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ABSTRACT Parameters extraction of photovoltaic (PV) models is urgently desired for the simulation,
control, and evaluation of PV systems. To accurately and reliably extract the parameters of different PV
models, a triple-phase teaching-learning-based optimization (TPTLBO) is proposed in this paper. The
novelty of TPTLBO lies in: i) teaching-learning-based optimization introduces a buffer phase and adopts
a centroid strategy to update the position of intermediate learners, which further strengthens the exploration
and exploitation; ii) the learners can select different phases and employ different learning strategies based
on their knowledge level; iii) a dynamic control parameter replaces the original random parameter rand to
enhance the search ability of algorithm. The parameters extraction performance of TPTLBO is verified
through the single diode model, the double diode model, and three PV models. Experimental results
demonstrate that TPTLBO achieves better performance in terms of accuracy and reliability compared to
state-of-the-art algorithms.

INDEX TERMS Photovoltaic models, parameter extraction, teaching-learning-based optimization,
triple-phase.

I. INTRODUCTION
In recent years, to deal with the environment pollution, global
warming, and increasing energy shortage, many countries
have been looked for renewable energy [1]. The research of
several renewable sources, such as wind, wave, biomass, and
so on, has attracted lots of attention [2]. Among the different
available sources of renewable energy, solar energy is one
of the most promising and potential alternatives due to its
availability and cleanliness [3]. Solar energy can be converted
into electricity through photovoltaic (PV) system, which has
been extensively applied worldwide [4]. Since photovoltaic
systems depend on weather and environmental factors, par-
ticularly temperature and global irradiance, the use of photo-
voltaic power is an important challenge [5]. Hence, in order
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to optimize or control a PV system, it is necessary to evaluate
the actual behavior of PV arrays through accurate model
based on measured current-voltage data [6]. The widely used
models are the single diode and double diode models [7]. The
accuracy of models parameters is important to the research
of solar PV systems. Hence, it is essential to design efficient
method to extract these model parameters.

Several attempts have been devoted to adopting determin-
istic methods for parameter extraction of PV models [8], [9].
However, these methods are highly dependent on the initial
guess and sensitive to the characteristics of the objective func-
tion [10]. Besides, PV models are nonlinear and multi-modal
problem, leading to poor solution when using deterministic
methods.

To overcome the disadvantage of deterministic meth-
ods, meta-heuristic methods by natural phenomenon inspired
have been considered as effective alternatives for parameter
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extraction of PV models. Because they do not have strict
requirements, thus can be easily implemented for real-world
problems. Up to now, a great deal of meta-heuristic methods
have been used to extract the parameters of PV models. They
are genetic algorithm [11], particle swarm optimization [12],
differential evolution [13]–[15], ant lion optimizer [16], sim-
ulated annealing algorithm [17], harmony search [7], arti-
ficial bee colony [18], flower pollination algorithm [19],
biogeography-based optimization [20], JAYA algorithm [6],
backtracking search algorithm [1], and other algorithms [21],
[22]. Although these methods have demonstrated satisfactory
results, it still needs further improvements in accuracy and
reliability. Moreover, most meta-heuristic methods contain
the control parameters that need to be given in advance.
However, their optimal parameter settings are difficult and
problem-dependent.

The teaching-learning-based optimization algorithm
(TLBO) is a simple yet powerful heuristic method proposed
by Rao for continuous non-linear large scale problems [23].
Recently, some TLBO variants have been developed to
extract the PV parameters. In [24], an improved TLBO
algorithm (LETLBO)with learning experience of other learn-
ers was presented to extract the parameters of PV models,
and promising results were obtained. However, this method
needs to balance the diversity and the mean solution of the
population. In [25], authors employed generalized opposi-
tional teaching-learning-based optimization to identify the
PV parameters. Generalized opposition-based learning was
combined with original TLBO through the initialization step
and generation jumping to improve the convergence. A self-
adaptive teaching-learning-based optimization (SATLBO)
is applied in [26] for solar cell parameters. In SATLBO,
different learners can select different learning phases based
on their knowledge level. This self-adaptive strategy is able
to efficiently enhance the performance of algorithm. In [10],
a new hybrid teaching-learning-based artificial bee colony
(TLABC) for the solar PV parameter estimation problems
was proposed. To accurately and reliably identify the PV
parameters, an improved teaching-learning-based optimiza-
tion (ITLBO) algorithm is proposed [27]. In ITLBO, authors
adopt different strategies in teaching and learning phase to
balance exploration and exploitation. However, these TLBO
variants also encounter the dilemma of insufficient accuracy
and low reliability. In addition, although the above methods
have solved the problems of exploration and exploitation to
some extent, it still needs further study.

