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ABSTRACT Insulated-gate bipolar transistors (IGBTs) are one of the most vulnerable components that
account for a significant fraction of inverter and converter failures. This paper conducts a degradation
analysis of IGBTs using run-to-failure measurements. Online assessment of the degradation state of IGBTs
can prolong normal operation and enable proactive maintenance of the system. The research idea is to
find a reliable and robust mechanism for IGBT degradation assessment. This paper developed a prediction
interval-based degradation assessment methodology that accurately classifies different health states or
degradation levels of IGBTs by adding prediction bounds and using them as a critical value for serious
damage. It first computes the prediction interval and then uses the Mahalanobis distance to classify the
state into degradation level 1 and degradation level 2, instead of just applying the base algorithm. The
developed method outperforms distance-based classification schemes and self-organizing maps for online
assessment of degradation levels. It only requires training of 1000 initial points which are assumed to be
healthy. Furthermore, the generalizability of the method has been shown by validating the effectiveness of
the proposed method on three other modules.

INDEX TERMS IGBT, online degradation state assessment, MD, SOM.

I. INTRODUCTION
Insulated-gate bipolar transistors (IGBTs) are widely used in
solar energy, wind energy, electric vehicles, and other energy
industries. In power electronics, IGBTs are estimated to be
responsible for 34% of all inverter failures, indicating that
the reliability of power electronics is highly dependent on the
reliability of the IGBT module [1], [2]. It is desirable that the
failures of IGBT occur in a fail-safe manner, and an online
degradation state assessment helps in reaching that goal.

Several papers have concentrated on physics-of-failure-
based and data-driven techniques for early anomaly
detection and lifetime prediction of IGBTs. In par-
ticular, Valentine et al. [3] investigated the physics of
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failure of metal–oxide–semiconductor field-effect transistors
(MOSFETs) and IGBTs and hypothesized that the failures
are a combination of manufacturing defects and poor ther-
mal management. Patil et al. [4]–[6] tested the degradation
performance of IGBT under different stress conditions like
temperature. Ghimire et al. [7], [8] studied online degrada-
tion diagnosis using a single parameter. Patil et al. [9]–[14]
carried out the diagnostics and prognostics of IGBT by
usingMahalanobis distance (MD) of the selected parameters.
Sutrisno et al. [15] used a k-nearest neighbor algorithm for
early anomaly detection. Rigamonti et al. [16]–18] used a
self-organizing map (SOM) to cluster different degradation
states of the module or different faults of an IGBT in a fully
electric vehicle system. Alghassi et al. [1] used the k-means
method to predict the degradation state of an IGBT module.
The accuracy of these methods has not been compared.
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In the process of predicting the degradation state of the
module, collector to emitter voltage, Vce, power, P, and case
temperature, Tc, or junction temperature, Tj, are the most
commonly used features. Amongst these features, collec-
tor voltage serves as the primary feature for failure anal-
ysis. In addition, since the collector voltage is affected by
power and temperature fluctuations, so Vce, P and Tc are
selected [7], [20], [21].

The distance-based method and self-organizing map
method are very commonly used for anomaly detection or
degradation assessment. However, these two methods may
give a misleading result when the module experiences more
than one degradation stage especially the superposition of
multi degradation modes in the later period which may lead
to irregular fluctuation in the data.

In this paper, a prediction interval-based methodology for
degradation state assessment of IGBTs has been developed
based on run-to-failure measurements of multiple IGBTs.
The time series raw data of collector voltage and case tem-
perature were used to compute the power. The data were
first preprocessed to remove the transients and nonoper-
ational time period and then down-sampled before being
labeled using the 3D representation of the preprocessed data.
Thereafter, the degradation assessment was conducted using
three different methods: i) Mahalanobis distance (MD) based
method ii) self-organizing map (SOM), and iii) the developed
prediction interval-based classification. The novel method
was developed after critically analyzing the MD and SOM
methods and their inability to classify the degradation states.
The results are compared to determine the accuracy and
effectiveness of the methods for the online degradation state
assessment. Figure 1 shows the flowchart of the approach that
has been followed.

