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ABSTRACT In this paper, we propose a new ensemble residual network model for short-term load
forecasting (STLF). This model improves the accuracy of short-term load forecasting (24 hours in advance).
The model has a two-stage network structure. First, the different fully-connected layers are combined, and
the combined structure is similar to a recurrent neural network (RNN). Features obtained from historical
load data are input to the first stage of the model to get preliminary prediction results. The second stage
of the model is a modified residual network, and the final predictions are output from here. We use the
ensemble snapshot model with learning rate decay to improve the generalization capability of the model. The
model proposed in this paper was trained and tested on two public datasets. Numerical testing shows that
the proposed model can get better forecasting results in comparison with other methods, and the ensemble
method adopted effectively improves the generalization ability of the model.

INDEX TERMS Load forecasting, deep learning, residual network, ensemble, learning rate decay.

I. INTRODUCTION
Load forecasting is a critical task in the energy field. Accurate
forecasting results enables useful support for the optimal pric-
ing strategies, seamless integration of renewables, and reduce
the maintenance costs of power systems. The short-term load
forecast has a forecast range of one hour ahead up to oneweek
ahead [1]. With the development of the electricity market and
the smart grids, load forecasting has become more critical.
However, the power load is affected by multiple external fac-
tors, such as temperature, weather, seasonal characteristics,
and so on. Many forecasting methods for load forecasting
have been proposed to express the non-linear characteristics
of load forecasting in recent years. For example, In the early
stages, autoregressive moving average models (ARMA) [2]
were used in load forecasting. And support vector machines
(SVM) [3], [4], multi-objective algorithm [5], fuzzy-logic
approach [6], have been reported in the literature. Artificial
neural networks (ANN) are also often used to build STLF
systems. Some methods have achieved good results by con-
sidering sophisticated techniques. Such as wavelet neural net-
works [7], [8], echo state network (ESN) [9], extreme learning
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machines (ELM) [10], and radial basis function (RBF) neural
networks [11], etc. However, as the scale of neural networks
increases, the problems of gradient explosion and gradient
disappearance are challenging to solve, and the overfitting
of neural networks becomes more serious. Therefore, for
neural network architecture, the number of hidden layers
will not exceed ten in general, which limits the performance
of the models. In recent years, deep learning has gradu-
ally emerged. Various neural network structures, including
Convolutional Neural Networks (CNN) [12], [13] and Gated
Recurrent Unit (GRU) [14], have made a massive impact on
image recognition, speech recognition, machine translation,
and other fields. At the same time, there are various novel
methods to help researchers effectively train the model to
avoid the disappearance of gradients or severe overfitting.
The application of deep learning in power load forecast-
ing problems has attracted researchers’ attention [15]–[20].
Reference [15] proposed a non-residential load prediction
framework based on amulti-sequence LSTM recurrent neural
network. The method successfully captures the dependencies
between these sequences. A Seq2seq short-term load fore-
cast model based on LSTM is developed in [16]. Two deep
learning methods were proposed for electric load forecasting
in [17]. Two methods, time-dependent convolutional neural
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network (TD-CNN) and cycle-based LSTM (C-LSTM) net-
work, significantly reduce the computational complexity.
Reference [18] proposed a deep learning method based on
empirical mode decomposition (EMD), which combines the
EMDmethod with the LSTM network model. Reference [19]
researched the application of deep neural network (DNN) in
real load data sets, and different combinations of activation
functions are used to make accurate load prediction. Refer-
ence [20] proposed a framework based on LSTM-RNN to
predict the short-term residential load, which can accurately
predict the load of a single household. In our model, we are
not merely stacking a large number of hidden layers, which
will cause severe overfitting of themodel. Reference [21] pro-
posed a residual network. This method makes the application
of deep neural networks a reality. Reference [22] proposed a
modified residual network, and the input of the network was
replaced from the output of the previous layer by the average
value of the multilayer output. We use the modified residual
network to construct a model for STLF. At the same time,
to improve the robustness of the prediction model and over-
fitting, we adopted an ensemble model of neural networks.
References [23]–[26] prove that the ensemble STLF model
has advantages with the singlemodel in terms of accuracy and
robustness. In most cases, integrated neural network models
include multiple separate models whose average output is
used as the final output. The disadvantage is that it requires a
lot of computing power. The ensemble method proposed by
[27], [28] only needs one training and does not need to train
multiple models independently.

