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ABSTRACT In this paper, the dynamics solution problem and the boundary control problem for the
Timoshenko beam under uncertainties and exogenous disturbances are addressed. The dynamics of the
Timoshenko beam are represented by one non-homogenous hyperbolic partial differential equation (PDE),
one homogenous hyperbolic PDE, and three ordinary differential equations (ODEs). The authors suggest a
method of lines (MOL) for obtaining the dynamics of the Timoshenko beam in the form of the ODE formula
instead of the PDE formula. A global sliding mode boundary control (GSMBC) is designed for vibration
reduction of the Timoshenko beam influenced by uncertainties, distributed disturbance, displacement bound-
ary disturbance, and rotation boundary disturbance. Chattering phenomena are avoided by using exponential
reaching law reinforced by a relay function. Along the time and position axis: a) the boundary displacements
and rotation of the Timoshenko beam are converged to equilibrium; b) the distributed vibrations on both
displacements and rotation axis of the Timoshenko are attenuated; c) influence of the exogenous disturbances
and system parameters uncertainties are compensated. By using the Lyapunov direct approach, exponential
convergence and robustness of the closed-loop system are guaranteed. Finally, simulations are carried out
to show that the proposed GSMBC-based MOL scheme is effective for vanishing the vibrations of the
Timoshenko beam under uncertainties and external disturbances.

INDEX TERMS Boundary control, distributed parameter system (DPS), global sliding mode control
(GSMC), method of lines (MOL), partial differential equation (PDE), Timoshenko beam.

I. INTRODUCTION
Flexible robotic manipulator systems are frequently used in a
diversity of industrial fields such as moving strings, variable
marine risers, and drill chains [1]–[4]. The Timoshenko beam
is a type of flexible robotic manipulator which is an infinite
dimensional system composed of one non-homogenous par-
tial differential equation (PDE), one homogenous PDE, and
three ordinary differential equations (ODEs). By considering
the exogenous disturbances and parameters uncertainties of
the Timoshenko beam, the dynamics solution and control
implementation of such structure turns out to be hard [5]–[7].

The associate editor coordinating the review of this manuscript and

approving it for publication was Jianyong Yao .

Global sliding-mode control (GSMC) has a dynamic slid-
ing surface functions including a linear sliding surface and a
nonlinear exponential decay function. These functions have
benefits in robustness against the plant uncertainties and
exogenous disturbances. The limitations of the sliding-mode
control (SMC) are overcome in GSMC by rejecting the
attaining motion phase and then guarantees that the closed-
loop performance is robust [8]. GSMC plays a vital role in
the lumped parameter systems (LPSs), including nonlinear
system [9], uncertain nonlinear system, linear time-delay
system [10], and the hypersonic slide automobile [11]. For the
sake of LPS, GSMC is commonly used to tracking control [9],
system parameter uncertainties [10], enhancing the system
robustness [11], time-delay, system uncertainties, non-linear
input, speed up the convergence of the system [12], and
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finite-time tracking control [13]. In [14], the robust stability
for the position of the servo system is established by GSMC
through static and dynamic demonstration. GSMC is sug-
gested for the hypersonic slide-car to enhance the system
robustness on the lowest norm pole assignment approach
in [11]. Moreover, by using adaptive GSMC, the uncertain
nonlinear system’s tracking control is accomplished in [9].
Improving the performance of the complex nonlinear system
is achieved by a global terminal sliding surface integrated
with the reaching law in [12]. However, there has been little
consideration of using GSMC for distributed parameter sys-
tem (DPS). It is due to the existence of PDE form in the DPS
dynamics, such that GSMC for DPS become more difficult
and complicated In another hand, for the sake of Timoshenko
beam, vibration control is achieved under input backlash [15],
uncertainties [16], a cooperative control problem [17], input
and output constraint [18], input dead zone [19], piezoelectric
actuators [20], optimal piezoelectric vibration control [21],
output constraint and input backlash [22], contact-force
control problem [23].

