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ABSTRACT In china, overloaded trucks are widespread on rural highways, and the current control
measures are inefficient. We propose a new overloaded truck control method that finds overloaded trucks
with enforcement vehicles. The enforcement vehicles detect the intercepted trucks with mobile weighing
equipment and use the overloaded truck control station as a base. Based on the given number of stations and
the number of enforcement vehicles, in order to detect more overloaded trucks, we need optimize the spatial
distribution of the stations and the routes of the enforcement vehicles. For this reason, this paper first uses
the analytic hierarchy process (AHP) to evaluate some initial alternative locations and selects a group of
potential locations for the stations. Second, with the aim of maximizing the number of trucks being detected
by the enforcement vehicles, we establish a model to optimize the spatial distribution of the stations and the
routes of enforcement vehicles. Finally, a calculation is done with the data of the current rural highways in
Guiyang city, China.

INDEX TERMS Highway transportation, location and routing problem, ant colony algorithm, overloaded
truck control station, rural highway.

I. INTRODUCTION
Overloaded trucks, which have worsened road pavement
quality and shortened highways’ service lives, can be widely
seen on Chinese highways. Therefore, the authorities have
been continually enforcing controls on the overloaded trucks
since 2004 [1]. A common way to intercept overloaded trucks
is by setting up control stations (namely, overloaded truck
control stations, hereafter OTCS) along roadways with seri-
ous overloaded traffic to check the trucks and punish them [2].
But this common method suffers from a number of limita-
tions. It is difficult to safely perform checks on heavily traf-
ficked highways and motorways. With the increase of traffic
volume, theOTCS could not handle the heavy traffic resulting
in a lower enforcement level and causing delay to truckers
and motorists in general [3], [4]. In order to improve the
operations at OTCS,weigh-in-motion (WIM) technologywas
first proposed in 1950s [5]. The WIMmainly consists of load
cells and data processing system. The load cells are installed
on the pavement to weigh moving trucks, and send the data to
the system. The system filters out likely non-offenders based
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on a preset threshold value, and inform the offenders to go
to the OTCS for punishment. However, with the help of a
complex rural highway network, the overloaded trucks may
detour the OTCSs and load cells due to the low cost of detour-
ing. Therefore, on rural highways, it is hard to effectively
catch the overloaded trucks with OTCSs and load cells. The
effect and efficiency of OTCSs and load cells on overloading
control are poor. In this context, to improve overloaded traffic
control, an innovation in monitoring overloaded trucks on
rural highways is a key issue to urgently study.

II. LITERATURE REVIEW
It is difficult to find a large amount of literature on over-
loaded traffic control. Bagui (2013) has given the definition
of overloaded traffic and proposed a method to compensate
road damages due to overloaded traffic by punishing truck
operators [6]. Quintero et al. (2013) proposed a bilevel mod-
eling approach to represent the interactions between vehi-
cle loading practices of freight transport carriers and the
decisions of a road planning authority responsible both for
road maintenance and for the enforcement of overloading
control. The model can predict the reactions of the car-
rier under a series of planner decisions and then help the
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planner choose an appropriate combination of the number of
inspection points and the punishment levels to have the min-
imal total expenditure (on repairs and overloading inspection
costs) [7]. However, issues regarding locating control stations
and routing enforcement vehicles have not been addressed.
Li (2005) analyzed the interactions between a carrier’s profit
and transport price, operating cost, and overloading penalties,
as well as the conditions for carriers to maximize their profits.
Finally, he gave the solutions and the policy implications for
China to deal with the overloaded issue [8]. Chen (2004) put
forward the idea of tolling the trucks by their actual loaded
weights and having axle loading quotas, and then studied
the long-term effectiveness of controlling overloaded traffic
through economic methods [9]. Almost all the existing stud-
ies are macroscopic ones. The specific optimization of the
overloaded traffic control scheme (including station locations
and enforcement vehicle routing) has not yet been involved.

In the above context, we propose amode ofmobile enforce-
ment for overloaded traffic, namely, with OTCSs as bases to
dispatch enforcement vehicles to dynamically monitor traffic
and find overloaded trucks. An enforcement vehicle leaves
from an OTCS in the morning to cruise roadways, and at the
end of the working day, returns to the same OTCS. To maxi-
mize the utilization of OTCSs and enforcement vehicles, this
paper optimizes the distribution and location of OTCSs, and
further designs the cruising route for enforcement vehicles
when the numbers of OTCSs and enforcement vehicles are
given.