We proposed an STLF model based on ensemble residual
network. The work of this paper is as follows: Different
parameters that can influence the electricity load are consid-
ered. These parameters include past values of the electricity
load as well as weather parameters and time-related infor-
mation. The proposed model can be divided into a two-stage
model. The first stage model is called the basic structure. The
input of the basic structure is not only derived from the inputs
of the current time step but also depends on the output of the
previous time step, which helps the basic structure to adjust
the hourly output automatically. The second stage model is
the residual network. The residual network can effectively
improve the performance in the deep neural network (DNN).
The preliminary prediction results obtained from the basic
model, and we get the final forecasting results through the
residual network. Finally, to improve the robustness of the
proposed model, the snapshot ensemble with learning rate
decay is used. This ensemble method effectively enhances the
prediction accuracy and generalization ability of the proposed
model without spending extra computing power. The exper-
imental simulation shows that the proposed approach gener-
ates minimal forecasting error compared to other approaches.

The rest of the paper is organized as follows: In the second
part, we construct the input features of the model and the
two stages of the model, and also introduces the ensemble
strategy. In the third section, the proposed model is tested
on two datasets: ISO New England data and North American

TABLE 1. Inputs for the proposed model of the hth.

electric utility data, and we providing test results and compar-
isons with other accepted methods. Section IV summarizes
the conclusions.

II. ENSEMBLE RESIDUAL NETWORK
In this paper, we propose a short-term load forecast based
on an ensemble residual network. The ensemble residual net-
worksmodel consists of two stages. The first stage, composed
of a fully-connected layer, and the second stage is the mod-
ified residual network. In recent years, feature engineering
has drawn a lot of attention. The results obtained by a model
depend not only on the model itself but also on the charac-
teristics of the data itself. Load data is a typical time series,
and it also has non-linear characteristics. And it is difficult
to strike a balance with traditional methods. We detach the
time window from the historical load data and obtain the past
data as input to the network. The hourly load values predicted
in the first stage of the model were combined to obtain a
preliminary 24-hour load forecast. The output of the basic
structure is the input to the next model. Finally, the ensemble
method enables to enhance the generalization ability of the
model.

A. FEATURE ENGINEERING
Considering the time series characteristics of load forecast-
ing, we not only consider the short-term laws but also con-
struct the characteristics that can reflect the long-term trend
[29]. Ph is the prediction result of the hth hour of the next day.
The inputs used to get Ph are listed in Table 1. We normalize
the load and temperature of the datasets, both of which are
divided by their respective maximums.
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Th is the temperature of the hth hour, Sh,Wh and Fh respec-
tively represent the hth hour season, weekday/weekend, and
holiday. We use one-hot encoding when processing these fea-
tures.Dhourh is the load data of the most recent 24 hours before
the hth hour. Note that the model cannot obtain the real data
for the prediction day. At h 6= 1, Dhourh is a combination of
historical data and the data for the day predicted by themodel.
Ddayh , T dayh ,Mday

h are the load, temperature, and average value
corresponding to the hour within seven days before the hth
hour. To provide the long-term load characteristics, Dweekh
represents the historical load of the hth hour of the days (the
day of the same day-of-week index as the next day) in the first
eight weeks. Tweekh are the temperature values of the same
hours as Dweekh . Mweek

h is the average of Dweekh . And we also
get Dmonthh , Tmonthh which represents the long-term load and
temperature trends for three months.

We not only use the current hour’s information but also
build some features from historical load data. We hope that
these characteristics can help the model capture the non-
linear characteristics of the time series.

B. BASIC STRUCTURE
The first stage of the model is called the basic structure. The
prediction model for one hour in basic structure is shown
in Figure 1. We are not merely copying the prediction result
for one hour as the output, but using the prediction result
as the basic structure input for the next hour, which is sim-
ilar to the RNN (Recurrent Neural Network. The input of
the model depends on the input at this time and the output
of the last time step. The model can adjust the predicted
value every hour automatically. The neurons inside basic
structure are different from GRU/LSTM. Weights and bias
are not shared in basic structure, which is different from
GRU/LSTM. Except for the first hour of prediction, the input
of the model for other hours has the prediction results of the
previous hour. We expect the model to learn different features
from each hour. For the load forecast one day ahead, there are
24 basic structures. OutPre1 is the combination of the output
of Dhourh through a fully-connected layer and the output of
[Sh; Wh; Fh; M

