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ABSTRACT The sensor-based human activity recognition has been wildly applied in behavior tracking,
health monitoring, indoor localization etc. Using activity continuity to assist activity recognition is an
important research issue, in which the activity transition matrix which describes the activity transformation
in real scenarios is the most important parameter. Aiming at the problem that the current classic transition
matrix learning algorithm cannot fuse weights of sample classification results, a weighted transition matrix
learning algorithm is proposed in this paper. First, the basic definitions of an improvedHiddenMarkovModel
(HMM) which fuses weights of classification results are given. Then, the recursive formula of transition
matrix learning is derived, and the learning algorithmW-Trans is put forward. Finally, the proposed algorithm
is simulated with the public data sets. The evaluation results show that the proposed algorithm outperforms
the classical Baum-Welch algorithm under evaluation metrics of both the cosine similarity and the euler
distance. By applying W-Trans to current activity recognition post-process methods, the advantage of our
method is verified.

INDEX TERMS Activity recognition, Hidden Markov Model, parameter learning, transition matrix.

I. INTRODUCTION
A. BACKGROUND
In the past decade, the sensor-based human activity recog-
nition [1], [2] has been a key research field in industry and
academic field. In this research, the custom-made devices
integrated with multiple inertial sensors (e.g., accelerometer,
gyroscope) were bounded on human bodies. These devices
can capture body movement and generate real-time sensor
data as humans preform activities such as walking, running
etc. This research has brought about many applications such
as behavior tracking [3], [4], health monitoring [5], [6],
indoor localization [7], [8] and so on.

Currently, the supervised learning is the commonest tech-
nique adopted for activity recognition [9], in which a clas-
sification model is first trained with labeled samples, and
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then applied to classify the unlabeled ones [10]. However,
there are still several challenges affecting the performance
of sensor-based activity recognition [11], [12]. First, for the
same activity, the sample distributions are different from
person to person. This problem makes it difficult to train a
universal recognition model for all users [13]. Second, for
some mobile devices such as smartphones, the device loca-
tions are always unfixed. For the same activity, the sensing
data obtained from different body locations are inconsistent
[14]. It brings a great challenge to improve the performance
by removing the influence of device locations [15]. To over-
come these shortages, many researches try to incorporate
supervised learning method with activity continuity which is
independent of sample distribution.

In applying the activity continuity to the activity recogni-
tion, the transition matrix is the most important parameter. It
describes the probabilities that a certain type of activity will
hold itself and turn to others at the next time in a scene. This
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parameter is the basis for calculating the confidence of recog-
nition results and smoothing the activity results sequence.
Since this parameter depends on the application scenarios,
it needs to be learned from the sequence of classification
results of the activity in the scene. Currently, the Baum-Welch
algorithm [16], [17] is the most commonly used algorithm,
but it still has rooms for improvement.

B. RELATED WORKS
This section will briefly introduce current methods on apply-
ing activity continuity to activity recognition. Using activity
continuity to assist activity recognition has always been a
research issue in activity recognition researches. In early
2008, a computationally inexpensive methodology [18] for
incorporating smoothing classification temporally was pro-
posed, which can couple with any classifier with minimal
training for classifying continuous sequences. The Hierarchi-
cal Support Vector Machine and Context-based Classifica-
tion (HSVMCC) was proposed in [19] to recognize human
activities when the sampling rate was less than the frequency
of activities. These two methods utilize naive modification
strategy, and do not consider the activity transition. The per-
formance of these two methods are obviously worse as the
activities change to another.

The other studies attempt to add this fact to sequence
smoothing. The Activity Recognition Shell (ARShell) was
proposed in [20], in which a Markov smoother was applied
to post-process the results generated by the Google recogni-
tion service. The Lowest Cumulative Cost Activity Sequence
(LCCAS) was put forward in [21], in which the similar
policy was adopted to perform sequence smoothing. How-
ever, these two methods are all follow the straightforward
schemes, which just obtain locally optimal solution [22].
Other researchers applied the HMM [23], [24] to provide
global solutions. In [25], HMM was adopted to smooth
out the accidental misclassifications generated by supervised
learning schemes. The HMM and ensemble HMM were
applied to recognize activities in [26] and [27] respectively.
Because of its simplicity and effectiveness, the HMM is still
the most popular model in current applications.