Based on the above considerations, in this paper, a triple-
phase teaching-learning-based optimization (TPTLBO) is
proposed to accurately and reliably identify the parameters
of PVmodels. In TPTLBO, three improvements are proposed
to deal with the shortcomings. First, basic TLBO introduces a
buffer phase. In buffer phase, a centroid strategy is developed
to modify the position of intermediate learner, which can fur-
ther improve the ability between exploration and exploitation.
Secondly, the learners can select different phases and adopt
different learning strategies based on their knowledge level.

Finally, utilizing a dynamic parameter strategy instead of the
random parameter (rand) can be advantageous for search
ability of the algorithm. In this way, we can alleviate the
trivial task to set the optimal parameter for different problems.
To evaluate the performance of TPTLBO, the algorithm was
employed to extract the parameters of different PV models,
such as the single diode model (SDM), the double diode
model (DDM), and the PV module models (SMM) that con-
sist of a plurality of solar cells connected in series and/or
in parallel. Experimental results show that our method can
provide highly competitive results compared with other state-
of-the-art methods.

The main contributions of this paper are as follows:
• A TPTLBO algorithm is proposed to extract the param-
eters of PV models. In TPTLBO, basic TLBO adds a
buffer phase to further improve the ability to balance
diversity and convergence. Moreover, learners can select
different phases and employ different learning strategies
according to their knowledge level.

• A dynamically controlling parameters method is pro-
posed to improve the search capability of the algorithm.

• By comparing with other TLBO parameter estimation
methods, TPTLBO demonstrates the accuracy and reli-
ability in the experiments. Thus, it can be considered
as an effective alternative to parameter extraction of PV
models.

The rest of this paper is organized as follow. Section II
introduces different PV models and the objective function.
Section III describes the basic TLBO algorithm. The pro-
posed TPTLBO is proposed in Section IV. The experimen-
tal results are shown and analyzed in Section V. Finally,
Section VI concludes the paper.

II. PHOTOVOLTAIC MODELING
AND PROBLEM FORMULATION
In the literature, there are two most commonly used math-
ematic models can explain the I-V characteristics of PV
systems. In this section, brief mathematical descriptions of
the single diode, the double diode model, and the PV module
are introduced.

A. SINGLE DIODE MODEL
Fig. 1(a) shows the equivalent circuit diagram for single
diode model. It contains a current source, a diode, a shunt
resistor and a series resistor. The output current is computed
as follows:

I = Iph − Id − Ish (1)

where Iph is the photo-generated current, Id is the diode
current, and Ish represents the shunt resistor current. Among
them, Id and Ish can be calculated as:

Id = Io

[
exp

(
V + IRs
aVt

)
− 1

]
(2)

Ish =
V + IRs
Rsh

(3)
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FIGURE 1. Equivalent circuit of PV models [27]: (a) SDM, (b) DDM, (c) SMM.

where Io denotes the diode reverse saturation current, a is
the diode ideality factor, Rs and Rsh are series and shunt
resistance, respectively. V is the cell output voltage, and Vt
represents the junction thermal voltage calculated by (4)

Vt =
k · T
q

(4)

where k is the Boltzmann constant (1.3806503 × 10−23J/K),
q is the electron charge (1.60217646× 10−19C), and T is the
temperature of junction in Kelvin.

Therefore, according to (1)-(4), the output current I can be
calculated by (5)

I = Iph − Io

[
exp

(
V + IRs
aVt

)
− 1

]
−
V + IRs
Rsh

(5)

Therefore, there are five unknown parameter (Iph, Io, Rs,
Rsh, and a) that require to be identified in single diode model.