day
h ; Mweek

h ] through a fully-connected layer.
For Ddayh , T dayh , Dweekh , Tweekh , Dmonthh , T onthh , we concatenate
the pairs [Ddayh ; T dayh ], [ Dweekh ; Tweekh ] and [Dmonthh ; T onthh ],
and connect them with three separate fully-connected layers.
Then we combine the output of [Sh; Wh; Fh; M

day
h ; Mweek

h ]
after a fully-connected layer with the three outputs, and get
OutPre2 through a layer of full connection. Finally, we con-
nect OutPre1, OutPre2 and Th with a fully-connected layer,
the output is the preliminary one-hour prediction result. The
activation function of the fully-connected layer after [Sh;Wh;
Fh;M

day
h ;Mweek

h ] is Leaky-ReLU. The activation function of
other fully-connected layers is SELU [30].

Using ReLU [31] as an activation function can effectively
improve the effect of deep neural networks. RELU is given
by

ReLU (yi) = max (0, yi) (1)

FIGURE 1. The basic structure for one-hour load forecast.

where yi is the output of the ith node of the layer. The disad-
vantage of ReLU is that if the output of a neuron is 0, the gra-
dient of the neuronwill fail to update theweight of the neuron,
so the neuron will never be activated. When there are a large
number of inactive neurons in the network, the convergence
of the model becomes very difficult. There are two activation
functions: Leaky-ReLU (LReLU) and SELU are used in the
basic model. They all improve the ReLU function. LReLU
adds a slope to the negative semi-axis of ReLU. Neurons can
still update weights when the outputs of neurons are less than
zero. LReLU is defined as

LReLU (yi) =

{
yi if yi > 0
αyi if yi < 0

(2)

where α is fixed. In this paper, the value α is the default value,
0.3. LReLU avoids the disadvantage that the gradient of the
neuron cannot be updated when the activation value is less
than 0 through simple modification. SELU further modified
ReLU to induce self-normalizing properties, where SELU is
defined as

SELU (yi) = λ

{
yi if yi > 0
βeyi − β if yi < 0

(3)

where λ and β are two tunable parameters. The author pro-
posed to choose λ ≈ 1.0507 and β ≈ 1.6733 in [30], the out-
put of the fully connected layer network is also close to the
standard normal distribution when the input data conforms to
the standard normal distribution, which helps the gradient not
explode or disappear.

C. RESIDUAL NETWORKS
In [21], a new method for constructing deep neural networks
was proposed. In traditional neural networks, the principal
formulas of neural networks are as follows

zx = ρ(x) (4)

where x is the input of the neuron, ρ(x) represents the
calculation inside the neuron and zx is the output of the
neuron. When training a deep neural network to complete
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FIGURE 2. Residual block.

a task, two problems occur with deep neural networks:
gradient explosion/vanish and network degeneration. The
SELU can alleviate the problem of gradient explosion/vanish.
Network degeneration means that as the depth of the net-
work increases, the performance of the network gradually
increases to saturation and then decreases rapidly. Resid-
ual networks can solve the problem of network degenera-
tion. Residual networks construct deep neural network struc-
tures through residual blocks. A residual block is illustrated
in Figure 2.

In the residual block, the mapping from x to F(x) + x
replaces the mapping from x to ρ(x). If n residual blocks are
stacked together, the forward propagation formula is defined
as

z(x) = x0 +
n∑
i=1

F (xi−1) (5)

where x0 is the initial input of the network. In fact, the residual
block constructs an artificial identity map that directly adds
the input of the neural unit to the output of the neural unit.
Experiments show that the residual block solves the degra-
dation problem of deep neural networks well. Reference [32]
gives an explanation of the residual block from the perspec-
tive of forwarding propagation and backward propagation.
Reference [22] proposed an improved deep residual network
(ResNetPlus). Each layer includes a main residual block and
some side residual blocks. Average with the output of the side
residual blocks and the output of each main residual block.
The average value is the input of all main residual blocks in
the subsequent layers.

FIGURE 3. Save snapshot points when the model is about to converge.