In the past several years, with the great success of deep
learning in the fields of image processing and speech recog-
nition, many researchers have applied deep learning model
to activity recognition. To model the activity sequence, the
sequence models of deep learning such as Recurrent Neural
Network (RNN), Long Short-Term Memory (LSTM) were
adopted in [28]–[31], and they got meaningful results. But
the advantage of deep learning models depend on sufficient
training data and powerful computing ability, which cannot
be provided by the wearable devices [32]. Especially for
the sequence models, as the activity transitions are differ-
ent from scene to scene, these models always need to be
trained independently for a specific scene. It is impractical
for the wearable devices. Therefore, it is still a long way
to go to apply sequence models of deep learning to activity
recognition in practical applications [33]. On the other hand,

some applications such as the Google activity recognition
service just provide the activity results but not the raw sensor
data [20]. In these scenes, the deep learning models cannot
take advantage of them. In summary, the classical models
such as HMM are still the most commonly used models in
current activity recognition systems, and the activity tran-
sition matrix is still the most crucial parameter for these
classical models.

C. MOTIVATION
In the classical sequences models such as HMM, the activity
transition matrix which describes the transition probabilities
between different activities is the most important parameter.
An accurate transition matrix can provide effective results on
applying activity sequences to activity recognition. Currently,
this parameter can be trained with the classical Baum-Welch
algorithm [16], [17] which is a basic algorithm in HMM
theory. But it still has its own shortage for sensor-based
activity recognition. In Baum-Welch algorithm, the sequence
of activity recognized labels should be the input. However,
the recognized labels which acquired from most supervised
learning algorithms always contain additional information
which is the weights for these labels.

Taking a set containing two activities for example, one
sample is recognized as (0.9,0.1) and the other one is (0.6,
0.4). The final labels of them are the same, but their clas-
sification weights are quite different. Low confidence indi-
cates the low probability that the sample is correctly classi-
fied, while high confidence means the opposite. Thus, these
two samples should provide different influences in training
the transition matrix. But the classical Baum-Welch algo-
rithm loses sight of this important feature. Fusing classifica-
tion weights in learning transition matrix is a direction for
improvement.

This paper proposes a weighted transition matrix learning
algorithm named W-Trans which is the continuation of our
previous works [22], [34]. The key concept of weighted
observation probability described in the following section
was first proposed in [34] to identify the confidence level
of classification results. Then, this concept was applied to
smooth the classification result sequence in order to improve
the recognition accuracy in [22]. This paper focuses on the
transition matrix learning issue on applying the concept of
weighted observation probability. The main works of this
paper are as follows.

1) The definitions of weighted observation probability
are described, and the improved HMM named Weight
Observation Hidden Markov Model (WOHMM) is
introduced.

2) The recursive formula of transition matrix learning is
derived, and the W-Trans for WOHMM is put forward.

3) The W-Trans is evaluated with metrics of cosine simi-
larity and euler distance on two public data sets.

4) This algorithm is applied to the current post-process
method and is verified to be effective.

VOLUME 8, 2020 72871



C. Wang et al.: W-Trans: Weighted Transition Matrix Learning Algorithm for the Sensor

FIGURE 1. The activity recognition framework.

II. METHOD
This section first introduces a common framework of activity
recognition, and point out the position of transition matrix
learning in this framework. Then the formal description of
WOHMM is given. Finally the W-Trans is put forward.