FIGURE 1. Degradation state assessment flowchart.

The rest of the paper is organized as follows. Section II
presents the measurement setup, data collection process
along with some plots of raw data to infer some key
trends and information. Thereafter, Section III discusses
the data preprocessing process. In Section IV, the results
using distance-based and cluster-based methods are pre-
sented and analyzed. Section V explains the prediction

FIGURE 2. Aging device and its circuit.

interval-based method, presents and analyzes the results
on multiple modules to validate the applicability of the
developed methodology. Finally, Section VI presents the
conclusions.

II. MEASUREMENT SETUP
The measurement setup for the run to failure measurements
of IGBT has been shown in Figure 2. The IGBT mod-
ule (Figure 2a) is installed in an aging chamber shown
in Figure 2b and wired using a circuit diagram shown in
Figure 2c. The measurements can be controlled from outside
of the chamber using a control panel shown in Figure 2d. The
IGBT module, also called the device under test (DUT), was
powered by two supplies, a program-controlled test power
supply (PWR) of 5 V/300 A and a gate-foot program control
power supply (VG) of 0–15 V. The gate pin series resis-
tance (RG) of 10 �/2 W was used to limit the input current
whereas a current transformer (RIS) of 150mA–300 A was
used at the source terminal. This is a custom made measure-
ment setup to conduct run to failure measurements. The aging
measurements are carried out in two modes, one involves
setting the temperature range, and the other involves setting
the on-off (duty cycle) time. In both modes, the collector
current is set to 50 A whereas the collector voltage of 20 V
is used based on the module’s datasheet specifications. The
gate voltage data is collected once the aging process begins
The measurements are stopped at a specified cycle number
well beyond the expected life cycle of the module. In the
on-off mode, the duty-cycle for is fixed and the temperature
is controlled by changing the power. Module A is set to a
duty cycle of 50% with an on-time of 30 seconds followed

69472 VOLUME 8, 2020



X. Liu et al.: Online Degradation State Assessment Methodology for Multi-Mode Failures of Insulated Gate Bipolar Transistor

FIGURE 3. Change trend of junction temperature and case temperature.

by 30 s off-time. The duty cycle for module B is also 50%
both the on/off times are set to 10 s. The collector voltage
decreases to less than 5 V once the circuit is turned on.
There is a temperature sensor in contact with the module
(between the module and heatsink). Current and voltage mea-
surement wires were connected to the collector, emitter, and
gate separately. The run-to-failure measurements (collector
voltage, case temperature, and power) for the on-off mode
were collected using an aging machine.

In the paper, the case temperature is used to represent
the effects of changes in the junction temperature. In order
to validate this hypothesis, a simulation model before and
after the degradation [22] was built as shown in Figure 3a.

The junction to case thermal impedance is estimated using the
transient double interfacemethodwhereas the case to ambient
impedance is estimated by using experimental case tempera-
ture data and parameter estimator tool. Simulation results and
temperature variations for both case and junction temperature
are shown separately in Figure 3b and Figure 3c respectively.
The results show that both case and junction temperature
demonstrate similar trends before and after degradation as
shown in Figure 3c. Therefore, it is reasonable to use the case
temperature to represent the effects of changes in the junction
temperature.

III. DATA PREPROCESSING
Throughout this paper, we give values for the case temper-
ature and the collector voltage. The power measurements
have similar behavior to the collector voltage because of
the constant current condition. Figure 4 and Figure 5 show
the plots for the measured data after removing the off-phase
data. It is observed that the original data did not show any-
thing of significance for the case temperature or collector
voltage before and after the removal of the off phase data.
Thus, to avoid redundancy andmake useful information clear,
the original data is not shown here.

FIGURE 4. Case temperature after removing the off-phase data.

A. REMOVAL OF OFF-PHASE DATA
The first step in data preprocessing is to delete the data where
the circuit is switched off (the off-phase data). Figure 4 and
Figure 5 show the plots for the measured data after deleting
the off-phase data. Since we have deleted the off-phase data,
we do not label the x-axis as time, rather we label it ‘‘Time
series data points’’, which will also be easier to explain the
data preprocessing process. Measurements have a sampling
interval of 1.6 s. It is important to use the interaction among
different parameters to assess the degradation holistically.