D. THE ENSEMBLE STRATEGY
Ensemble strategies are widely used in machine learning.
The ensemble results and generalization capability of mul-
tiple models are better than single models. The traditional
ensemble method is to train various models with different
initial weights. The results of themodels converge to different
local optimums. Finally, these different models are used to
vote or average. The disadvantage of this ensemble method is
that the training cost is too high. To make the performance of
the ensemble model good, it is often necessary to train a lot of
weak models. The author in [27] proposed a snapshot ensem-
ble (Snapshot ensembling). This ensemble method uses a
cyclic learning rate plan and only needs one training to obtain
models that converge to multiple different minimum values.
Reference [28] proposed the Fast Geometric Ensembling
(FGE). FGE is very similar to Snapshots Ensembling. But
they differ in twomain ways. First, FGE uses linear piecewise
periodic learning rate planning instead of cosine annealing.
Second, the cycle length of the FGE is much shorter. FGE can
improve model performance without consuming too many
computing resources. The ensemble strategy is illustrated
in Figure 3 in this paper.

We use Adam [33] (adaptive moment estimation) as the
optimization method of the model. Since Adam has an adap-
tive learning rate, we do not follow the linear piecewise peri-
odic learning rate planning or cosine annealing in [27], [28].
As the training progresses, the learning rate should gradually
decrease. Use larger learning speeds at the beginning to speed
up the best solution, and later use lower learning speeds to
improve stability to avoid skipping the best solution. Save the
model at this time, and multiply the learning rate of the model
by a constant value1 when the model runs to the snapshot
point, and continue to run until the next snapshot point. After
getting all the snapshot models, we average the output of the
models and produce a final prediction. In this paper, a total
of 7 snapshot points are saved,2 and the final output depends
on the average output of these seven snapshot points.

1The constant value in this article is 0.7.
2The model saves snapshot points when running 2000, 3000, 3500, 4000,

4500, 5000, 5500 epochs.
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Finally, the MAPE (Mean Absolute Percentage Error) is
the optimization goal of the model. MAPE is given by

MAPE =
1
m

m∑
i=1

∣∣∣∣yi − ŷiyi

∣∣∣∣× 100% (6)

where m is the number of samples, yi is the actual value of
the sample, and ŷi is the predicted value of the model. In
this paper, we use the five commonly used evaluation metrics
(including MAPE) to evaluate the performance forecasting
models.

Root of mean squared error:

RMSE =

√√√√ 1
m

m∑
i=1

(
yi − ŷi

)2 (7)

Mean absolute error:

MAE =
1
m

m∑
i=1

∣∣yi − ŷi∣∣ (8)

Normalized mean squared error:

NMSE =
1

12m

m∑
i=1

(yi − ŷi)
2

12
=

1
m− 1

m∑
i=1

(yi − ȳ)2 (9)

Pearson’s correlation coefficient:

R =

m∑
i=1

(yi − ȳ)(ŷi − ¯̂y)√
m∑
i=1

(yi − ȳ)2
m∑
i=1

(ŷi − ¯̂y)
2

(10)

III. RESULTS AND DISCUSSION
In this section, the proposed model is compared with other
methods based on two public data sets: ISO New England
dataset3 and North American electric utility dataset4. And
the proposed method is tested using the actual load and
temperature data. The two power companies have significant
differences in power scale and temperature. And we evaluate
the impact of weather forecast temperature error on model
performance. The optimizer’s initial learning rate is 0.001.
All programs were conducted in Tensorflow 1.14 and Keras
2.24 based on Python 3.7. Themodel takes about four hours to
train the 5500 generation on a personal computer with Intel
i7-9750H and NVIDIA 1660ti. To evaluate the forecasting
performance, we use MAPE as the error metric.

3Available at http://www.iso-ne.com/isoexpress/web/reports/pricing/-
/tree/zone-info

4Available at http://sites.google.com/site/fkeynia/loaddata

FIGURE 4. Forecast results and actual load from August to
December in 1991.