A. THE FRAMEWORK OF ACTIVITY RECOGNITION
To clearly introduce the purpose of this paper, we first intro-
duce the common framework of activity recognition, shown
in Fig. 1. As shown in Fig. 1, activity recognition is divided
into three steps. In the first step, a variety of data including
acceleration and angular velocity can be collected via the
programming interfaces provided by wearable devices. These
sensing data are divided into samples with fixed size, and
the feature vectors are extracted from those samples. This
step is summarized as feature extraction, shown as the upper

area in Fig. 1. In the second step, those feature vectors are
identified by the trained classifier to generate a classification
result sequence, which is H in the middle area. Generally, H
is always normalized [35] with

ojrk =
hjrk − min(hj)∑N
i=1(hjri −min(hj))

, (1)

where min(hj) is the minimum element in vector hj. Spe-
cially, some classification models such as Convolutional
Neural Networks(CNN) would combine the first two steps
into one step. After normalization, it can get the normalized
result sequence O, and this sequence would be the input of
sequence-based strategies shown as the lower area in Fig. 1.

In the sequence-based strategies, some sub-problems are
concerned, such as identifying the probability that each label
was correctly recognized, smoothing the result sequence to
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FIGURE 2. The WOHMM.

correct wrong labels, and so on. The bases of these sub-
problems are obtaining the activity transition matrix in a
specified scene. The classical Baum-Welch algorithm learns
the transition matrix with the recognized label sequence L,
and our proposed W-Trans will learn this parameter with the
normalized result sequenceO. The following subsections will
give the basic definitions and detail our algorithm.

B. DEFINITIONS OF WOHMM
Before details, several basic definitions should be intro-
duced. First, the state set and the observation set are denoted
as S = {s1, s2, . . . sN } and R = {r1, r2, . . . rM } respec-
tively, where N is the number of hidden states and M is
the number of observations. Besides, the observation vector
o = (or1 , or2 , · · · orM ) is the weight vector corresponding to
R, where ori is the weight that current hidden state is observed
as ri. For vector o, the elements meet 0 ≤ ori ≤ 1 and
M∑
i=1

ori = 1. Corresponding to the activity recognition, S and

R are both the set of activities, and the observation vector o
illustrates the confidence values for all the possible activities
which derived from classifications.

The WOHMM is shown in Fig. 2, which consists of three
sequence A = {a1, a2, · · · aT }, L = {l1, l2, · · · lT } and
O = {o1, o2, · · · oT }. In these sequences, at , lt and ot are the
hidden state, observation and observation vector respectively
at time t , and meet at ∈ S and lt ∈ R. For A, the hidden state
may remain constant or transform to another as time goes on.
The transition probabilities between different states constitute
the transition matrix, written as

Q =
∣∣qsisj ∣∣N×N , (2)

where 0 ≤ qsisj ≤ 1 and
N∑
j=1

qsisj = 1. qsisj represents the

probability P(at+1 = sj|at = si), and its subscript means the
state at t + 1 is sj on the condition that the state at t is si.

Corresponding to A, L is the observation sequence, in
which li is the observation as t = i. Similar to HMM, the
observation matrix is defined as

P =
∣∣psirj ∣∣N×M , (3)

where 0 ≤ psirj ≤ 1 and
M∑
j=1

psirj = 1. psirj is

the probability that the state si is observed as rj, that is

psirj = P(lt = rj|at = si). In activity recognition, the obser-
vation matrix corresponds to the confusion matrix which can
be obtained through experimental results.

According to the observation matrix, we define the
weighted observation probability p̄silt = P (lt |at = si, ot),
which is the probability that hidden state si observes lt on
the condition that given the corresponding observation vector
ot = (otr1 , otr2 , · · · otrM ). This probability can be calculated
by the cosine similarity of psi = (psir1 , psir2 , · · · psirM ) and ot ,
shown as

p̄silt =
psi · ot∣∣psi ∣∣ |ot | . (4)

The physical significance of p̄silt is as follows. psi is the
priori probability distribution, which describes the probabili-
ties of different observations as the hidden state is si. But the
actual observation probabilities are ot at time t . If psi and ot
are highly similar, the probability that the hidden state is si
would be high. In other words, as the actual observation vec-
tor is ot at time t , the probability that hidden state si observes
lt should be obviously high for this sample. Conversely, if the
similarity between psi and ot is very low, the corresponding
probability should be low. To fuse the observation vector, the
psilt can be instead by p̄silt in HMM, and we rename the new
HMM as WOHMM.