Three distinct phases are evident in both these figures.
In phase 1, both the case temperature and collector volt-
age are relatively constant. After 350 K data points, there
is a jump in the values but the net trend is still constant.
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FIGURE 5. Collector voltage after removing the off-phase data.

After 500 K data points, there are some fluctuations in both
the case temperature and collector voltage.

B. REMOVAL OF TRANSIENT DATA
In Figure 4, there are large peaks in case temperature that
occur every time the aging machine is restarted. The temper-
ature increases rapidly at that phase, it takes several minutes
for the case temperature to go from 20◦C to 70◦C. We refer
to these fluctuating data points as transient data points. Tran-
sient data points have a temperature increase of more than
5◦C between two adjacent points. The transient data points
do not represent the degradation of the IGBT and may lead
to incorrect conclusions since the initial transient data points
may interfere with the stable data points after degradation
has occurred as shown in the Figure 8a where a 2-D plot
of collector voltage vs the case temperature has been shown
without removing the transient data. The transient data takes
only 2% of all data, so the removal of the transient data
points will not affect the result. Figure 8b shows the same
2-D plot after removing the transient points. It is clear that by
removing the transient data, the plots are much cleaner. In this
paper, only the data after removing the transient phase is used
for health assessment. Figure 6 and Figure 7 show the plots
after removing the transient data points.

C. DATA DOWNSAMPLING
Figure 8b shows how the data points are downsampled.
It shows four groups of 100 data points along with their
average value. The groups are chosen from different regions
of the input space: the first group is from the first 100 points,
the second group is taken right after 200 K data points,
the third group after 400 K data points, and the fourth group
after 600 K data points. These samples show interesting pat-
terns. For the first group, the collector voltage increases from
1.72V to 1.78Vwith an averagemarkedwith a red circle, and
the temperature remains relatively constant. For the second
group, the average temperature increases a little. For the third
group, the average temperature further increases and this time

FIGURE 6. Case temperature after removing the transient data.

FIGURE 7. Collector voltage after removing the transient data.

by more than 12◦C. However, for the fourth group (taken
after 600 K data points), the temperature decreases, making
a different angle from the start of the process as shown in
Figure 8b.

For downsampling different window sizes were consid-
ered. For instance, downsampling by taking the average value
of 1000 data points or 100 data points showed similar results.
In the meantime, using a window size of 100 data points
provides data points, which is helpful for the degradation state
assessment. For the remainder of the analysis, downsampled
data is used. The detail of every step is shown clearly here so
that the entire process can be implemented online.

D. DATA LABELING
In order to see the degradation trend of the entire dataset,
Figure 9 shows a 3D plot of the data. The downsampled data
for collector voltage and case temperature has been plotted
with data points (time) increasing in the z-axis direction.
As the measurements progress, both case temperature and
collector voltage start to increase. At a certain point in time,
there is a sudden increase in both parameters. Finally, beyond
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FIGURE 8. Collector voltage vs case temperature before (a) and after
(b) removing the transient data. The red dots in (b) show the mean value
of the group of data.

a certain state, there are rapid fluctuations, with both the case
temperature and collector voltage experiencing fluctuations.
The 3D figure is used to label the data points into three
degradation levels. In order to label the data points, their
projection on the x-y plane is considered and is shown in
Figure 10. Three degradation levels can clearly be seen in this
figure. The first level consists of a normal and healthy state
where a very slight increase is observed in both parameters.
Thereafter, degradation level 2 is the state after a sudden
increase in both the parameters, but still no rapid fluctuations
are observed. This state is a ‘‘degraded state’’ but it is still not
‘‘unhealthy’’. Finally, after a certain point, rapid fluctuations
are observed and are considered as degradation level 3 or the
‘‘unhealthy’’ state. The variance of the unhealthy data points
is considerably larger than the variance of the first 1000 data
points, which are assumed to be healthy. All the labeling is
used as a reference in the classification.