In production areas, uncertainties are typically considered
as a lack of data that could motivate the entire system to
fail. It has significant features in the plant implementation as
the closed-loop system capable to deal with the worst-case
scenario [24]. Thus, the whole plant could work in a safe
zone for a high range of parameter uncertainties. The process
with uncertainties could be effected by disturbances, faults,
inaccuracy, and instability [25]. Therefore, it is vital to tackle
it through an effective approach. Until now, the aforemen-
tioned researches have studied the uncertainties with GSMC.
The uncertain linear system is controlled by GSMC under the
control input time delay in [10]. The handling of a chaotic
nonlinear plant under various delays and input nonlinearities
and uncertainties is achieved through GSMC in [26]. More-
over, by global terminal sliding-mode control, SISO non-
linear system is controlled under uncertainties in [27]. The
global robust optimal sliding-mode controller is proposed
for an affine nonlinear plant in the presence of uncertainties
in [28]. In [29], the GSMC is suggested for Genesio’s chaotic
plant under nonlinearity and system parameter uncertainties.
The vibration control of uncertain nonlinear system is manip-
ulated with GSMC under exogenous disturbances in [30].
In another hand, for addressing the disturbance rejection
problem, there are existing works such as the robust output
regulation that is achieved by using state feedback regulator
combined with a backstepping approach for coupled linear
parabolic partial integro-differential equations in [31], [32].
Also, the output regulation problem is accomplished for
the distributed parameter system under the backstepping
approach in [33], [34]. Meanwhile, for handling the uncer-
tainties and external disturbances, An electro-hydraulic sys-
tem is controlled by a state-observer based adaptive controller
under unknown velocity signal and external disturbance
in [35]. The exogenous disturbance and unmeasurable system
states are handled for MIMO nonlinear system by output
feedback control design in [36]. By using adaptive integral

robust control, the robustness against parametric uncertainties
and additive disturbance are assured for nonlinear system
in [37]. However, to the best of our knowledge, no research
suggests global sliding-mode boundary control (GSMBC) to
deal with the vibrations and uncertainties of DPS in the pres-
ence of the distributed disturbance, displacement boundary
disturbance, and rotation boundary disturbance.

To attain a precise solution for the DPSs, a novel solu-
tion approach has to be devoted. Otherwise, it is prone
to have imprecision, truncation errors, deflection in actual
values, and weaknesses among all the data [38]. Various
numerical approaches can be applied to get the approxi-
mated solution for the DPS dynamics, such as method of line
(MOL) [39]–[41], the finite element (FE) [42], [43], and the
finite difference (FD) [44]–[46] methods. However, most of
the previous studies have been used FD method to get the
numerical solution of DPS. Up to now, few results have been
applied MOL for the dynamic solution of the Timoshenko
beam. Although, MOL has advantages over the FD approach.
Hence, in this paper, MOL is used to manipulate the limita-
tions of the FD approach [38].

In this paper, GSMBC-based MOL design is proposed
for reducing the vibrations of the Timoshenko beam with
uncertainties, distributed disturbance, displacement bound-
ary disturbance, and rotation boundary disturbance and to
tackle the disadvantages of FD method. By using an expo-
nential reaching law with a relay function, the chattering
phenomena is avoided, then a nonlinear function was added
to the sliding surface for increasing the robustness of the
Timoshenko beam against the uncertainty and exogenous dis-
turbances. The proposed scheme has an enthusiastic impact
on the performance of the closed-loop system with unknown
maximum exogenous disturbances and maximum parameters
uncertainty, which to our knowledge have not been initially
inspected for the Timoshenko beam.

The main contribution compared with the previous studies
can be counted as follows:

a) GSMBC is proposed for reducing the vibrations and
increase the robustness of the Timoshenko beam
against system parameters uncertainties, distributed
disturbance, displacement boundary disturbance, and
rotation boundary disturbance.

b) MOL is suggested for obtaining an accurate solution
for the DPS in form of ODE dynamics instead of PDE
dynamics.

c) Robust stability and exponential convergence to equi-
librium for the proposed scheme under maximum and
minimum uncertainties and maximum exogenous dis-
turbances are assured by Lyapunov direct approach.

The remaining part of this paper is organized as follows.
Section II deals with the Timoshenko beam dynamics and
MOL solution process. In Section III, proposed the GSMBC
for Timoshenko beam for tackling the exogenous distur-
bances and uncertainties. In Section IV, simulations were
carried out to illustrate the performance of GSMBC-based
MOL design, while Section V gives the conclusion.
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II. PROBLEM FORMULATION
The Timoshenko beam is fixed from one end and free at
another end as shown in Fig. 1. Boundary control force
and boundary control torque are applied simultaneously
at the free end tip to diminish the vibrations induced
by time-varying distributed disturbance, boundary distur-
bances, and the system parameters uncertainties. The Tim-
oshenko beam variables used through this paper are shows
in Table 1.