Similar to the HMM, the initial vector π is defined as

π = (βs1 , βs2 , · · ·βsN )1×N , (5)

where 0 ≤ βsi ≤ 1 and
N∑
i=1
βsi = 1. βsi is the probability that

the hidden state is si at t = 1, and it equals to P(a1 = si).
To sum up, WOHMM is written as

λ = [P,Q,π ] , (6)

which contains three parts of transition matrixQ, observation
matrix P and initial state vector π . As P and π can be
obtained through experiments, our parameter learning prob-
lem is summarized as training the optimal transition matrix
Q on given the observation sequence O and L. The following
section will give the learning algorithm W-Trans.

C. OUR PARAMETER LEARNING ALGORITHM
Before the details of W-Trans, we introduce two variables.

1) The forward probability

αt (sk) = P ({l1, l2, · · · lt } , at = sk |λ, {o1, o2, · · · ot })

which is the probability that the observation sequence
between 1 and t is {l1, l2, · · · lt } and the hidden state at time
t is sk on given the WOHMM parameter λ and observation
vector sequence {o1, o2, · · · ot }. This value can be obtained by

αt (sk) =


βsk p̄sk lt if t = 1
N∑
j=1

αt−1
(
sj
)
qsjsk p̄sk lt if t > 1,

(7)

where p̄sk lt is shown as Equation 4.
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2) The backward probability

βt (sk) = P ({lt+1, . . . , lT } |at = sk ,λ, {ot+1, . . . , oT })

which is the probability that the observation sequence
between t + 1 and T is {lt+1, lt+2, . . . , lT } on given λ, the
hidden state sk at time t , and the observation vector sequence
{ot+1, ot+2, . . . , oT }. This value can be obtained by

βt (sk) =


1 if t ≥ T
N∑
j=1

qsk sj p̄sjlt+1 βt+1
(
sj
)

if t < T ,
(8)

where p̄sjlt+1 is shown as Equation 4.
Following the Baum-Welch algorithm, the logarithmic

likelihood function of complete-data is logP (L,A|λ,O),
which denoted as

logP (L,A|λ,O)=βa1 p̄a1l1qa1a2 p̄a2l2 . . . qaT−1aT p̄aT lT , (9)

where A is a possible hidden state sequence corresponding
to L and O, λ is the WOHMM parameters. Construct the Q
function of EM algorithm, shown as

Q(λ, λ̂) =
∑
A

P(L,A|λ̂,O) logP(L,A|λ,O), (10)

where λ is the parameters to be maximized, and λ̂ is the
current values. Substituting 9 into 10, we can get

Q(λ, λ̂) =
∑
A

P(L,A|λ̂,O) logβa1

+

∑
A

P(L,A|λ̂,O)(
T∑
t=1

log pat lt )

+

∑
A

P(L,A|λ̂,O)(
T−1∑
t=1

log qatat+1 ), (11)

which composes of three parts, the summation of initial vec-
tor, observation probability and transition probability respec-
tively. As the initial vector and the observation matrix do
not need be updated, the third part of Equation 11 should be
maximized in order to maximize the Q function. Expand the
third part and construct the lagrange function, expressed as

La =
N∑
i=1

N∑
j=1

T−1∑
t=1

P(L, at = si, at+1 = sj|λ̂,O) log qsisj

+ γ (
N∑
j=1

qsisj − 1). (12)

Calculate the partial derivative for qsisj , and let results be 0.

T−1∑
t=1

P(L, at = si, at+1 = sj|λ̂,O)+ qsisjγ = 0 (13)

Accumulate j and apply
N∑
j=1

qsisj = 1, we can get

γ = −

T−1∑
t=1

P(L, at = si|λ̂,O). (14)

Substitute 14 into 13.

qsisj =

∑T−1
t=1 P(L, at = si, at+1 = sj|λ̂,O)∑T−1

t=1 P(L, at = si|λ̂,O)
(15)

Decompose the numerator and denominator, shown as

P(L, at = si, at+1 = sj|λ̂,O)

= P({l1, · · · lt }, at = si|λ̂, {o1, · · · ot })

× q̂sisj × p̄sjlt+1
×P({lt+2, . . . , lT }|at+1 = sj, λ̂, {ot+2, . . . , oT })

(16)

and

P(L, at = si|λ̂,O)

= P({l1, · · · lt }, at = si|λ̂, {o1, · · · ot })

×P({lt+1, . . . , lT }|at = si, λ̂, {ot+2, . . . , oT }).