B. DOUBLE DIODE MODEL
For the double diode model, Fig. 1(b) shows that two diodes
in parallel in the equivalent circuit. The output current I is
calculated as follows:

I = Iph − Id1 − Id2 − Ish (6)

where Id1 , Id2 are respectively the first and second diode
currents, which can be computed as below:

Id1 = Io1

[
exp

(
V + IRs
a1Vt

)
− 1

]
(7)

Id2 = Io2

[
exp

(
V + IRs
a2Vt

)
− 1

]
(8)

where Io1 , Io2 represent diffusion current and saturation cur-
rent, respectively. a1, a2 denote the first and second diode
ideality factors, respectively. Therefore, the output current I
of solar cell can be calculated by (9), and DDM has seven
unknown parameters (Iph, Io1, Io2,Rs,Rsh, a1, and a2) that
need to be extracted:

I = Iph − Io1

[
exp

(
V + IRs
a1Vt

)
− 1

]
−Io2

[
exp

(
V + IRs
a2Vt

)
− 1

]
−
V + IRs
Rsh

(9)

C. PHOTOVOLTAIC MODULE MODEL
Fig. 1(c) demonstrates the equivalent circuit of the PV mod-
ule. It can be observed that the PV module consist of several
diodes connected in series and/or in parallel. The output
current is calculated as follows:

I = IphNp − IoNp

[
exp

(
V + IRsNs/Np

aNsVt

)
− 1

]
−
V + IRsNs/Np
RshNs/Np

(10)

where Ns and Np are the number of solar cells connected in
series or in parallel, respectively. Because PV models used in
this paper are all in series, Np is equal to 1. It is observed that
five parameters (Iph, Io, Rs, Rsh, and a) require to be extracted.

D. OBJECTIVE FUNCTION
In general, the problem of PV parameter extraction can be
converted into an optimization problem, and the goal is to
minimize the error between the experimental data and simu-
lated data. The overall error betweenmeasured and calculated
current data is defined as follows:

RMSE(x) =

√√√√ 1
N

N∑
k=1

f (Vk , Ik , x)2 (11)

where N is the number of experimental data, and x is a vector
that contains the parameters to be identified. In this paper, the
objective functions of different PV models can be calculated
as follow:
• For SDM:

f (V , I , x) = Iph − Io

[
exp

(
V + IRs
aVt

)
− 1

]
−
V + IRs
Rsh

− I

x =
{
Iph, Io,Rs,Rsh, a

}
(12)

• For DDM:

f (V , I , x) = Iph − Io1

[
exp

(
V + IRs
a1Vt

)
− 1

]
−Io2

[
exp

(
V + IRs
a2Vt

)
− 1

]
−
V + IRs
Rsh

− I

x =
{
Iph, Io1 , Io2 ,Rs,Rsh, a1, a2

}
(13)
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• For SMM:

f (V , I , x) = Iph − Io

[
exp

(
V + IRsNs
aNsVt

)
− 1

]
−
V + IRsNs
RshNs

− I

x =
{
Iph, Io,Rs,Rsh, a

}
(14)

III. TEACHING-LEARNING-BASED OPTIMIZATION
Inspired by the interaction between teachers and students
in class, TLBO was first proposed to deal with nonlinear
optimization problems [28]. The main idea of TLBO is to
mimic the classical learning process composed of a teacher
phase and a learner phase. In the teacher phase, teacher shares
his/her knowledge to enhance the mean of the class; whereas
in the learner phase, learners can communicate with each
other to improve their knowledge level. These two phases will
be introduced in the subsequent sections.

A. TEACHER PHASE
Generally, a class consists of one teacher and NP−1 learners
(xi, i = 1, . . . ,NP). The best learner is considered as the
teacher (xteacher) and he/she can share the knowledge to the
learners to enhance the mean of the class. The mean position
of a class can be defined as:

xmean =
1
NP

NP∑
i=1

xi (15)

subsequently, each learner is updated as follows:

xi,new = xi + rand · (xteacher − TF · xmean) (16)

where xi,new and xi represent the i-th learner’s new and old
positions. rand is the random number between 0 and 1. TF is
the teaching factor and its value is equal to either 1 or 2.

B. LEARNER PHASE
In the learner phase, a learner selects different learners and
interacts randomly with them to improve his/her knowledge
level. The learning process can be formulated as follows:

xi,new =

{
xi + rand · (xi − xj), if f (xi) ≤ f (xj)
xi + rand · (xj − xi), otherwise

(17)

where xj is j−th learner and i 6= j. f (x) is the fitness value of
x.

IV. OUR APPROACH: TPTLBO
A. MOTIVATIONS
In the original TLBO algorithm, learners require to undergo
the teacher phase and learner phase, which results in the con-
sumption of more fitness evaluations in each generation [29].
Moreover, to balance between exploration and exploitation,
several researchers have proposed improvedmethods, such as
LETLBO [24], GOTLBO [25], SATLBO [26], TLABC [10],
ITLBO [27]. However, the balance ability needs further

improvement. In addition, as shown in (16) and (17), a ran-
dom number (rand) is used to scale the difference between
learners, which will affect the performance of TLBO. For
example, if rand is small in the early stage, it is not con-
ducive to global search and population diversity; whereas
at a later stage, a larger rand may lead to a slow conver-
gence. Hence, its optimal parameter setting is difficult and
problem-dependent.