FIGURE 1. Timoshenko beam structure.

A. TIMOSHENKO BEAM MODEL
Define The model of the Timoshenko beam under distributed
disturbance, displacement boundary disturbance, and rotation
boundary disturbance is represented by two PDEs and three
ODEs [47] in the following expressions:

ρü(n, t)+ K [ψ ′(n, t)− u′′(n, t)] = v(n, t) (1)

Iρψ̈(n, t)−EIψ ′
′(n, t)+K [ψ(n, t)− u′(n, t)] = 0 (2)

with the three boundary conditions

u(0, t) = ψ(0, t) = 0 (3)

Mü(L, t)− K [ψ(L, t)− u′(L, t)] = uc(t)+ d(t) (4)

J ψ̈(L, t)− EIψ ′(L, t) = vc(t)+ φ(t),

∀(0 < t < T , 0 < n < L) (5)

Assumption 1: There exist three constants F̄ ∈ R+, Ē ∈
R+, and D̄ ∈ R+such that unidentified distributed distur-
bance, boundary disturbance force, and boundary disturbance
torque satisfy |f (n, t)| ≤ F̄, |d(t)| ≤ D̄, |θ (t)| ≤ Ē , ∀(0 <
t < T , 0 < n < L).

B. DYNAMICS SOLUTION OF TIMOSHENKO BEAM
MOL has been suggested as an approximated numerical solu-
tion approach for the Timoshenko beam dynamic (1)-(5).

TABLE 1. Timoshenko beam variables.

In this paper, MOL is considered for checking the Timo-
shenko beam performance under GSMBC. The algorithm of
MOL is explained as follows:
Step (1):Discretizing the position axis n of (1) and (2) with

N as consistently spaced point nj = nj−1 + dx, n0 = 0,
nN = L, j = 1, 2, . . . ,N − 1, dx = L/N , N = 20 as shown
in Fig. 2. This explains the PDE description region by the

FIGURE 2. MOL definition zone.
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painted area and the estimated solution by the dotted lines.
Applying Taylor’s series expansion for dynamic (1) and (2)
results in

ü(n, t) =
K
ρdx2

[u(nj+1)− 2u(nj)+ u(nj−1)]

−
K
ρdx

[ψ(nj)− ψ(nj−1)]+
1
ρ
v(n, t) (6)

ψ̈(n, t) =
EI

Iρdx2
[ψ(nj+1)− 2ψ(nj)+ ψ(nj−1)]

+
K
Iρdx

[ψ(nj)− ψ(nj−1)]−
1
Iρ
ψ(nj)

j = 1, 2, 3, ....,N − 2, t = 0, 1, 2, ....,T (7)

Step (2) Discretizing the position axis of the boundary
conditions (3)-(5). Then, applying Taylor’s series expansion
results in

u(n0) = ψ(n0) = 0 (8)

ü(L, t) =
K
M
ψ(L)+

K
Mdx

[u(L)− u(L − 1)]

+
1
M
uc(t)+

1
M
d(t) (9)

ψ̈(L, t) =
EI
Jdx

[ψ(L)− ψ(L − 1)]+
1
J
vc(t)

+
1
J
φ(t) (10)

Step (3): Applying the initial conditions results in

u(nj, t) = nj (11)

u̇(nj, t) = 0 (12)

ψ(nj, t) = nj (13)

ψ̇(nj, t) = 0

j = 1, 2, 3, ....,N − 1 (14)

Step (4): Solving the resulted ODE system by MATLAB
to obtain the solution of the Timoshenko beam dynamics.

Through the MOL algorithm, the Timoshenko beam’s
length was subdivide by N subdivisions, but in FD method,
both the length of the beam N1 and the time interval N2 are
subdivided, which affected the position step size dxFD =
L/N1 and the time step size dtFD = L/N2. Hence, the numer-
ical algorithm of FD method depends on both the time and
position step size. Meanwhile, in MOL, it depends typi-
cally on selecting applicable ODE solver. That apparently
has a numerical stability feature compared with the FD
approach. Table 2, shows some comparison between FD and
MOL approach.

III. BOUNDARY CONTROL DESIGN
A. GLOBAL SLIDING MODE BOUNDARY
CONTROL (GSMBC) DESIGN
In this section, GSMBC-based MOL design is proposed for
the Timoshenko beam in the presence of parameters uncer-
tainties and exogenous disturbances as in Fig. 3. This aim
to improve the performance and confirm the robustness of

TABLE 2. Comparison between MOL and FD.