(17)

Substitute 7, 8, 16 and 17 into 15, we can get

qsisj =

∑T−1
t=1 α̂t (si) q̂sisjˆ̄psjlt+1 β̂t+1

(
sj
)∑T−1

t=1 α̂t (si) β̂t
(
sj
) , (18)

which is the recurrence formula for transition probability
learning. According to this formula, the W-Trans is shown
as Algorithm 1.

In Algorithm 1, the first loop indicates iteration times,
which depends on specific scenarios. For each iteration, a new
Q is calculated based on the previous iteration. In this step,

Algorithm 1 W-Trans: The Weighted Transition Matrix

Learning Algorithm for WOHMM
Input:

The observation sequenceO = {o1, o2, . . . , oT } and L =

{l1, l2, . . . , lT };

The initial transition matrix Q̂;

Output:

The updated transition matrixQ;

1: for n = 1, 2, . . . do

2: for i, j ∈ [1,N ] do

3: for t = 1 : T − 1 do

4: α̂t (si) = cal_alpha(t, i, Q̂); //Equation 7

5: β̂t
(
sj
)
= cal_btea(t, j, Q̂); //Equation 8

6: end for

7: qsisj = cal_new(α̂t (si) , β̂t
(
sj
)
, Q̂); //Equation 18

8: end for

9: Q̂ = Q

10: end for

11: return Q
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the forward probability and backward probability are first
obtained with Equation 7 and 8. Then the updated transition
probability is calculated by Equation 18. All the transition
probabilities compose the new transition matrix Q. After
iterating many times, the final transition matrix is returned.

III. EXPERIMENTS
In this section, we compare W-Trans with the classic Baum-
Welch algorithm on two public data sets. First, it introduces
the design of experiments and then gives the final experimen-
tal results for different classifier on two data sets. Finally, it
discusses the influences of algorithm parameters.

A. EXPERIMENTAL DESIGN
First of all, the SARD [36] and HAPT [37] are selected
as the data sets in our experiments. Both of them contain
the acceleration and gyroscope data provided by the smart-
phones. SARD is the product of Twente University, while
HAPT is shared by UCI Machine Learning Repository. Five
popular daily activities including walking, running, upstairs,
downstairs and standing were chosen for SARD and six
daily activities such as walking, upstairs, downstairs, sitting,
standing and lying were considered for HAPT. Secondly, we
divided those sensing data into fixed-size samples by the
half-overlapping sliding window. As the window size was set
to 1 second, we obtained 27000 and 11000 samples respec-
tively from SARD and HAPT. Finally, we extracted features
with different methods for each data set. For SARD, we
extracted the features such as mean, variance, average cross
rate, maximum, minimum and 10 low frequency coefficients
of Fast Fourier Transformation (FFT) [38]. Since HAPT has
provided 561 features, we only selected the top 30 ones
according to their scores by ReliefF algorithm [39].

Before simulating Algorithm 1, we recognized the activi-
ties with the supervised learning method [14]. The samples of
each user were selected as the test set in turn, and the samples
of other users constitute the training set. We selected two
popular classifiers of SVM and ELM to get the recognized
label and the corresponding vector for each sample. Then we
randomly arranged the sample orders to reconstruct different

FIGURE 3. An example of activity sequence reconstruction.

activity sequences. In this step, the duration of each activity
was set to a specified value n, which denotes the activity will
last n samples as it occurs. Besides, the transitions between
different activities were randomly specified. An example is
shown as Fig. 3, in which the activity duration is set to 3. In
this example, w denotes walking, s indicates standing, and r
represents running. As shown in Fig. 3, as activity of walking
occur, it lasts 3 sample. Then, the activity randomly changes
to standing, and it also lasts 3 samples. Next, it randomly
changes to running.