In this paper, we present a triple-phase TLBO for parameter
extraction of different PV models. It is explained in detail in
the subsequent subsections.

B. TEACHER PHASE OF TPTLBO
In the teacher phase of TPTLBO, we adopt the strategy
proposed in [27] to improve the convergence rate. Thus, the
modification of learner in teacher phase is described as:

xi,new = xi + Ft · (xteacher − xi)+ Ft · (xr1 − xr2) (18)

where r1, r2 are random integers selected from {1, . . . ,NP}
and r1 6= r2 6= i. Ft is a dynamic control parameter, which
will be introduced in Section IV-F.

The teaching strategy offers two exclusive advantages. On
the one hand, better learners can approach the promising
region by the teacher (xteacher) and themselves (xi). On the
other hand, By increasing the disturbance of different learn-
ers, it avoids falling into local optima.

C. LEARNER PHASE OF TPTLBO
In the learner phase, the exploration ability plays a vital role
in refining the quality of learners. However, The strategy
used in the learning phase of the original TLBO results in
limited learner capability and fewer global searching, making
it difficult to maintain population diversity. Hence, in [26],
authors introduced a diversity learning method to improve the
exploration ability of the algorithm. In TPTLBO, we adopt
this method directly to update the learner’s position, which is
described as follows:

xi,new =

{
xi + Ft · (xr1 − xr2), if f (xr1) ≤ f (xr2)
xi + Ft · (xr2 − xr1), otherwise

(19)

where r1, r2 are random integers selected from {1, . . . ,NP}
and r1 6= r2 6= i. Ft is a dynamic control parameter.

D. BUFFER PHASE OF TPTLBO
For better learners and worse learners, it is easy to choose
appropriate strategies to enhance the performance of the algo-
rithm according to their characteristics. However, for inter-
mediate learners, their preference is not obvious. Therefore,
it is inappropriate to choose the teaching or learning phase
strategy to update the position. To this end, we introduce the
buffering phase in the original TLBO and use the centroid
strategy to update the learner’s position. The centroid strategy
was first proposed in [30]. In this paper, we make a minor
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modify for brevity.

xi,new = xmean + Ft · (xr1 − xr2) (20)

As shown in (15), the mean position (xmean) is calcu-
lated based on the position of each learner. Hence, only
the partial information of each learner is inherited by the
mean learner. According to (20), previously explored areas
can be fully exploited, while other potential areas can also
be explored [30]. Therefore, the use of centroid strategy by
intermediate learners can further balance the performance of
exploration and exploitation.

E. SELF-ADAPTIVELY SELECT THE LEARNING PHASE
First, all learners are sorted in ascending order (from the best
to the worst) based on their fitness. According to the ranking,
learners can be divided into three categories: better learners,
intermediate learners, and worse learners. The ranking for-
mula is as follows:

xi=


better learners, if i ∈ (1, bNP/3c)
intermediate learners, if i ∈ (bNP/3c+1, b2NP/3c)
worse learners, otherwise

(21)

Algorithm 1 Self-Adaptively Select the Learning Phase

1 Sort the population in ascending order according to the
fitness;

2 for i = 1 to NP do
3 if i ∈ (1, bNP/3c) then
4 Implement the teacher phase of TPTLBO;
5 else if i ∈ (bNP/3c + 1, b2NP/3c) then
6 Implement the buffer phase of TPTLBO;
7 else
8 Implement the learner phase of

TPTLBO;
9 end
10 end
11 end
12 end

Based on the aforementioned classification, the learn-
ers can select the appropriate learning phases adaptively.
Algorithm 1 describes the selection process. For the better
learners, teacher phase will be chosen to improve the con-
vergence ability, while the worse learners are chosen learner
phase to enhance the population diversity. In addition, inter-
mediate learners will choose buffer phase to further improve

FIGURE 2. Flow chart of the TPTLBO.
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the balance between exploration and exploitation. Hence,
under the same number of fitness evaluations, self-adaptive
selection strategy can search efficiently and enhance the per-
formance of TLBO.

