ‘‘Indexing and querying xml data for regular path
expressions,’’ in Proc. 27th Int. Conf. Very Large Data Bases (VLDB),
Roma, Italy, 2001, pp. 361–370.

[29] C. Zhang, J. Naughton, D. DeWitt, Q. Luo, and G. Lohman, ‘‘On support-
ing containment queries in relational database management systems,’’ in
Proc. ACM SIGMOD Int. Conf. Manage. Data, Santa Barbara, CA, USA,
2001, pp. 425–436.

[30] E. Cohen, H. Kaplan, and T. Milo, ‘‘Labeling dynamic XML trees,’’ SIAM
J. Comput., vol. 39, no. 5, pp. 2048–2074, Jan. 2010.

[31] I. Tatarinov, S. D. Viglas, K. Beyer, J. Shanmugasundaram, E. Shekita, and
C. Zhang, ‘‘Storing and querying ordered XML using a relational database
system,’’ in Proc. ACM SIGMOD Int. Conf. Manage. Data SIGMOD,
Madison, Wisconsin, 2002, pp. 204–215.

[32] M. Duong and Y. Zhang, ‘‘Lsdx: A new labelling scheme for dynamically
updating xml data,’’ in Proc. 16th Australas. Database Conf., Newcastle,
Australia, vol. 39, 2005, pp. 185–193.

[33] F. Weigel, K. U. Schulz, and H. Meuss, ‘‘The bird numbering scheme for
xml and tree databases–deciding and reconstructing tree relations using
efficient arithmetic operations,’’ in Proc. Int. XML Database Symp. Trond-
heim, Norway: Springer, 2005, pp. 49–67.

[34] Y. K. Lee, S.-J. Yoo, K. Yoon, and P. B. Berra, ‘‘Index structures for
structured documents,’’ in Proc. 1st ACM Int. Conf. Digit. Libraries DL,
Bethesda, Maryland, Mar. 1996, pp. 91–99.

[35] R. Al-Shaikh, G. Hashim, A. BinHuraib, and S. Mohammed, ‘‘A modulo-
based labeling scheme for dynamically ordered XML trees,’’ in Proc.
5th Int. Conf. Digit. Inf. Manage. (ICDIM), Thunder Bay, ON, Canada,
Jul. 2010, pp. 213–221.

[36] Z. Chen, J. Gehrke, F. Korn, N. Koudas, J. Shanmugasundaram, and
D. Srivastava, ‘‘Index structures for matching xml twigs using relational
query processors,’’ inProc. 21st Int. Conf. Data Eng.Workshops (ICDEW),
Apr. 2005, p. 1273.

[37] M. Yoshikawa, T. Amagasa, T. Shimura, and S. Uemura, ‘‘XRel: A path-
based approach to storage and retrieval of XML documents using relational
databases,’’ ACM Trans. Internet Technol., vol. 1, no. 1, pp. 110–141,
Aug. 2001, doi: 10.1145/383034.383038.

[38] N. Zhang, V. Kacholia, and M. T. Ozsu, ‘‘A succinct physical storage
scheme for efficient evaluation of path queries in XML,’’ in Proc. 20th
Int. Conf. Data Eng., Boston, MA, USA, Apr. 2004, pp. 54–65.

[39] P. Rao and B. Moon, ‘‘PRIX: Indexing and querying XML using prufer
sequences,’’ in Proc. 20th Int. Conf. Data Eng., Boston, MA, USA,
Apr. 2004, pp. 288–299.

[40] H. Wang, S. Park, W. Fan, and P. S. Yu, ‘‘ViST: A dynamic index method
for querying XML data by tree structures,’’ in Proc. ACM SIGMOD Int.
Conf. Manage. Data SIGMOD, San Diego, CA, USA, 2003, pp. 110–121.

[41] S. Al-Khalifa, H. V. Jagadish, N. Koudas, J. M. Patel, D. Srivastava, and Y.
Wu, ‘‘Structural joins: A primitive for efficient XML query pattern match-
ing,’’ in Proc. 18th Int. Conf. Data Eng. San Jose, CA, USA, Mar. 2002,
pp. 141–152.

[42] S.-Y. Chien, Z. Vagena, D. Zhang, V. J. Tsotras, and C. Zaniolo, ‘‘Effi-
cient structural joins on indexed xml documents,’’ in Proc. 28th Int.
Conf. Very Large Databases VLDB. Hong Kong: Elsevier, Jan. 2002,
pp. 263–274.