According to the reconstruction, we could simulate the
activity sequences in different scenarios. After reconstruc-
tion, the diagonal elements of actual transition matrix would
be n−1

n and the other elements would be close to 1
n(n−1) , where

m is the number of activities. The reconstructed sequence
would be the input of parameter learningmethods. In simulat-
ing Algorithm 1, the initial state vector was set to follow the
uniform distribution. The observation matrices correspond-
ing to SARD and HAPT are described in Table 1 and 2
respectively, which were built according to the confusion
matrices for activity recognition. Due to different numbers of
default activities in SARD and HAPT, the sizes of matrices
are unequal.

To prove the advantages of our algorithm, we should
choose metrics to evaluate the similarity between the learned
transition matrix and the actual one. As the cosine similarity
and the euler distance are the most popular similarity tools,
we use these two methods as our metrics in the following
experiments. The cosine similarity is defined as

dcosine =

∑
ij qijq̂ij

‖Q‖F
∥∥∥Q̂∥∥∥

F

, (19)

TABLE 1. Observation matrix of SARD.

TABLE 2. Observation matrix of HAPT.
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FIGURE 4. Mean results with different metrics and data sets.

where q̂ij and qij are the learned and actual transition proba-
bilities respectively, ‖Q‖F is the Frobenius norm of matrixQ.
The euler distance is defined as

deuler =
√∑

i,j

(
q̂ij − qij

)2
, (20)

These two metrics evaluate the results in different views.
For the cosine similarity, high values indicate good results,
and low values instead for the euler distance.

For example, Q is the actual transition matrix which
derived from sequence reconstruction, Q1 and Q2 are learned
by different algorithms respectively, which denoted by Alg1
and Alg2. The dcosine(Q,Q1), dcosine(Q,Q2), deular (Q,Q1)
and deular (Q,Q2) can be calculated. If dcosine(Q,Q1) >

dcosine(Q,Q2), Alg1 would be better. But if deular (Q,Q1) >
deular (Q,Q2), Alg2 would be better. The following subsec-
tions will show the comparison results based on these two
indicators.

B. COMPARISON RESULTS
As the transition matrix is a parameter of HMM, the exper-
iments just compared Algorithm 1 with Baum-Welch algo-
rithm [16]. Fig. 4 shows mean results with different metrics
and data sets, whereW-Trans is our method and Baum-Welch
is the original algorithm. The iteration time was set to 10,
and the activity duration was set to 5 for these results. The
selection of these two parameters will be introduced in the
following sections. Fig. 4 includes four figures. The first two
figures show comparison results of the cosine similarity with
different data sets, and the following two figures illustrate
results of the eular distance. For each figure, it shows four
results, which are derived from different parameter learning
algorithms and classifiers.

As shown in Fig. 4(a) and (b), the W-Trans provides obvi-
ously higher cosine similarity than Baum-Welch algorithm
whatever the classifiers. It means the transitionmatrix learned
by our method is closer to the actual one. For the following
two subfigures, the W-Trans gives obviously lower eular
distance. As lower eular distance means better result, our
method gives better performance.

Comparing the results derived from different classifiers,
we can know that SVM performs better than ELM whatever
the parameter learning algorithms. According to analyzing
the classification results, we find that the classification accu-
racy of SVM is slightly better than ELM. It causes that the
incorrect results in classification result sequence of SVM are
less than ELM. In parameter learning, these misclassified
results offer more obvious influences to the final transition
matrix. Thus, the performance of ELM would be worse.
This comparison reveals that the activity classification accu-
racy is an import influencing factor to the final transition
matrix.