FIGURE 3. Boundary control design.

beam with regards to parameters uncertainties, reducing the
unknown vibrations, eliminating the time-varying distributed
disturbance, boundary disturbances, and stabilizing the beam
free end to equilibrium.

The mathematical representations of GSMBC can be
implemented as follow:

Firstly, design the global nonlinear-dynamic sliding func-
tion s1(L, t) for the boundary control force and s2(L, t) for
the boundary control torque as shows below.

s1(L, t) = ce1(L, t)+ ė1(L, t)− γ1(t) (15)

where

e1(L, t) = u(L, t)− ud (L, t) (16)

ė1(L, t) = u̇(L, t)− u̇d (L, t) (17)

and

s2(L, t) = ce2(L, t)+ ė2(L, t)− γ2(t) (18)

where

e2(L, t) = ψ(L, t)− ψd (L, t) (19)

ė2(L, t) = ψ̇(L, t)− ψ̇d (L, t) (20)

both e1(L, t) and e2(L, t) denotes the displacement and
rotation position tracking error respectively, c > 0 is a
constant, u(L, t)and ψ(L, t) represent the boundary and rota-
tion deflection respectively, ud (L, t) andψd (L, t) denotes the
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desired displacement and rotation position of the tip beam
respectively, γ1(t) = γ1(0)e−εt , γ2(t) = γ2(0)e−εt , γ1(0) =
ce1(L, 0)+ ė1(L, 0), γ2(0) = ce2(L, 0)+ ė2(L, 0) and ε > 0
is a constant.

By differentiating (15) and (18), one obtains

ṡ1(L, t) = cė1(L, t)+ ü(L, t)− üd (L, t)− γ̇1(t) (21)

ṡ2(L, t) = cė2(L, t)+ ψ̈(L, t)− ψ̈d (L, t)− γ̇2(t) (22)

Substituting (4) and (5) into (21) and (22) respectively, one
obtains

ṡ1(L, t) = c(u̇(L, t)− u̇d (L, t))− üd (L, t)− γ̇1(t)

+
K̂

M̂
[ψ(L, t)− u′(L, t)]+

1

M̂
uc(t)+

1

M̂
d(t)

(23)

ṡ2(L, t) = c(ψ̇(L, t)− ψ̇d (L, t))− ψ̈d (L, t)− γ̇2(t)

+
ÊI

Ĵ
ψ ′(L, t)+

1

Ĵ
vc(t)+

1

Ĵ
φ(t) (24)

where M̂ , K̂ , EÎ and Ĵ are the estimated parameters of the
Timoshenko beam as given below

M̂ =
Mmax +Mmin

2
(25)

1M =
Mmax −Mmin

2
(26)

K̂ =
Kmax + Kmin

2
(27)

1K =
Kmax − Kmin

2
(28)

Ĵ =
Jmax + Jmin

2
(29)

1J =
Jmax − Jmin

2
(30)

ÊI =
EImax + EImin

2
(31)

1EI =
EImax − EImin

2
(32)

For boundary displacement control of the Timoshenko
beam, we choose the exponential reaching law for ensuring
the reachability of sliding surface as given below

ṡ1(L, t) = −ks1(L, t)− β
s1(L, t)

|s1(L, t)| + ∂
(33)

where the first term is the exponential function and the sec-
ond term is the relay function, k , β, and ∂ are the positive
constants.

Multiplying (15) and (21), one obtains

ṡ1s1 = s1(c(u̇(L, t)− u̇d (L, t))− üd (L, t)− γ̇1(t)

+
K̂

M̂
[ψ(L, t)−u′(L, t)]+

1

M̂
uc(t)+

1

M̂
d(t)) (34)

Therefore, for ensuring the reaching condition ṡ1s1 < 0,
we design GSMBC force as shown

uc(t) = −M̂A1 + M̂B1 − K̂ [ψ(L, t)− u′(L, t)]

− (1M [|A1| + |B1|]+ D+1K [|ψ(L, t)|

−
∣∣u′(L, t)∣∣])(ks1(L, t)− β s1(L, t)

|s1(L, t)| + ∂
) (35)

where

A1 = cu̇(L, t)+ γ̇1(t) (36)