Many existing papers have studied the location and routing
combination issue. Nagy (2007) defined the location-routing
problem (LRP) as an operation problem to minimize the total
cost (including the construction cost and the transport cost) by
determining the locations of facilities and the vehicle travel
routes when the location alternatives and client locations are
given [10]. Sun (2017) studied the location of distribution
center and the multivehicle routing problem in the situa-
tion of simultaneous deliveries and pick-ups [11]. Aiming at
minimizing the total cost and social impacts, Caballero et al.
(2007) studied a multi-objective location-routing issue
with capacity constraints for multi-type vehicles [12].
Zeng et al. (2009) established a bilevel programming model
for the location of distribution centers. They optimized the
vehicle routing at the upper level and optimized the total cost
of the distribution system at the lower level [13]. To mini-
mize the environmental risk and the total cost, Zhao (2014)
proposed a two-objective location model that optimizes the
facility location for used oil storage and treatment, facility
capacity and travel routes of the used oil [14]. Subject to the
facility and vehicle capacities, and with the aim of minimiz-
ing the total cost andmaximizing the clients’ satisfaction, Luo
and Sun (2014) established a two-objective location-routing
model based on a fuzzy time window. The model is used to
optimize the location of warehouses and the routing of deliv-
ery vehicles [15]. More contributions to location and routing
problem can be found in literature [16]–[19]. From the lit-
erature review, we find that most of the existing studies are

concentrated on locating distribution centers or warehouses
and routing the delivery vehicles. There are few studies on
optimizing facility locations and vehicle routings according
to the overloaded vehicle density on the cruise paths. In the
exiting literature, the location alternatives in facility location
and vehicle routing is given, while in our study, the location
alternatives are unknown. All possible initial alternative must
be selected from the studied rural highway network first, and
then be screened by analytic hierarchy process (AHP) and
cluster analysis to get the final alternative locations. Finally
integer programming is used to optimize the facility locations
and vehicle routes. Therefore, this paper involves the whole
process from the selection of location alternatives to the
optimization of facility locations and vehicle routes, which
can provide a more completed theoretical analysis method for
the location-routing problem.

III. LOCATION ALTERNATIVES FOR OTCSs
First, we discretize the roadways with heavily overloaded
traffic into points (these points are represented by the mid-
points of the roadways with heavily overloaded traffic) to
form an initial alternative set U0 = (1, 2, 3, . . . , n). Based
on the maximum cruising range of an enforcement vehicle,
we determine the roadways with heavy overloaded traffic that
can be covered by OTCS, namely, the other initial alternative
points able to be visited by the enforcement vehicles within
daily cruising range. Next, we use an integrated method to
evaluate the initial location alternatives and screen the unfea-
sible alternatives from the initial alternatives.

TABLE 1. Evaluation indices for the alternative locations.

Analytic hierarchy process (AHP), which first put forth
in 1980 by Thomas L. Saaty, is a practical method for
comprehensive evaluation. It can combine qualitative and
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TABLE 2. The meaning of grade.

quantitative factors together for choosing a scheme in the
case of complex, unpredictable, multi-criteria decision prob-
lems [20]. Because the evaluating factors for screening the
initial alternatives are systematic and complex, we adopt the
AHP to evaluate the initial alternatives. The indicator system
is shown in Table 1.

Overload traffic is widespread on rural highway,
we assume that the more trucks on a roadway, the more the
overloaded trucks and the more serious the overloaded degree
on the highway will be. Therefore, in Table 1, the overloaded
degree is expressed by the number of trucks, and its value is
directly proportional to the number of trucks.

As mentioned in Baffoe (2019) and Bilal(2019) [21], [22],
to obtain the weights of the factors at each level, we divide
their relative importance into 1-9 grades (Table 2, where
A1 and A2 represent any two factors). The importance scores
may be obtained by a questionnaire survey. The judgment
matrix of each level can be obtained by processing the sur-
veyed scores, and then, eigenvectors corresponding to the
largest eigenvalue in the judgment matrices can be calculated.
If a judgment matrix is consistent, the eigenvectors may be
used as the weight vectors.