[43] H. Jiang, H. Lu,W.Wang, and B. C. Ooi, ‘‘XR-tree: IndexingXMLdata for
efficient structural joins,’’ in Proc. 19th Int. Conf. Data Eng., Bangalore,
India, Mar. 2003, pp. 253–264.

[44] J. Lu and T. W. Ling, ‘‘Labeling and querying dynamic xml trees,’’
in Proc. Asia–Pacific Web Conf. Hangzhou, China: Springer, 2004,
pp. 180–189.

[45] J. Lu, T. W. Ling, C.-Y. Chan, and T. Chen, ‘‘From region encoding to
extended dewey: On efficient processing of xml twig pattern matching,’’
inProc. 31st Int. Conf. Very large Databases (VLDB). Trondheim, Norway,
2005, pp. 193–204.

[46] N. Grimsmo, T. A. Bjørklund, and M. L. Hetland, ‘‘Fast optimal twig
joins,’’ Proc. VLDB Endowment, vol. 3, nos. 1–2, pp. 894–905, Sep. 2010.

[47] R. Bača, M. Krátký, and V. Snášel, ‘‘On the efficient search of an
xml twig query in large dataguide trees,’’ in Proc. Int. Symp. Database
Eng. Appl. (IDEAS), New York, NY, USA, 2008, pp. 149–158, doi:
10.1145/1451940.1451962.

[48] F.Weigel, H.Meuss, F. Bry, and K. U. Schulz, ‘‘Content-aware dataguides:
Interleaving ir and db indexing techniques for efficient retrieval of textual
XML data,’’ inProc. Eur. Conf. Inf. Retr. Sunderland, U.K.: Springer, 2004,
pp. 378–393.

[49] M. Noura, M. Atiquzzaman, and M. Gaedke, ‘‘Interoperability in Internet
of Things: Taxonomies and open challenges,’’Mobile Netw. Appl., vol. 24,
no. 3, pp. 796–809, Jun. 2019.

[50] Y. Zhang, W. Han, W. Wang, and C. Lei, ‘‘Optimizing the storage of
massive electronic pedigrees in HDFS,’’ in Proc. 3rd IEEE Int. Conf.
Internet Things, Wuxi, China, Oct. 2012, pp. 68–75.

[51] M. Li, Z. Zhu, and G. Chen, ‘‘A scalable and high-efficiency discovery
service using a new storage,’’ in Proc. IEEE 37th Annu. Comput. Softw.
Appl. Conf., Kyoto, Japan, Jul. 2013, pp. 754–759.

[52] A.Markus, G. Kecskemeti, and A. Kertesz, ‘‘Flexible representation of IoT
sensors for cloud simulators,’’ in Proc. 25th Euromicro Int. Conf. Parallel,
Distrib. Netw.-Based Process. (PDP). St. Petersburg, Russia, Mar. 2017,
pp. 199–203.

[53] Y. Xu and T. Kishi, ‘‘An ontology-based IoT communication data reduc-
tion method,’’ in Proc. 9th IEEE Annu. Ubiquitous Comput., Electron.
Mobile Commun. Conf. (UEMCON), NewYork City, NY, USA, Nov. 2018,
pp. 321–325.

[54] H.-W. Kim, J. H. Park, and Y.-S. Jeong, ‘‘Efficient resource manage-
ment scheme for storage processing in cloud infrastructure with Inter-
net of Things,’’ Wireless Pers. Commun., vol. 91, no. 4, pp. 1635–1651,
Dec. 2016.

[55] K. R. Malik, Y. Sam, M. Hussain, and A. Abuarqoub, ‘‘A methodology for
real-time data sustainability in smart city: Towards inferencing and analyt-
ics for big-data,’’ Sustain. Cities Soc., vol. 39, pp. 548–556, May 2018.

[56] P. K. Gupta, B. T. Maharaj, and R. Malekian, ‘‘A novel and secure IoT
based cloud centric architecture to perform predictive analysis of users
activities in sustainable health centres,’’ Multimedia Tools Appl., vol. 76,
no. 18, pp. 18489–18512, Sep. 2017.

[57] S. Ahmad, L. Hang, and D. Kim, ‘‘Design and implementation of cloud-
centric configuration repository for DIY IoT applications,’’ Sensors,
vol. 18, no. 2, p. 474, 2018.