B1 = cu̇d (L, t)+ üd (L, t) (37)

For boundary rotation control of the Timoshenko beam,
we choose the exponential reaching law for ensuring the
reachability of sliding surface as shown

ṡ2(L, t) = −ks2(L, t)− β
s2(L, t)

|s2(L, t)| + ∂
(38)

Multiplying (18) and (22), one obtains

ṡ2s2 = s2(c(ψ̇(L, t)− ψ̇d (L, t))− ψ̈d (L, t)− γ̇2(t)

+
ÊI

Ĵ
ψ ′(L, t)+

1

Ĵ
vc(t)+

1

Ĵ
φ(t)) (39)

Therefore, for ensuring the reaching condition ṡ2s2 < 0,
we design GSMBC rotational torque as shown

vc(t) = −ĴA2 + ĴB2 − EIψ ′(L, t)− (1J [|A2| + |B2|]+ E

+1EI
∣∣ψ ′(L, t)∣∣)(ks2(L, t)− β s2(L, t)

|s2(L, t)| + ∂
)

(40)

where

A2 = cψ̇(L, t)+ γ̇2(t) (41)

B2 = cψ̇d (L, t)+ ψ̈d (L, t) (42)

Remark 1: The main challenging aspect of this paper is
summarized as follows:

a) How to tackle the uncertainties and exogenous dis-
turbances: Dealing with system parameter uncertainty
and exogenous disturbance, other schemes have been
proposed frequently by GSMC for LPS. It is challenge
to accomplish stability for the Timoshenko beam with
distributed disturbance, displacement boundary distur-
bance, and rotation boundary disturbance, as well as the
uncertainties. To the author’s knowledge, no researches
addressed the uncertainties and external disturbances
for Timoshenko beam using GSMBC.

b) How to solve the dynamics of the Timoshenko Beam:
The numerical solutions for Timoshenko beam has
been discussed repeatedly by FD approach. To the
author knowledge, no researches proposedMOL for the
dynamic solution of the Timoshenko beam, which is
proven to be more powerful approach than FD method.

c) How to investigate the GSMBC for Timoshenko beam:
The dynamic of the beam is a function in bound-
ary displacement and boundary rotation. Subsequently,
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these two variables are function of time and position,
which make the dynamic solution and boundary con-
trol design hard to implement. In addition, GSMBC
design with boundary control force input and boundary
control torque input are suggested to confirm with the
boundness and robust stability of thewhole systemwith
parameters uncertainty and unknown disturbances.

B. ROBUST STABILITY ANALYSIS
To demonstrate the robust stability for boundary control force
design, we can choose Lyapunov function candidate as

ZF (t) =
1
2
s21 (43)

Substituting (4) and (35) subsequently into (21), after con-
sidering M̂ , one obtains

ṡ1(L, t) = c(u̇(L, t)− u̇d (L, t))− üd (L, t)− γ̇1(t)

+
K
M

[ψ(L, t)− u′(L, t)]+
1
M
d(t)

+
1
M

[−M̂A1 + M̂B1 − K [ψ(L, t)− u′(L, t)]

− (1M [|A1| + |B1|]+ D)(ks1(L, t)

−β
s1(L, t)

|s1(L, t)| + ∂
)] (44)

Then

Mṡ1(L, t) = (M − M̂ )A1 − (M − M̂ )B1 + d(t)

− (1M [|A1| + |B1|]+ D)(ks1(L, t)

−β
s1(L, t)

|s1(L, t)| + ∂
)] (45)

Multiply both side of (45) by s1(L, t), one obtains

MŻF

= Mṡ1(L, t)s1(L, t) = (M − M̂ )A1s1(L, t)

− (M − M̂ )B1s1(L, t)+ d(t)s1(L, t)

− (1M [|A1| + |B1|]+ D)

∣∣∣∣ks1(L, t)− β s1(L, t)
|s1(L, t)| + ∂

∣∣∣∣
(46)

From (25) and (26) we have

M−M̂=M−
Mmax+Mmin

2
≤
Mmax−Mmin

2
=1M>0

(47)

Therefore

MŻF < −s1(L, t)D

∣∣∣∣ks1(L, t)− β s1(L, t)
|s1(L, t)| + ∂

∣∣∣∣
+ ds1(L, t) < 0 (48)

ŻF < 0 (49)

Substituting (4) and (35) subsequently into (21), after con-
sidering K̂ , one obtains