Finally, the comprehensive weights of the initial location
alternatives at the lowest level can be calculated based on
weight vectors at each level to obtain the final scores of the
alternatives. The method is shown as Eq. (1).

Wa =

12∑
x=1

w(1)
x w(2)

x w(3)
xa , a = 1, 2, 3, . . . , n (1)

whereWa denotes the comprehensive weight of an alternative
a, w(1)

x is the weight of the main criterion that includes the
subcriteria x, w(2)

x is the weight of the subcriteria x, and w(3)
xa

is the weight of the initial location alternative a by comparing
all the location alternatives under subcriteria x.

To reduce the set size of the initial alternatives and reduce
the workload for screening alternatives, it is necessary to
cluster initial alternatives that cover similar roadways and use

the best one in each cluster to replace the other alternatives in
the same cluster. By first making each initial alternative one
cluster, it means that at the beginning one cluster only has one
alternative. This way, we obtain n initial clusters as: v0a ∈ V

0,
a = 1, 2, 3, . . . , n. Then, we calculate the similarity of their
covered roadways. The initial alternative in the current cluster
is used as a reference point, and the initial alternatives in
other clusters are compared. The similarity is expressed by
the overlapping ratio of the covered initial alternative points,
and the calculation method is given as Eq. (2):

Sab = Lab/La, a 6= b; b = 1, 2, 3, . . . , n (2)

Here, a denotes the reference point of an alternative and b
denotes the comparing point of an alternative. Sab is the sim-
ilarity between them, Lab is the number of overlapping initial
alternative points between them, and La is the total number of
initial alternative points that are covered by reference point a.
If alternative point b is similar to reference point a in some

degree, we put it in the cluster holding initial alternative
point a. In this way, we can obtain a cluster containing
multiple initial alternatives, and then retain the one with
the highest weight and delete all other alternatives. At last,
a cluster, renamed v1a, is left that contains only one initial
alternative. Let the reference point a = 1, 2, 3, . . . , n, and
the same operations are performed for the reference point to
obtain new groups of clusters, renamed as v1a ∈ V 1, a =
1, 2, 3, . . . , n, which are grouped into a set ofU1. By deleting
the overlapping candidate points in U1, we can obtain the
practical candidate set ji ∈ J , i = 1, 2, 3, . . . , d , which is
the input of the model in section 4.

Next, in order to optimize the location of the OTCSs
and the routes of the enforcement vehicles, we establish an
optimization model in Chapter 4, which with the objective
to find as many overloaded trucks as possible, subject to the
constraints that each demand point can be visited at most once
and the cruising range is within the vehicle’s maximum range.
In Chapter 5, we design the improved ant colony algorithm
to solve the model. Finally, to verify the effectiveness of the
model and algorithm, we use the actual data of Guiyang City
for case analysis in Chapter 6.

IV. MATHEMATICAL MODEL
A. PROBLEM DEFINITION
We discretize the roadways with heavy overloaded traffic into
points (these points are also represented by the midpoints
of the roadways with heavily overloaded traffic) to form a
demand point set. To control the overloaded traffic, each
OTCS should be equipped with at least one enforcement
vehicle that carries mobile weighing equipment and starts
from the OTCS to visit the demand points to detect the pass-
ing trucks. The cruising duration has to be shorter than the
vehicle’s maximum travel range. After cruising, the enforce-
ment vehicle should return to the same OTCS. This working
process is shown in Figure 1.

The decision-making issue is to screen out m OTCS from
J (J is the output in section 3) and design the routes of the
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FIGURE 1. The schematic diagram of controlling overloading with mobile
facilities.

enforcement vehicles when the number of the vehicles is
given, with the objective to find as many overloaded trucks
as possible, subject to the constraints that each demand point
can be visited at most once and the cruising range is within
the vehicle’s maximum range.

B. MODEL FORMATION
Assume that the overloading probability at all demand points
is the same and that the overloaded trucks are evenly
distributed in time. Therefore, the more traffic that passes a
demand point, the more overloaded trucks may be found at
that point. Thus, in the case of a known numbers of OTCSs
and enforcement vehicles, we can establish a programing
model for locating OTCSs and routing enforcement vehicles
with the objective to make the vehicle meet as much traffic as
possible.