Comparing the results evaluated on different data sets, we
can find that the data set of HAPT provide better perfor-
mance. The reasons are described as follows. By observing
Table 2, we can know activities included in HAPT can be
divided into two groups. The first group contains Walking,
Upstairs and Downstairs, and the second group consists of the
rest activities. The activity confusion probabilities between
these two groups are 0, which causes the activities in one
group would not be recognized as activities of another group
in the recognition result sequence. In parameter learning, the
activity transition probability between groups would be easy
to be determined. The factors that affect the final transition
matrix are just the confusion matrix within the group, which
is a simplified problem. It also reveals that simplifying the
confusion matrix is an important direction to improve the
algorithm in practical applications.

C. INFLUENCE OF ITERATION TIME
In Algorithm 1, the iteration time is an import parameter
affecting performance. Section III-B set this parameter to 10.
This subsection will discuss how this value is obtained. In the
process of simulation, we calculate the cosine similarity and
the eular distance for each iterate. As the SVM and ELM pro-
vide similar results, this subsection just introduces the results
classified by SVM. Fig. 5 shows the experimental results as
the iteration time changes from 1 to 15. The activity duration
is 5 for these results. As shown in Fig. 5, the euler distance
declines and the cosine similarity improves for these two
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FIGURE 5. Comparison results as the iteration time changes from 1 to 15.

methods as the iteration time increases. When the iteration
time is smaller than 5, these curves change obviously, and
then become gentle. It is because that the learning process
becomes convergent and the transition matrix is gradually
approaching the optimal matrix.

When the iteration time is 1 or 2, the W-Trans per-
forms worse than the Baum-Welch algorithm, and then it
becomes better. The reasons are as follows. After replac-
ing the original observation probability with the weighted
observation probability, the differences between probabilities
which observed by the same hidden state become small. This
feature leads to the convergence rate becomes slow. So the
performance is worse when iterating few times. It is because
of slow convergence rate, the W-Trans can get more accurate
result.

Comparing the results simulated on different data sets, we
can find that the results on HAPT converge faster. For the
SARD, the transition matrix converges after about 6 iterate
times, and it is 4 for HAPT. The reasons are also simple. As
the observation matrix of HAPT is divided into two groups,
the transitionmatrix learning ofHAPT is actually divided into
two sub-problems. Each sub-problem contains three activi-
ties. Obviously, the parameter learning problem of 3 activities
is faster than 6 activities.

D. INFLUENCE OF ACTIVITY DURATION
In the above sections, activity sequences were randomly
reconstructed, in which the duration of each activity was set
to a specified value and the transition between different activ-
ities was randomly specified. In this step, activity duration
is an important parameter affecting the final results. This
section will discuss the influence of activity duration. Fig. 6
shows the comparison results as the activity duration changes
from 2 to 15 on SARD data set. As the results derived from
two classifiers are similar, these figures just show the results
of SVM.

As shown in Fig. 6, the learned transition matrix of activity
sequence is approaching the optimal value as the activity
duration increases. Themain reasons are as follows.When the
activity duration is small, the activity transitions frequently.
Learning the transition matrix in the result sequence is sus-
ceptible to the incorrect recognition results. As the number
of continuous samples increases, the transition law between
activities becomes obvious, and it is also easy to be captured
from the activity result sequence. In contrast, the influence of
the error classification results become small.

Comparing the results of the two algorithms in Fig. 6, it can
be found that when the activity duration is 2, the performance
of W-Trans is slightly worse than Baum-Welch. With the
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FIGURE 6. Comparison results as the activity duration changes from 2 to 15.

FIGURE 7. The recognition rates of post-process methods with different data sets and classifiers.

increase of activity duration, the performance of W-Trans is
gradually better than that of Baum-Welch. The main reasons
are as follows. Since the difference of weighted observation
probability for different hidden states is small, W-Trans is
more susceptible to misclassified results when the number
of continuous samples is small. It causes that the W-Trans
performs worse. As the activity duration increases, the effect
of misclassified results becomes small, and the results of
W-Trans also become better. However, parameter learning
algorithm always requires a long sequence of recognition
results. For a long activity sequence, activity duration is 2
means one person changes his activity in about 2 seconds.
Obviously, it is impossible in practical applications. There-
fore, it has little effect on the activity recognition in real
scenes.