ṡ1(L, t) = c(u̇(L, t)− u̇d (L, t))− üd (L, t)− γ̇1(t)

+
K
M

[ψ(L, t)− u′(L, t)]+
1
M
d(t)

+
1
M

[−MA1 +MB1 − K̂ [ψ(L, t)− u′(L, t)]

− (1K [|ψ(L, t)| +
∣∣u′(L, t)∣∣]+ D)(ks1(L, t)

−β
s1(L, t)

|s1(L, t)| + ∂
)] (50)

Then

Mṡ1(L, t) = [K − K̂ ][ψ(L, t)+ u′(L, t)]+ d(t)

− (1K [|ψ(L, t)| +
∣∣u′(L, t)∣∣]+ D)(ks1(L, t)

−β
s1(L, t)

|s1(L, t)| + ∂
)] (51)

Multiply both side of (51) by s1(L, t), one obtains

MŻF = Mṡ1(L, t)s1(L, t) = [K − K̂ ][ψ(L, t)

+ u′(L, t)]s1(L, t)+ d(t)s1(L, t)− (1K [|ψ(L, t)|

+
∣∣u′(L, t)∣∣]+ D) ∣∣∣∣ks1(L, t)− β s1(L, t)

|s1(L, t)| + ∂

∣∣∣∣
(52)

From (27) and (28) we have

K − K̂ = K −
Kmax + Kmin

2
≤
Kmax − Kmin

2
= 1K > 0

(53)

Therefore

MŻF < −s1(L, t)D

∣∣∣∣ks1(L, t)− β s1(L, t)
|s1(L, t)| + ∂

∣∣∣∣
+ ds1(L, t) < 0 (54)

ŻF < 0 (55)

Subsequently, for demonstrating the robust stability for
boundary control torque design, we can choose Lyapunov
function candidate as

ZT (t) =
1
2
s22 (56)

Substituting (5) and (40) subsequently into (22), after con-
sidering Ĵ , one obtains

ṡ2(L, t) = cė2(L, t)− ψ̈d (L, t)− γ̇2(t)

+
EI
J
ψ ′(L, t)+

1
J
φ(t)

+
1
J
[−ĴA2 + ĴB2 − EIψ ′(L, t)]

− (1J [|A2| + |B2| + E)(ks2(L, t)

−β
s2(L, t)

|s2(L, t)| + ∂
)] (57)

Then

J ṡ2(L, t) = [J − Ĵ ]A2 + [J − Ĵ ]B2 + φ(t)

− (1J [|A2| + |B2| + E)(ks2(L, t)

−β
s2(L, t)

|s2(L, t)| + ∂
)] (58)
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Multiply both side of (58) by s2(L, t), one obtains

J ŻT = J ṡ2(L, t)s2(L, t) = [J − Ĵ ]A2s2(L, t)

+ [J − Ĵ ]B2s2(L, t)+ φ(t)s2(L, t)

− (1J [|A2| + |B2| + E)(ks2(L, t)

−β
s2(L, t)

|s2(L, t)| + ∂
)] (59)

From (29) and (30) we have

J−Ĵ=J−
Jmax+Jmin

2
≤
Jmax−Jmin

2
=1J>0 (60)

Therefore

MŻT < −s2(L, t)E

∣∣∣∣ks2(L, t)− β s2(L, t)
|s2(L, t)| + ∂

∣∣∣∣
+φ(t)s2(L, t) < 0 (61)

ŻT < 0 (62)

Substituting (5) and (40) subsequently into (22), after
considering ÊI , one obtains

ṡ2(L, t) = cė2(L, t)− ψ̈d (L, t)− γ̇2(t)+
EI
J
ψ ′(L, t)

+
1
J
φ(t)+

1
J
[−JA2 + JB2 − ÊIψ ′(L, t)]

− (1EI
∣∣ψ ′(L, t)∣∣+ E)(ks2(L, t)

−β
s2(L, t)

|s2(L, t)| + ∂
)] (63)

Then

J ṡ2(L, t) = [EI − ÊI ]ψ ′(L, t)+ φ(t)

− (1EI
∣∣ψ ′(L, t)∣∣+ E)(ks2(L, t)

−β
s2(L, t)

|s2(L, t)| + ∂
)] (64)

Multiply both side of (64) by s2(L, t), one obtains

J ṡ2(L, t)s2(L, t) = [EI − ÊI ]ψ ′(L, t)s2(L, t)+ φ(t)s2(L, t)