A. THE PROPOSED MODEL TEST ON NORTH AMERICAN
ELECTRICITY UTILITY DATASET
The first case uses the hourly data from North American
electricity utility data. Collected data of this case covers
January 1, 1985, to October 12, 1992. The data of the two-
year period before October 12th, 1992, is used as the test set.
Figure 4 shows the comparison between the forecast values
of the proposed model from August 1 to December 31 in
1991 and the actual load data. In August and September,
the model can well fit the real data distribution when the
load is relatively stable. In November, the prediction accuracy
decreased when the load fluctuated greatly, but the predicted
value also reported the trend of the load. Figure 5 shows
the distribution of the difference in the whole year of 1991.
From Fig. 5, it can be easily illustrated that the median of
the absolute difference between the actual and forecast value
of each month is close to zero. In August and September,
the forecast value was closest to the real load. There are
some points with significant differences in November, which
is consistent with the results in Figure 4.However, most of the
differences between the forecast value and actual load are in
the range [−400, 400] in general.

We compare the results of the other methods in the same
test set. In [34], a new hybrid prediction method was pro-
posed, which mainly consisted of wavelet transform, neural
network, and evolutionary algorithm. In [35], a novel load
signal extension scheme was proposed. The advantage of
this scheme is to deal with the border distortion problem.
Reference [36] proposed a new method for day-to-day load
forecasting. In [37], a parallel model was proposed, which
consisted of 24 support vector machines. In [38], a method
based on wavelet transform, extreme learning machine, and
improved bee colony algorithm was proposed for STLF.
In [39], to take into account both feature selection and param-
eter optimization, a method based on learning particle swarm
optimization was proposed.
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FIGURE 5. Distribution of difference in 1991.

TABLE 2. MAPE values (%) for North American electricity utility data.

FIGURE 6. Hourly MAPE results of the forecasting models.

To evaluate the effect of weather forecasting error, we add
the Gaussian noise with zero mean and standard deviation
of 1◦C to the temperature. The results of all models are
shown in Table 2. It can be seen that the results obtained

FIGURE 7. Relationship between actual load and forecasted load by six
models for the NA dataset.

by the basic structure are better than GRU/LSTM under real
temperature. And the MAPE obtained by the proposed model
(Basic Structure + ResNet) is only 1.76, which is better than
other methods. The residual network performs better than
GRU/LSTM in deep neural networks. After adding noise,
the proposed model outperforms the existing methods. The
forecast results of the proposed method and the other meth-
ods with real temperatures at different forecast horizons are
illustrated in Fig.6. For some papers that do not have this
data, we only draw the data of [35], [38]. The input of the
model depends on the previous 24 hours. For the later hours
of the day, the model cannot get the accurate load value of
the 24 hours, which will cause the accumulation of errors. At
1 am, the load data of the previous 24 hours of the model
are all real data, and the model has the best performance.
In 7 hours, the deviation reached the maximum, at which time
MAPE was equal to 2.24. For anyone hour, this method is
better than the other methods, and the MAPE is higher than
the result in [38] only at the 1, 2, 7, and 8 am. Fig.7 shows the
relationship between actual load and predicted load by all six
models in which the proposed model shows a strong relation.

B. THE PROPOSED MODEL TEST ON ISO NEW ENGLAND
DATASET
The second task is to estimate the generalization ability
in various cases of the proposed model. In the section,
a detailed analysis of the model’s generalization capabili-
ties is reported. ISO New England data covers data from
March 1, 2003, to December 31, 2014. We did not adjust
the hyper-parameters for this dataset, and the model is the
same as when the mpdel run in North American electricity
utility data.Hourly data set from years 2004–2007 and out-
of-sample data from the years 2008 and 2009 are used for
training and testing purposes. The results of different methods
on the test set are shown in Table 3. Reference [5] proposed
a novel multi-objective algorithm (MOFTL) based on Fol-
low The Leader algorithm and comparing the results with
three newly multi-objective algorithms. In [40], a method
for augmented neural networks is proposed, which includes
a set of iteratively trained artificial neural networks. Refer-
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TABLE 3. Forecasting results of the models for ISO New England dataset.