F. DYNAMIC CONTROL TECHNIQUE
As shown in (16) and (17), a random parameter (rand) is
used to control the amount of knowledge acquired from other
learners. It has some disadvantages. For example, too small
rand value in the early stage may lead to less knowledge
from other learners, which is not conducive to the exploration
performance of the algorithm. In contrast, too large rand at
the later stage may result in reducing the exploitation ability
of the algorithm. In this section, we introduce a dynamic
control technique [31] to deal with the problem.

Ft = Fmin + λt × (Fmax − Fmin) (22)

where Ft is the current control parameter at iteration t; Fmin
and Fmax are the minimal and maximal values of the control
parameter; Fmin = 0.5,Fmax = 0.91; and λt ∈ [0, 1]
is dynamically changed during the run. λt is calculated as
follows:

λt = 1−
NFE

NFEmax
(23)

where NFE is the current numbers of fitness evaluation; and
NFEmax is the maximal NFE . It can be seen clearly that λt
gradually decreases from 1 to 0 during the run. The reason is
that:

• In the early stage, a large Ft can ensure that more knowl-
edge can be obtained from other learners, which is in
favor of exploration and population diversity.

• In the later stage, the algorithm has explored several
promising areas. A small Ft is beneficial to improve the
exploitation ability and obtain high-quality solution.

G. FRAMEWORK OF TPTLBO
The pseudo-code of TPTLBO is described in Algorithm 2,
whereNP is the population size,NFE is the current number of
fitness evaluation, andNFEmax is the maximalNFE . Besides,
the flow chart of TPTLBO is given in Fig. 2.

TPTLBO has the following merits: (1) it adds a buffer
phase to the original TLBO to further balance the abil-
ity between exploration and exploitation; (2) a centroid
strategy is used to update the position of the learner in
the buffer phase; (3) a method for dynamically controlling
parameter is introduced to enhance the search efficiency.
Algorithm 2 demonstrates that TPTLBO is also simple. The
complexity of TPTLBO does not increase compared with that
of TLBO.

1We did a lot of experiments and verified that Fmin = 0.5,Fmax =
0.9 obtained better results in the parameter extraction of different models.
Therefore, this paper adopts these two parameter values.

Algorithm 2 The Framework of TPTLBO
Input: Control parameters: NP, NFE , NFEmax
Output: The optimal solution

1 Set NFE = 0, Iter = 1;
2 Randomly generate the population ;
3 Evaluate the fitness of the population ;
4 NFE = NFE + NP;
5 while NFE < NFE_max do
6 Calculate Ft via (22);
7 Rank and classify learners according to their fitness;
8 for i = 1 to NP do
9 if i ∈ (1, bNP/3c) then // Teacher phase
10 Calculate xi,new via (18)
11 end
12 else if i ∈ (bNP/3c + 1, b2NP/3c) then

// Buffer phase
13 Calculate xi,new via (20)
14 end
15 else // Learner phase
16 Calculate xi,new via (19)
17 end
18 end
19 if f (xi,new) ≤ f (xi) then
20 xi = xi,new;
21 end
22 end
23 NFE = NFE + NP;
24 return the best individual from the final population.

TABLE 1. Parameter settings of different algorithms.

V. RESULTS AND ANALYSIS
To evaluate the performance of TPTLBO, the algorithm is
used to extract the parameters of different PV models: the
single diode model, double diode model, and PV module
models.

• For the single and double diode models, their current-
voltage data was received from [8], which is measured
on a 57 mm diameter commercial silicon R.T.C France
solar cell (under 1000W/m2 at 33 ◦C).

• The PV models include three different modules:
poly-crystalline Photowatt-PWP201, mono-crystalline
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TABLE 2. Parameter ranges of different PV models.

TABLE 3. Comparison of TPTLBO with other algorithms on the single
diode model.

STM6-40/36, and poly-crystalline STP6-120/36. The
Photowatt-PWP201 has 36 cell joined together in series
and is obtained under 1000 W/m2 at 45 ◦C [8]. The
STM6-40/36 and STP6-120/36 both consist of 36 cells
connected in series and are measured at 51 ◦Cand 55 ◦C.
Their current-voltage data was gained from [32].