IV. DEGRADATION STATE ASSESSMENT
Two methods are commonly used for degradation level
assessment—a distance-based method and a clustering-based

FIGURE 9. Data points change with degradation.

FIGURE 10. Relationship of collector voltage and case temperature.

method. In this Section, these two kinds of methods are
discussed, and the performance results with each of these
methods are presented and analyzed.

A. DISTANCE-BASED METHOD
Mahalanobis distance (MD) is one of the most commonly
used distance metrics. The MD represents the covariance
distance between the test data and the reference distribution.
It takes into account the relationship between the various
features of the reference distribution. It is an effective way
to calculate the similarity of two unknown sample sets. The
MD of sample xi is defined in Eq. (1).

MDi =

√
(xi − µ)T S−1 (xi − µ) (1)

where xi is the ith observation, µ is the mean value of the
reference data, and S is the covariance matrix of reference
data [9]–[14].

Figure 11 shows the MD for all data points. Note that over
the course of the run-to-failure measurements, the overall
trend of the aging data points is increasing. There is a decrease
phase after 5500 data points while the module is in the
degraded state. Thus, MD does not represent the degradation
of the module accurately. The decrease phase in theMD is the
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FIGURE 11. Mahalanobis distance of all data points.

degradation level 3 in Figure 10. In degradation level 3, some
data points are nearer to the initial (normal) data points than
in degradation level 2. Therefore, if the data has this kind of
fluctuating trend, the distance-based metric may not work.

FIGURE 12. Generating a self-organizing map (SOM) and calculating
minimum quantization error (MQE).

B. SELF-ORGANIZING MAP
A self-organizing map (SOM) is a type of clustering
method that facilitates data visualization by projecting
multi-dimensional feature space to a two-dimensional map.
A SOM is an unsupervised learning method, it constantly
gathers data with similar characteristics through the competi-
tion of the neurons to form a two-dimensional map. The entire
process of the SOM is shown in Figure 12.

All the data is normalized in the first step. In the sec-
ond step, the map size, or the number of neurons, is deter-
mined by the number of healthy data points, as shown
in Eq. (2).

M ≈ 5
√
N (2)

where M is the number of neurons, usually
√
M is the

length and width of the map, N is the number of health
data points. In the third step, the weight vector is initialized
by a random number (the weight is a matrix of three rows
and M columns). The next five steps iteratively update the
weights over 200 iterations to obtain a SOM. The algorithm
starts by calculating the Euclidean distance between the first
three-dimensional input value and each weight vector. The
neuron with the minimum outcome is selected as the best
matching unit (BMU) as it is the neuron that is most similar
to the input. The weights are mapped to a two-dimensional
map of

√
M by

√
M where weights are updated depending

upon the distance to the BMU. The weights for the ith neuron
are then updated using Eq. (3).

wi (t + 1) = wi (t)+ hci (t) ‖ x (t)− wi (t) ‖ (3)

where ‖ x (t) − wi (t) ‖ is the Euclidean distance between
x(t) and wi(t), hci(t) is the neighborhood function that allows
update in the neighborhood of the winning neuron and has
a Gaussian distribution as represented in Eq. (4), where η(t)
(Eq. (5)) is the learning rate and the standard deviation σ (t)
(Eq. 6) is influenced by radius [16], [23].

hci (t) = η (t) exp

(
‖ rc − ri ‖2

2× σ (t)2

)
(4)

η (t) = η (0)
(
exp
−t
n

)
(5)

σ (t) = σ (0) exp

(
−

t
n

ln(σ (0))
)

)
(6)

Once the optimal weights are obtained for input, another
training data vector is picked up and the process is repeated
until optimal weights have been computed for the entire
training data and at least 200 iterations have been reached.
The process produces a SOM as shown in Figure 13. The
SOM clusters data points of different degradation levels
together, the blue part is data points that are normal data
points, the green part on the right represents degradation
level 2, and the yellow part is the data points that are severely
damaged (degradation level 3).