FIGURE 8. Relationship between actual load and forecasted load by six
models for the ISO-NE dataset.

ence [41] present a load forecasting scheme using bagged
neural networks that improves load forecasting accuracy.
Reference [42] proposed method is based on a hybrid arti-
ficial intelligence system, a machine learning method com-
bined with a trained rather simple neural network can get
a more accurate solution. Reference [43] proposed to use
bagged-boosted artificial neural networks for load predic-
tion. In [44], a novel evolutionary algorithm based on follow
the leader concept is developed and the proposed algorithm
is integrated with neural network. The results obtained
for the year 2008 and 2009 by all the forecasting models
are shown in Table 3. It clearly shows that basic structure
brings higher accuracy than GRU/LSTM in terms of all per-
formance evaluation metrics mentioned earlier. The values
of MAPE-1.50%, RMSE-346.3MWH, MAE-227.69MWH,
NMSE-0.01560MWH, Pearson correlation coefficient (r)-
0.9925 obtained by the proposed model makes it more reli-
able forecasting model. Fig8. shows the relationship between
actual load and predicted load by all six models in which the
proposed model shows a strong relation.Fig 9 shows monthly
MAPE of the proposed model for the years 2008 and 2009.
The comparison between the predicted load and the actual

FIGURE 9. MAPE results for the ISO New England dataset in 2008 and
2009.

TABLE 4. MAPE results for ISO New England dataset in 2010 and 2011.

load of April 2008 and April 2009 is shown in Fig 10. The
MAPE for April 2008 is the smallest of all months, and
the MAPE for April 2009 is the largest of 24 months. The
comparison of load obtained after forecast by six models with
the actual load is shown in Fig 11. This comparison illustrates
that the proposed model achieves the most accurate predic-
tion values, and also load consumption during weekends is
less compared to weekdays.We did not adjust any hyper-
parameters on the ISO New England dataset. It can be seen
that the proposed model has good generalization ability on
different datasets.

We further estimate the performance of the proposedmodel
on the dataset of 2010 and 2011. The data from 2004 to
2009 is used to train the proposed model. Table 4 shows the
results in [22], [45]–[47]. These methods also use the data
from the previous 5 years of the test set as the training set.
With the same training set, the proposed model is better than
the existing model in the 2010 and 2011 test sets. We have not
modified any hyper-parameters here. The model is the same
as when predicting North American electricity utility data.
Besides, we added an extra 10-month sample number (the
dataset start date is March 1, 2003), and the forecast results
show that the proposed model performs better with additional
training samples.

We have been using actual temperature values as input in
this dataset. The results shown previously represent the upper
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FIGURE 10. Forecast results of a month in April 2008 and June 2009.

FIGURE 11. Comparison of actual load with forecast load by six models.

bound of the performance of the proposed model. We con-
sider the effect of temperature error on STLF for ISO New
England dataset and examine the performance of a single
model and ensemble model in the face of temperature noise.
To cover a wide range of temperature errors during weather
forecasting, we consider a set of Gaussian noise with different
means and standard deviations. All subsequent cases were
repeated five times, and average the results. After adding
different noise to the temperature, the MAPE values obtained
by the two models are shown in Figure 12. It can be seen
in Figure 12 that the proposed model (an ensemble model

FIGURE 12. MAPE due to different Gaussian noises: means = (−2, −1, 0,
1, 2) and standard deviations = (0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0).

TABLE 5. Forecast results with zero-mean Gaussian noises.

of 7 single snapshot models) performs better than the single
snapshot model under any deviation. Note that comparedwith
the larger variance, the larger the noise of the mean will bring
greater load prediction error.

We follow the method described in [34] for modifying
the temperature value and consider the impact of the ensem-
ble method when the mean is 0. The MAPE value (1.325)
obtained with the actual temperature serves in 2008 as the
reference (the MAPE results of the single snapshot model is
1.40 at the actual temperature serves in 2008). We compare
the results of the proposed model with a single snapshot
model, which is trained in the same epochs. It can be seen
from Table 5, and the ensemble model dramatically reduces
the impact of temperature noise. When the temperature error
changes in the maximum interval [−12.5, 12.3], the predic-
tion error only increases by 4.56%.

IV. CONCLUSION
This paper proposes an STLF model based on ensemble
residual networks. In terms of feature selection, we use his-
torical load data to construct features. The model has a two-
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stage network architecture of the basic structure andmodified
resnet model. And we use the ensemble model with learning
rate decay to enhance model performance. The proposed
model is tested on two public datasets. The results reveal
that the proposed model is superior to existing models in
prediction accuracy in various test cases, and it is superior
in the robustness of temperature changes. If multiple models
can be integrated based on the ensemble model, the model
performance may be better. Since we only covered some
of the latest technologies of deep neural networks, we did
not use other deep neural network building blocks (such as
CNN or Seq2seq). In the next step, we will try to apply it to
STLF for comparison with existing methods.
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