In this paper, nine well-established algorithms, such
as IJAYA [6], PGJAYA [33], MLBSA [34], TLBO [23],
LETLBO [24], GOTLBO [25], SATLBO [26], TLABC [10],

ITLBO [27], are compared with TPTLBO. Table 1 gives the
parameter settings of the compared algorithm. All algorithms
were executed in Matlab2013b software and each algorithm
is carried out 30 independent runs. The experiments are per-
formed on a desktop PC with Intel Core i7-7700 processor @
3.6GHz, 8GB RAM, under the windows 10 64-bit OS.

For fair comparison, the ranges for each parameter are
presented in Table 2, which are the same as used in the
compared algorithms.

A. RESULTS ON THE SINGLE DIODE MODEL
For the single diode model, the results of the parameters
extracted by different algorithms are shown in Table 3, where
the best results are highlighted in boldface.
From Table 3, it can be seen that TPTLBO, ITLBO,

TLABC, SATLBO, MLBSA, and PGJAYA provided the best
RMSE values (9.8602E-04) followed by LETLBO,IJAYA,
GOTLBO, and TLBO. Although the RMSE values obtained

FIGURE 3. Comparison between the measured and simulated data obtained by TPTLBO for the single diode model: (a) I-V
characteristic, (b) P-V characteristic.

TABLE 4. Comparison of TPTLBO with other algorithms on the double diode model.
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FIGURE 4. Comparison between the measured and simulated data obtained by TPTLBO for the double diode model: (a) I-V
characteristic, (b) P-V characteristic.

TABLE 5. Simulated results of TPTLBO for double diode model.

from are very close to the best RMSE value, it is significant
for any reduction in the objective function. Since the exact
parameter values were unavailable, the smaller the value of
RMSE, the more accurate the extracted parameter.

In addition, to further confirm the accuracy of the extracted
parameters, Fig. 3 plots the I-V and P-V curves. It is obvious
that the simulated data from TPTLBO are highly matched
with the measured data in the voltage range for both the I-V
and P-V curves.

B. RESULTS ON THE DOUBLE DIODE MODEL
In the double diode model, there are seven unknown param-
eters. More parameters increase the difficulty of extracting
parameters with the optimization algorithm. The extracted
results of these algorithms are shown in Table 4. According

TABLE 6. Comparison of TPTLBO with other algorithms on the
Photowatt-PWP201 module.

TABLE 7. Comparison of TPTLBO with other algorithms on the
STM6-40/36 module.

TABLE 8. Comparison of TPTLBO with other algorithms on the
STP6-120/36 module.

to the RMSE results, TPTLBO and ITLBO shown the best
results among the nine algorithms.

The extracted TPTLBO parameter were used to plot I-V
and P-V characteristics given as Fig. 4. It can be seen that the
extracted data obtained by TPTLBO are highly fitted with the
measured data. Additionally, the IAEC2 is given in Table 5.
IAEC describes the error between the extracted parameter

2Absolute error between measured and simulated power is calculated as
|Imeasured − Isimulated |
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FIGURE 5. Comparison between the measured and simulated data obtained by TPTLBO for Photowatt-PWP201 module: (a) I-V
characteristic, (b) P-V characteristic.

FIGURE 6. Comparison between the measured and simulated data obtained by TPTLBO for STM6-40/36 module: (a) I-V
characteristic, (b) P-V characteristic.

FIGURE 7. Comparison between the measured and simulated data obtained by TPTLBO for STP6-120/36 module: (a) I-V
characteristic, (b) P-V characteristic.

and the measured data. In other words, the smaller IAEC, the
better the extracted parameter. From Table 5, the IAEC is less
than 2.0E-03, which further indicates that the measured and
extracted data have a good coincidence.

C. RESULTS ON THE PV MODULES
Section V-A and V-B, the single and double diode mod-
els were employed to verify the performance of TPTLBO.
In this subsection, the PV modules (Photowatt-PWP201,
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TABLE 9. Simulated results of TPTLBO for Photowatt-PWP201.

TABLE 10. Simulated results of TPTLBO for STM6-40/36.

STM6-40/36, and STP6-120/36) are chosen to further eval-
uate the effectiveness of our method. Tables 6-8 report the
extracted results obtained from different algorithms. It can be
seen that TPTLBO gains the minimum RMSE values for the
three PV modules. Hence, compared with other algorithms,
our method TPTLBO gives the competitive results.

Additionally, in order to verify the accuracy of the
extracted parameters from TPTLBO, I-V and P-V curve
are also respectively given in Fig. 5, 6 and 7. According
to the results, the simulated data of TPTLBO are highly
consistent with the measured data for Photowatt-PWP201,
STM6-40/36, and STP6-120/36. Moreover, the results of
IAEC is provided in Table 9-11. As can be seen from the
table, IAEC values of the three different models are small,
especially for Photowatt-PWP201 and STM6-40/36, so the
precision of the extracted parameters is feasible.