1) VARIABLES AND PARAMETERS
Sets: J - Location alternatives of OTCSs;
C- Demand points;
K - Enforcement vehicles.

Parameters: m- Number of OTCSs;
v- Speed of enforcement vehicles;
t- Working time of an enforcement vehicle at a demand

point;
tmax- Maximum cruise time of an enforcement vehicle;
qc- The truck traffic volume at demand point c;
qji - The truck traffic volume at OTCS ji.

Intermediate variables:
Dk - Number of visited demand points by enforcement

vehicle k;
Lk - The travel distance of enforcement vehicle k .

Decision variables:
zji = 1 if an OTCS is located at point ji, 0 otherwise;
xcc′k = 1 if enforcement vehicle k travels from demand

point c to demand point c′, 0 otherwise;
xjick = 1 if enforcement vehicle k travels from OTCS ji to

demand point c, 0 otherwise.

2) MODEL EQUATIONS

Max Q =
∑
ji∈J

zjiqji+
∑
ji∈J

∑
c∈C

∑
k∈K

xjickqc

+

∑
c∈C

∑
c′∈C

∑
k∈K

xcc′kqc′ (3)

S.T : zji ∈ (0, 1) (4)

xcc′k ∈ (0, 1) (5)

xjick ∈ (0, 1) (6)∑
ji∈J

zji = m (7)

zji =
∑
c∈C

xjick =
∑
c′∈C

xc′jik , ji ∈ J , k ∈ K (8)∑
c∈C

xcc′k −
∑
c′′∈C

xc′c′′k = 0, c′ ∈ C, k ∈ K (9)∑
k∈K

∑
c∈C

xcc′k +
∑
k∈K

∑
ji∈J

xjic′k ≤ 1, c′ ∈ C (10)

Lk/v+ Dk t ≤ tmax (11)

xjiji′k = 0, ji, ji′ ∈ J , k ∈ K (12)

where Q denotes the sum of the traffic volume passing the
OTCSs and routes of all enforcement vehicles. Equation (7)
is the number of OTCSs. Equation (8) indicates that when
an OTCS is set, at least one enforcement vehicle should start
from and return to it. Equation (9) ensures that an enforce-
ment vehicle must cruise in a closed route. Equation (10)
ensures that a demand point is visited only by one enforce-
ment vehicle. Equation (11) ensures that the cruise time of
an enforcement vehicle should be less than its maximum
cruising time. Equation (12) guarantees that an enforcement
vehicle will not move from one OTCS to another.

V. ANT COLONY OPTIMIZATION FOR LRP
Because the above model contains a location allocation
problem (LAP) and a vehicle routing problem (VRP),
it is a nonlinear programming and NP-hard problem. The
location-routing problem is usually solved using heuristic
algorithms [23], [24].

Ant colony algorithm (ACA) is a probabilistic heuristic
algorithm to find an optimal route. Ants select routes accord-
ing to pheromones and convert the selection result into a
pheromone increment to update the pheromones between
nodes. It can effectively narrow the range of feasible solutions
and quickly find the optimal route. Therefore, ant colony
algorithm is often used to solve large-scale route optimization
problems.

The idea of the solution is to first use the ant colony
algorithm to optimize the routes of enforcement vehicles for
all potential location groups to get the route set with the max-
imum traffic volumes, and then to take the route scheme with
the most traffic volumes from the set and the corresponding
location group as the optimal location-routing scheme.

During the solution, due to the complexity of solving the
routing problem for multiple bases and multiple vehicles,
we transform it into a single base and multiple vehicles
routing problem. Following MA et al. (2011), the transform
method uses a virtual OTCS to replace a group of real OTCS
and then thinks that the virtual one is both the starting and
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ending points of enforcement vehicles. Additionally, enforce-
ment vehicles must cover all the demand points. In this case,
the distance from demand point i to the nearest real OTCS
is used as the distance between the demand point i and the
virtual OTCS [25]. Afterwards, we use the improved ACA to
solve the location-routing model as follows:
Step 1: Parameter Determination
Determine the value of m (the number of OTCSs), N (the

number of enforcement vehicles), t (the working time of
enforcement vehicles at each demand point), tmax (the max-
imum cruise time of an enforcement vehicle), and NIT (the
maximum number of iterative calculations).
Step 2: Locations Grouping
Select all possible groups of locations from the alternative