[58] R. Goldman and J. Widom, ‘‘Dataguides: Enabling query formula-
tion and optimization in semistructured databases,’’ in Proc. 23rd Int.
Conf. Very Large Data Bases (VLDB), San Francisco, CA, USA: Mor-
gan Kaufmann, 1997, pp. 436–445. [Online]. Available: http://dl.acm.
org/citation.cfm?id=645923.671008

[59] L. Qin, J. X. Yu, and B. Ding, ‘‘Twiglist: Make twig pattern matching fast,’’
in Proc. 12th Int. Conf. Database Syst. Adv. Appl. Bangkok, Thailand:
Springer, 2007, pp. 850–862.

[60] DBLP: Digital Bibliography & Library Project. Accessed: Mar. 1, 2018.
[Online]. Available: http://dblp.uni-trier.de/xml/

[61] University of Washington Database Group: The XML Data Repository.
Accessed: Mar. 1, 2018. [Online]. Available: http://www.cs.washington.
edu/research/xmldatasets/

[62] XMark—An XML Benchmark Project. Accessed: Mar. 1, 2018. [Online].
Available: http://www.xml-benchmark.org/

[63] F. Azzedin, J. Yazdani, S. Adam, and M. Ghaleb, ‘‘A generic model for
disease outbreak notification systems,’’ Int. J. Comput. Sci. Inf. Technol.,
vol. 6, no. 4, pp. 137–154, Aug. 2014.

[64] F. Azzedin, S. Mohammed, J. Yazdani, and M. Ghaleb, ‘‘Designing a
disease outbreak notification system in Saudi Arabia,’’ in Proc. 2nd Int.
Conf. Adv. Comput. Sci. Inf. Technol. (ACSIT), Zurich, Switzerland, 2014,
pp. 1–14.

[65] F. Azzedin, S. Mohammed, J. Yazdani, T. A. Ghaleb, and M. Ghaleb,
‘‘A cloud-based prototype implementation of a disease outbreak notifica-
tion system,’’ Int. J. Comput. Sci., Eng. Appl., vol. 5, no. 2, pp. 15–31,
Apr. 2015.

FARAG AZZEDIN received the B.Sc. degree in
computer science from the University of Victoria,
Canada, and the M.Sc. and Ph.D. degrees in com-
puter science from the Computer Science Depart-
ment, University of Manitoba, Canada. He is cur-
rently an Associate Professor with the Department
of Information and Computer Science, King Fahd
University of Petroleum and Minerals (KFUPM),
Dhahran, Saudi Arabia.

61832 VOLUME 8, 2020

http://dx.doi.org/10.1145/383034.383038
http://dx.doi.org/10.1145/1451940.1451962

F. Azzedin et al.: Systematic Partitioning and Labeling XML Subtrees for Efficient Processing of XML Queries

SALAHADIN MOHAMMED received the B.S.
and M.S. degrees in computer science from the
King Fahd University of Petroleum and Min-
erals (KFUPM) and the Ph.D. degree in com-
puter science from the Computer Science Depart-
ment, Monash University, Melbourne, Australia.
He is currently an Assistant Professor with the
Department of Information and Computer Sci-
ence, KFUPM.

MUSTAFA GHALEB was born in Taiz, Yemen,
in 1983. He received the B.S. degree in computer
from King Khalid University (KKU), Abha, Saudi
Arabia, in 2007, and the M.S. degree in informa-
tion and computer sciences from the King Fahd
University of Petroleum and Minerals (KFUPM).
Dhahran, Saudi Arabia, in 2015, where he is cur-
rently pursuing the Ph.D. degree in information
and computer sciences.

JAWEED YAZDANI received the B.S. degree in
computer science and the M.S. degree from the
King Fahd University of Petroleum and Minerals
(KFUPM), Dhahran, Saudi Arabia. He is currently
a faculty member with the Department of Informa-
tion and Computer Science, KFUPM, and a Man-
ager of the Administrative Information Systems
(ADIS), KFUPM.

ADEL AHMED received the B.S. degree in math-
ematics from King Saud University, in 1995,
the M.S. degree in computer science from the
King Fahd University of Petroleum and Minerals
(KFUPM), Saudi Arabia, in 2001, and the Ph.D.
degree in computer science from The University
of Sydney, Australia, in 2008. He is currently the
Dean of the College of Computer Science and
Engineering, KFUPM.

VOLUME 8, 2020 61833