TABLE 11. Simulated results of TPTLBO for STP6-40/36.

TABLE 12. The statistical results of different PV models.

D. STATISTICAL RESULTS AND CONVERGENCE SPEED
Compared with nine well established in the previous sec-
tions, the superior accuracy of the extracted parameter from
TPTLBO algorithm has been verified. To further prove
the reliability of TPTLBO, the statistical results containing
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FIGURE 8. Convergence curves of different algorithms on different PV models.

minimum (Min), maximum (Max), mean value (Mean), and
standard deviation (Std) are analyzed. Table 12 shows the
statistical results. we can conclude follows:

• For the Min RMSE values, most algorithms can achieve
the best values for SDM, STM6-40/36 and STP6-120/36
modules. In addition, all algorithms give the Min RMSE
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FIGURE 9. Best RMSE boxplot of different algorithm for different PV models.

TABLE 13. Comparison of TPTLBO with parameter extraction methods in
literature for single diode model.

value for Photowatt-PWP201, whereas only TPTLBO
and ITLBO obtain the best results for DDM.

• With respect to the Max and Mean RMSE values, it is
obvious that TPTLBO shows significant performance in

all models compared with other algorithms, particularly
DDM. Additionally, ITLBO, SATLBO, MLBSA, and
PGJAYA also obtain relatively good results.

• In terms of the Std values, it can be seen that
TPTLBO has provided the best results, followed by
ITLBO. Hence, TPTLBO and ITLBO show a preferable
robustness.

According to the above analysis, four algorithms (ITLBO,
SATLBO, MLBSA and PG-JAYA) also provide competitive
results compared to TPTLBO. To this end, Fig. 8 shows
the convergence graphs of different algorithms on different
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TABLE 14. Comparison of TPTLBO with parameter extraction methods in literature for double diode model.

TABLE 15. Comparison of TPTLBO with parameter extraction methods in
literature for Photowatt-PWP201 module.

TABLE 16. Comparison of TPTLBO with parameter extraction methods in
literature for STM6-40/36 module.

TABLE 17. Comparison of TPTLBO with parameter extraction methods in
literature for STP6-120/36 module.

models, and we will further analyzes the performance of
the algorithm. It is obvious that TPTLBO shows the fastest
convergence rate, especially for SDM, STM6-40/36 and
STP6-120/36 modules. Therefore, the proposed TPTLBO
algorithm can provide accurate and reliable parameter values
faster than other comparison algorithms.

In addition, to show the distribution results obtained from
different algorithms, the boxplot of different PV models is
given in Fig. 9. It can be seen that TPTLBO demonstrates the
superior performance in terms of accuracy and robustness.

It’s worth noting that the results obtained by TPTLBO
and ITLBO are similar/close from Table 6-8 and Table 12.
However, it can be seen from Fig. 8 that TPTLBO converges
faster than ITLBO. Additionally, in Fig. 9, our algorithm
shows better robustness. Therefore, compared with ITLBO,
TPTLBO is better in both convergence and robustness.

E. COMPARISON WITH RESULTS IN THE LITERATURE
In this subsection, TPTLBO is compared with other meth-
ods that were used in parameter extraction, including
CPMPSO [35], BLPSO [36], flower pollination algorithm
(FPA) [37], greywolf optimizer (GWO) [38], andwind driven

TABLE 18. Optimal parameters extracted by TPTLBO for two types of PV
modules at different irradiance and temperature of 25 ◦C.

optimization (WDO) [39]. 3 The parameters of these algo-
rithms are expressed in Table 1.

For the single diode model, the experimental results are
shown in Table 13. It can be seen that WDO get the
best RMSE (8.6640E-06), followed by FPA (7.7301E-04),
TPTLBO (9.8602E-04),CPMPSO (9.8602E-04), BLPSO
(1.0312E-03), and GWO (1.2210E-03).

For the double diode model, Table 14 gives the results
obtained from different algorithm. For this model, WDO get
the best RMSE (6.5237E-06). They are better than BLPSO,
FPA, TPTLBO, CPMPSO and GWO.