Unlike MD, SOM is able to find three clusters from the
input. The SOM here is constructed based on all the data
points in the aging or run-to-failure measurements. How-
ever, practical applications require online degradation assess-
ment. If we want to classify assuming online arrivals, SOM
becomes infeasible. For instance, Figure 14 shows the SOM
map based on the initial (normal) data points. The observation
data points are used as the input of the SOM and theminimum
quantization error (MQE) as the output. Even though all the
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FIGURE 13. Self-organizing map of all data points.

FIGURE 14. Self-organizing map of all data points of 1000 data points.

FIGURE 15. Minimum quantization error of all data points.

data points belong to the same class, the SOM still tries to
cluster them in different classes and hence assigns incorrect
labels to the data points. In fact, the performance is even
worse than MD-based classification for the online case. The
results are shown in Figure 15.

FIGURE 16. Classification by prediction interval-based method.

V. PREDICTION INTERVAL-BASED METHOD
In order to carry out an online degradation assessment, a pre-
diction interval-based method has been developed. A predic-
tion interval is a type of interval estimate, computed from
the statistics of the observed data. Factors affecting the width
of the prediction interval include the size of the sample,
the confidence level, and the variability in the sample.

The prediction interval is based on the existing fit to the
data, it accounts for both the uncertainty in estimating the
population means and the random variation of the individual
values. The equation for calculating the prediction interval is
shown in Eq. (7),

(x̄ − tb (n− 1)× spred , x̄ + tb (n− 1)× spred ) (7)

s2pred = s2 + s2ŷ∗ (8)

s2ŷ∗ = s2(
1
n
+

(x∗ − x̄)
6(xi − x̄)2

) (9)

where x̄ is the sample mean, n is the sample number,
b = 1−C

2 , and C is confidence level, critical value tb(n − 1)
is computed by searching the Student’s t-distribution, s2 is
the variance of the estimation y∗, s2

ŷ∗
is the estimated stan-

dard deviation of samples, it indicates the variance because
of using y∗ to estimate E(y∗), x∗ is the individual sample,
xi is an ith sample, y∗ is the estimated value based on the
samples [24].

In this paper, the initial 1000 data points are used as the
reference data points, and the prediction bound is drawn
based on the prediction interval of 0.9999 to make sure that
the bound can cover most of the healthy data. The predic-
tion bound separates data in degradation level 1 and 2 from
degradation level 3. When the online test data is within the
bound, it is either in degradation level 1 or 2. When 3 con-
secutive data points of the online test data points exceed the
bound, the module is considered to be damaged and hence in
degradation level 3.When the test data is within the prediction
bound, MD is used to divide the state of the module by a
threshold value. The conservative threshold value of µ+12σ
from the first 1000 data points is used to separate degradation
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levels 1 and 2. Thus, the data points within the threshold are
considered to be healthy data. The data points exceeding the
threshold but still within the confidence bounds are regarded
as the points in degradation level 2. Finally, the points that are
consistently out of the prediction interval are regarded as the
points in degradation level 3. In the process, if the module is
not in the unstable state but the case temperature value keeps
on increasing in degradation level 2 and exceeds 150% of the
mean value of the original 1000 data points, it will also be
classified as degradation level 3.

To show how degradation levels 1 and 2 can be separated
from level 3, the absolute value of the difference from the
mean value is plotted in Figure 17. The threshold is based
on the confidence bound that ensures that 99.99% of the
first 1000 data points are within the bounds. When three
consecutive data points are over the threshold, they lie in
degradation level 3. Please note that each point here is the
mean of 100 data points. The number three has been arbitrar-
ily chosen. Three consecutive data points are selected to avoid
possible misjudgment it is a fairly conservative judgment
where the impact three hundred data points are considered
before making a declaration, and once it is classified as
degradation level 3, it won’t be classified as level 2.

FIGURE 17. Variance of all data points to the middle line.

Figure 17 clearly demonstrates that this approach can
easily separate degradation level 3 from degradation
levels 1 and 2. To distinguish degradation level 2 from level 1,
MD is used, the result is shown in Figure 18. It can be
seen that the data starts in degradation level 1 and moves
to degradation level 2 after around 3100 data points. The
degradation assessment of the prediction interval method can
be realized in an online manner.