− (1EI
∣∣ψ ′(L, t)∣∣+ E)

×

∣∣∣∣ks2(L, t)− β s2(L, t)
|s2(L, t)| + ∂

∣∣∣∣ (65)

From (31) and (32) we have

EI−ÊI=EI−
EImax+EImin

2
≤
EImax−EImin

2
=1EI>0

(66)

Therefore

MŻT < −s2(L, t)E

∣∣∣∣ks2(L, t)− β s2(L, t)
|s2(L, t)| + ∂

∣∣∣∣
+φ(t)s2(L, t) < 0 (67)

ŻT < 0 (68)

Remark 2: From (49), (56), (62), and (68) and based on the
Lyapunov direct method, it can be concluded that the slid-
ing functions s1(L, t) and s2(L, t) asymptotically converges
to zero. Moreover, when s1(L, t) = 0 and s2(L, t) = 0,
the displacement position tracking error e1(L, t) and rotation
position tracking error e2(L, t) asymptotically converges to
zero.

IV. SIMULATION RESULTS
In this section, the vibration attenuating of a Timoshenko
beam is accomplished by GSMBC-based MOL. The Timo-
shenko beam is fixed at one end and free from the other end,
effected by time-varying distributed disturbance f (n, t), dis-
placement boundary disturbance d(t), and rotation boundary
disturbance θ (t), initially at rest u(n, 0) = n, u̇(n, 0) = 0,
ψ(n, 0) = n, and ψ̇(n, 0) = 0. Both boundary control force
and boundary control torque are applied simultaneously at the
free end of the beam for mitigating the vibrations stemmed
by the unknown disturbances and system parameters uncer-
tainties. The distributed disturbance is represented by the
following equation:

f (n, t) = (2+ sin(1.5nπ t)+sin(2nπ t)+ sin(4nπ t))×
n
10
(69)

The displacement boundary disturbance is represented by
the following formula:

d(t) = 2+ 0.2 sin(t)+ 0.5 sin(0.2t)+ 0.5 sin(0.5t) (70)

The rotation boundary disturbance is represented by the
following formula:

θ (t) = 2+ 0.2 sin(t)+ 0.5 sin(0.2t)+ 0.5 sin(0.5t) (71)

The simulation presentation of the suggested control
scheme for the Timoshenko is demonstrated in the following
three cases:
a) Without control: The Timoshenko beam is simu-

lated with distributed disturbance (69), displacement
boundary disturbance (70), and rotation boundary
disturbance (71). The displacement and rotation of
the Timoshenko beam without control is shown
in Fig. 4 and Fig. 5, respectively. It is obvious that the
deflections are significantly high for both cases.

b) With robust adaptive control: The robust adaptive
boundary control force (72) and boundary control
torque (73) 47], acts on the Timoshenko beam with the

FIGURE 4. Displacement of the timoshenko beam without control.

VOLUME 8, 2020 72053



M. A. Eshag et al.: Robust Global Boundary Vibration Control of Uncertain Timoshenko Beam With Exogenous Disturbances

FIGURE 5. Rotation of the timoshenko beam without control.

control parameters k1 = 50 and k2 = 50. The spatial
time representation for the displacement and rotation
of the Timoshenko beam with robust adaptive control
is shown in Fig. 6 and Fig. 7, respectively. It is clear
that the deflection of the Timoshenko beam is relatively
high for the displacement and rotation representation.

FIGURE 6. Displacement of the timoshenko beam with robust adaptive
control.

FIGURE 7. Rotation of the timoshenko beam with robust adaptive control.

This denote that the robust adaptive boundary control
is incapable of effectively tackling the vibrations of
the Timoshenko beam in the presence of the unknown
disturbances and parameters uncertainty.

uc(t) = −M̂ u̇′(L, t)+ M̂ψ̇(L, t)− K̂ψ(L, t)

+ K̂u′(L, t)− k1λ1(t)− d(t) (72)

vc(t) = −Ĵ ψ̇ ′(L, t)+ ÊIψ ′(L, t)− k2λ2(t)

− θ (t) (73)

where

λ1(t) = u̇(L, t)+ u′(L, t)− ψ(L, t) (74)

λ2(t) = ψ̇(L, t)− ψ ′(L, t) (75)

c) With the proposed GSMBC: The proposed GSMBC
(35) and (40), acts on the Timoshenko beam with
the control parameters k = 25 and c = 5. The
spatial time representation for the displacement and
rotation of the Timoshenko beam with GSMBC is
shown in Fig. 8 and Fig. 9, respectively. It is evident
that the deflection of the Timoshenko beam is effec-
tively damped for the displacement and rotation rep-
resentation. This indicate that the GSMBC is capable

FIGURE 8. Displacement of the timoshenko beam with GSMBC.