For the PV module model (Photowatt-PWP201,
STM6-40/36, and STP6-120/36), Tables 15-17 present the
extracted results obtained from CPMPSO, BLPSO, FPA,

3It is worth noting that the FPA result in Table 13-15 were obtain
from [37], and the FPA results in Table 16-17 were obtained from [35].
Similarly, WDO results in Table 13-14 were obtained from [40], and the
WDO results in Table 15-17 were obtained from [35]. The results of other
methods were derived from [35].
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TABLE 19. Optimal parameters extracted by TPTLBO for two types of PV modules at different temperature and irradiance of 1000 W /m2.

FIGURE 10. Comparison between the measured and simulated data obtained by TPTLBO at different irradiance and temperature of
25 ◦C: (a) Mono-crystalline SM55,(b) Multi-crystalline KC200GT.

FIGURE 11. Comparison between the measured and simulated data obtained by TPTLBO at different temperature and irradiance of 1000
W /m2: (a) Mono-crystalline SM55, (b) Multi-crystalline KC200GT.

GWO, WDO, TPTLBO. From the results, it can be seen that
TPTLBO and CPMPOS obtian the best RMSE in STM6-
40/36 and STP6-120/36 whereas FPA got the best RMSE in
Photowatt-PWP201.

Based on the above comparisons, it illustrates that
TPTLBO can obtain similar or better results compared with
these approaches; thus, it can be considered as an efficient
alternative method for parameter extraction problems in dif-
ferent PV models. Note that FPA and WDO show better

results in single/double diodemodel and Photowatt-PWP201,
which will motivate us to apply several ideas of these two
methods to improve the efficiency of the algorithm in the
future.

F. RESULTS ON EXPERIMENTAL DATA FROM THE
MANUFACTURERS DATA SHEET
To further verify the reliability of TPTLBO, two prac-
tice PV module models (Multi-crystalline KC200GT and
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Mono-crystalline SM55) [15] are selected as test sets. Their
experimental data are obtained by extracting the I-V curves
given in the manufacturers data sheet at different five irradi-
ance and three temperature conditions.

The range of parameters are set as Iph ∈ [0, 2IS ] (A),
Io ∈ [0, 100] (µA), Rs ∈ [0, 2] (�), Rsh ∈ [0, 5000]
(�), and a ∈ [1, 4]. IS is short-circuit current under non-
standard conditions related to irradiance (G) and temperature
(T ), which is expressed as follows:

IS (G,T ) = IS_STC ·
G

GSTC
+ α · (T − TSTC ) (24)

where IS_STC , GSTC , and TSTC are the short circuit cur-
rent, irradiance, and temperature at standard test conditions,
respectively. α is the temperature coefficient for short circuit
current at standard test conditions.

The best parameters extracted by TPTLBO at different
irradiance and temperature are given in Table 18 and 19,
respectively. Moreover, Fig. 10 and 11 give the comparisons
between the simulated and measured data of the two PV
module models at different irradiance and temperature.

From Table 18, it is clear that Iph increases gradually while
the other four parameters (Io, Rs, Rsh, and a) fluctuate slightly
with the increase of irradiance. From Table 19, it is obvious
that Iph increases gradually while Io, Rs, Rsh, and a fluctuate
slightly as the temperature increases. In addition, with respect
to the I-V curve of the two PV module models given in
Fig. 10 and 11, the simulated data agree well with the mea-
sured data at different five irradiance and three temperature
conditions. It is worth noting that TPTLBO also obtained
accurate parameters at low irradiance, which makes sense
for maximum power point tracking (MPPT) of PV systems.
Since several modules in the PV system suffer from certain
mismatches, such as partial shading.

VI. CONCLUSION
In this paper, a triple-phase teaching-learning-based opti-
mization algorithm (TPTLBO) is presented to accurately
and reliably extract the unknown parameters of different
PV models. In TPTLBO, a buffer phase is introduced in
teaching and learning phase to further balance the explo-
ration and exploitation by adopting a centroid strategy. In
addition, a dynamic control technique is developed to control
the amount of knowledge acquired from other learners and
improve the search efficiency of the algorithm. TPTLBO is
verified through parameters extraction problems of single
diode, double diode, and PV module models. Experiment
results demonstrate that TPTLBO obtains the superior perfor-
mance when compared with other state-of-the-art algorithm.
Hence, TPTLBO can be considered as an feasible alternative
for parameter extraction of other complex PV models. In
future, TPTLBO will be used to deal with the maximum
power point tracking problem in photovoltaic systems and
other energy problem and economic dispatch problem in
power systems.
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