To verify the effectiveness of the developed method, the
run-to-failure measurements of another IGBT (module B)
were carried out, as shown in Figure 19. This module hardly
experienced degradation level 2 and jumped directly from
the degradation level 1 to level 3. This result proves the
effectiveness of the prediction interval-based degradation
classification. The method achieved a classification accuracy

FIGURE 18. Mahalanobis distance threshold for distinguishing
degradation levels 1 and 2.

FIGURE 19. Data points change with the degradation of module B.

of 98.4% when it classified 76 data points in degradation
level 3 instead of level 1. However, all those data points were
just before the module reached degradation level 3 as shown
in Figure 20. Some red data points in the prediction bound
are misclassified, but it only accounts for less than 2% of the
total points. This validates the applicability of the developed
method across different modules.

To demonstrate the generalizability of the method, addi-
tional modules that work under different aging modes are
used to validate the methodology. As mentioned in Section II,
there are two aging modes; one uses the temperature range
and the other sets the on-off time. The temperature range
for the aging of module C is set to 40◦C -90◦C whereas
temperature range settings for the aging of module D is set
to 30◦C -70◦C.
The time-series data points distribution and the predic-

tion interval results for module C are shown separately in
Figure 21a and Figure 21b.
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FIGURE 20. Classification by prediction interval-based method of
module B.

FIGURE 21. Time series data points distribution and classification by
prediction interval-based method of module C.

The time-series data points distribution and the predic-
tion interval results for module D are shown separately in
Figure 22a and Figure 22b.

The results show that the prediction interval method
worked well for both modules C and module D, where the
degraded state was effectively detected using the prediction

FIGURE 22. Time series data points distribution and classification by
prediction interval-based method of module D.

interval method. However, unlikemodules A andB, neither of
them experienced the degradation level 2, they directlymoved
from a healthy state to an unhealthy state shortly before they
stopped working. Distance-based methods or self-organizing
map-based method are not suitable for such variations in
the data as they are more effective for the data with a little
variance whereas the proposed methodology not only works
well for the module that experiences three degradation levels
but also for modules where it directly moves to degradation
level three from healthy state.

In addition, the change in ambient temperature impacts
both the case temperature and voltages and does not affect
the degradation assessment.

VI. CONCLUSION
This paper developed a prediction interval-based classifi-
cation methodology for the degradation state assessment
of IGBT modules. First, we showed that Mahalanobis dis-
tance (MD) and self-organizing maps (SOMs) are not suit-
able for degradation assessment of IGBT modules in an
online manner. Mahalanobis distance-based classification is
not suitable because of the fluctuations of features such
as collector voltage and temperature as the module gets
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degraded. Self-organizing maps are suitable for clustering
the data points with similar features when all the data points
are available. Online classification requires a large amount
of training data, which may not be suitable for practi-
cal applications. The results of online degradation assess-
ment using self-organizing maps and minimum quantization
error (MQE) of all data points were no better than the
Mahalanobis distance results.

The developed prediction interval-based method outper-
forms the self-organizing map and Mahalanobis distance
methods for online data degradation assessment. The method
classifies the data points into three degradation levels in an
online manner and does not require a large number of data
points (the initial 1000 points in the healthy state) for training.
Furthermore, the prediction interval-based method can be
extended to other modules with more than 98% accuracy.

The prediction interval-based method takes data space
distribution into consideration in comparison to the
distance-based methods (not only Mahalanobis distance) that
is only suitable for data with two degradation states and may
result in the replacement of modules earlier than required.
TheMahalanobis distancemethod is based on the distribution
of health data and uses the MD as an indicator. The MD
results could be misleading when the measurement data fluc-
tuates in cases where there are multiple degradation modes.
The self-organizing map was not as good as MD based
classification when it was applied for online degradation
assessment.

The work in the paper was carried out under experimental
conditions. For further work, real working conditions will
be considered. For real application situations, a simulation
model will be built that takes the real power signal and ambi-
ent temperature as the input and outputs case temperature
and collector voltage. The simulation results will be obtained
and compared with the experimental results to obtain the
degradation assessment.
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