FIGURE 9. Rotation of the timoshenko beam with GSMBC.
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of handling the vibrations of the Timoshenko beam
efficiently in the presence of the unknown disturbances
and parameters uncertainty. Hence, this suggested con-
trol scheme is prospered to tackle the vibrations of
the Timoshenko beam under unknown disturbances and
parameters uncertainty.

The deflection for the boundary displacement and bound-
ary rotation of the Timoshenko beam are shown in
Fig. 10 and Fig. 11, respectively. It is clear that the boundary
displacement and boundary rotation of the Timoshenko beam
with GSMBC are converging to equilibrium faster than robust
adaptive control.

FIGURE 10. Boundary displacement of the timoshenko beam.

FIGURE 11. Boundary rotation of the Timoshenko beam.

The boundary displacement and boundary rotation of the
Timoshenko beam under robust adaptive control with differ-
ent ranges of uncertainties are shown in Fig. 12 and Fig. 14.
It is evident that the deflections converging to equilibrium
are relatively at high different time range for both cases.
This indicate that robust adaptive boundary control is rel-
atively efficient for the different ranges of uncertainties.
Fig. 13 and Fig. 15 show the equivalent robust adaptive con-
trol forces and control torques under different uncertainties.

FIGURE 12. Boundary displacement of timoshenko with robust adaptive
control.

FIGURE 13. Robust adaptive control force.

FIGURE 14. Boundary rotation of Timoshenko with robust adaptive
control.

The boundary displacement and boundary rotation of the
Timoshenko beam under GSMBC with different ranges of
uncertainties are shown in Fig. 16 and Fig. 18. It is evident
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FIGURE 15. Robust adaptive control torque.

FIGURE 16. Boundary displacement of timoshenko with GSMBC.

that the deflections convergence to equilibrium within small
range of time is experienced in both cases. This indicate that
the GSMBC is significantly robust for different ranges of
uncertainties. Further, we can state that the maximum values
of uncertainties that can handle Mmax = 20, Kmax = 60,
EImax = 80, D = 15,E = 15, is within 2 seconds, which is
approximately 10 seconds in comparisonwith robust adaptive
control performance in Fig. 12 and Fig. 14. After substituting
these values in (25), (27), (29), and (31) while considering
Mmin = 0, Kmin = 0N , EImin = 0N , and Jmin = 0,
we have obtained the maximum estimated parameters uncer-
tainty M̂ = 10, K̂ = 30, ÊI = 40, Ĵ = 10, D̄ = 15, E = 15.
Fig. 17 and Fig. 19 shows the equivalent control forces and
control torques under different uncertainties. It is obvious that
all the control forces and torques are bounded and saturated.
From Fig. 16 and Fig. 18, we have proven that the numerical
simulations are compatible with algebraic approach stability
analysis.

FIGURE 17. GSMBC force.

FIGURE 18. Boundary rotation of timoshenko with GSMBC.

FIGURE 19. GSMBC torque.

V. CONCLUSION
In this paper, a Timoshenko beam with system parameter
uncertainties and exogenous disturbances was investigated.
GSMBC-based MOL scheme was proposed for reduc-
ing the vibrations of Timoshenko beam under distributed
disturbance, displacement boundary disturbance, and rotation
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boundary disturbance and for compensating the effect of
the uncertainties. Firstly, MOL is proposed for attaining an
accurate approximated solution of the Timoshenko beam.
Subsequently, the GSMBC-based MOL scheme has been
inspected for Timoshenko beam under maximum parameter
uncertainties and maximum boundary disturbances. More-
over, the displacement and rotation convergencies under sys-
tem parameters uncertainties are assuredmathematically. The
simulation results are matched with the proved theoretical
results, which signify that the GSMBC-based MOL scheme
has attenuated the vibrations of the Timoshenko beam effi-
ciently. In future work, a boundary control input constraint
will be suggested. Also, it is a challenging topic to use this
design for non-linear Timoshenko beam.
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