IV. APPLICATION VERIFICATION
The performance of W-Trans has been evaluated in the previ-
ous section, which compared to the classical transition matrix
learning algorithm under metrics of cosine similarity and
eular distance. To verify the validity of the method further,
this section will applyW-Trans to activity post-process which
is an import issue in sensor-based activity recognition. Cur-
rent popular post-process methods include WOODY [22],

HMM [40], CRF [41] and LCCAS [21] etc. In these methods,
three methods of WOODY, HMM, and LCCAS are all regard
the activity transition matrix as a basic parameter, which is
learned by the classical Baum-Welch algorithm in thesemeth-
ods. This section will evaluate these post-process methods in
replacing the Baum-Welch algorithm with W-Trans.

In this section, the SARD and HAPT are also selected as
the experimental data sets. The experimental designs of data
preprocessing, feature extraction, training and classification,
sequence reconstruction are the same as Section III-A. In
this section, activity duration is set to 5. After getting the
normalized recognition result sequence, we first learn the
activity transition matrix with Baum-Welch algorithm and
W-Trans respectively. Then the learned transition matrix and
the activity result sequence are as inputs of post-process algo-
rithms. Fig. 7 shows the average recognition rates of seven
post-process methods with respect to different classifiers and
data sets.

Fig. 7 shows four sub-figures. Each sub-figure plots the
recognition rates with different datasets and classifiers. For
each sub-figure, it contains seven methods. Original rep-
resents the classification without any post-process. HMM,
LCCAS and WOODY are the methods in [21], [40] and
[22] respectively. These three methods are included in our
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experiments as baselines, in which the Baum-Welch algo-
rithm is applied as the transition matrix learning algo-
rithm. The following three methods of HMM-W, LCCAS-W,
WODDY-W are the improved post-process methods, in
which the transition matrix learning algorithm replaced by
W-Trans.

Comparing each post-process method and the correspond-
ing improved method, we can find that the activity recog-
nition rates are all improved. The best result is WOODY-W
in Fig. 7(d), which increases the recognition rate by 1.85%.
Even for the worst result of LCCAS-W in Fig. 7(a), it also
improves the recognition rate by 0.31%. The reasons are
obvious. The transition matrix is a most important param-
eter in post-process. It describes the transition relationship
between activities. Accurate activity transition matrix can
decrease the modifying error than inaccurate one in estimat-
ing the result probability. It is bound to increase the recog-
nition rates. These results reveal that the activity recognition
rate improves steadily after replacing Baum-Welch algorithm
with our approach in post-process methods.

V. CONCLUSION
The sensor-based human activity recognition has been wildly
applied in behavior tracking, health monitoring, indoor local-
ization etc. Applying the activity continuity to assist activity
recognition is an important research issue, in which the HMM
is a commonly used theoretical tool because of its simplicity
and effectiveness. As the most import parameter, the transi-
tion matrix should be learned from the classification results
sequence dynamically.

Aiming at the problem that the classical transition matrix
learning algorithm cannot utilize the weights of classification
results, an improved HMM named WOHMM is introduced
in this paper. Based on the definitions of WOHMM, the
weighted transition matrix learning algorithm W-Trans is
proposed. In the evaluation, the public data sets are applied
to activity recognition and transition matrix learning, and the
metrics of cosine similarity and eular distance are adopted
for measuring the performance of different methods. The
experimental results show that our algorithm outperforms the
classical Baum-Welch algorithm.

There are still some future research directions based on our
method. In the actual scene, the sample distribution in the
activity sequence is often unbalanced. For example, a certain
type of activity such as sitting always lasts a long time, while
other activities such as running and upstairs are relatively
short. The transition matrix learning algorithm in this paper
does not consider this subject, whose effect to the proposed
algorithm need to be studied in the future researches. On the
other hand, the proposed W-Trans in this paper is a universal
algorithm, which can be applied not only to sensor-based
activity recognition. Other sequence related problems with
observation weight can also use this algorithm to learn the
transition matrix. Applying this algorithm to other fields is
also worth studying.
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