set to number them as 1, 2, 3, . . . ,A.
Step 3: Set the group number G = 1.
Step 4: Initialize the ants and the pheromones between

nodes.
Set the number of ants equal to the number of demand

points, and let all ants start from the virtual OTCS of groupG.
The initial pheromone between the demand points is set to 1.
The initial number of enforcement vehicles n and the number
of iterative calculations nIT are both set to be 0.
Step 5: Calculate the expected value of each feasible node

selected by the ant.
The expected valuewhen an ant chooses point j from point i

is marked by ηij, and ηij = qj/lij (qj is the traffic volume at
point j, lij is the length of link (i, j)).
Step 6: Calculate the probability of feasible node being

selected by ant.
By the pheromone and expected value, the probability of

an ant choosing point j from point i is as follows:

pij =
(τij)α × (ηij)β∑

h∈H (τih)α × (ηih)β
(13)

where τij is the pheromone of link (i, j), ηij is the expected
value of an ant choosing point j from point i, α and β are
heuristic factors, and H is the set of feasible nodes.
Step 7: Determine the OTCS that has the shortest distance

from the first node selected by the ant.
Whenwe use an ant’s route to simulate the cruising process

of an enforcement vehicle, the ants are thought to start from
a virtual OTCS. To meet the constraint that the OTCS is both
the starting point and the ending point, we need to determine
a real OTCS in the calculation process so that the ants can
return to the real OTCS after cruising to form a closed travel
loop. The specific determination process is as follows:

When an ant selects the next node from the virtual OTCS,
the probability of choosing each feasible node can first be
calculated by Eq. (13). Following He et al. (2017), to avoid
falling into a local optimum, a roulette choice method is used
to increase the randomness of the next node [26]. The step is:
accumulating the choice probabilities of feasible nodes to get∑
pij, if

∑
pij ≥ ε(ε ∈ (0, 1) a random number), take point j

as the next node. Next, find the closest OTCS in G to point j.
If the closest OTCS is O, we take O as the real OTCS.

Step 8: Determine the next node.
After the ant chooses the next node, we need to judge

whether its cruise time will exceed the maximum cruise time
if the next node is added to the ant’s journey. Assuming j′

is the next node selected by an ant, to→j′ is the time from O
to j′ for the ant, and tj′o is the time from point j′ directly to
OTCSO. We should judge whether to→j′+ tj′o is less than the
maximum cruise time tmax. If to→j′+ tj′o ≤ tmax, then we take
j′ point as the next node and add it to the list. The ant continues
to select the next node from point j′ according to Eq. (13),
and the roulette selection method; otherwise, the ant gives
up point j′, ends the journey, and directly returns to OTCS O
from the current node. The ant’s cruise time returns to 0 and
the number of enforcement vehicles n = n + 1. The ant will
start from the virtual OTCS again. The calculation turns to
Step 7. When the number of enforcement vehicles n = N ,
go to Step 9.
Step 9: Pheromone Updating.
After all ants finish their journeys, the pheromone on each

edge should be updated. The method is as follows:

τ newij = ρτ
old
ij +

∑
b∈B

bij1τ bij ; ρ ∈ (0, 1) (14)

where τ oldij denotes the pheromone of edge (i, j) before updat-
ing, τ newij denotes the pheromone of edge (i, j) after updating,
ρ is the pheromone evaporation parameter in the range of
[0, 1], and bij is a 0-1 variable. When edge (i, j) is on the route
of ant b, then bij = 1. Otherwise bij = 0. 1τ bij denotes the
pheromone left on edge (i, j) by ant b, namely, the pheromone
increment on edge (i, j), and its value equals the total traffic
volume on the route of ant b. B is the set of ants.

After updating the pheromones of each edge, we have
completed one calculating iteration, and we should update the
iteration number nIT = nIT + 1. If nIT = NIT , go to Step 10;
otherwise, return to Step 4 for the next calculation iteration.
Step 10: Calculation for the next OTCS group.
Update the group number G = G + 1. If G ≤ A, return

to Step 3 to optimize the enforcement vehicle’s route for the
next OTCS group. If G > A, end the calculation.

VI. CASE STUDY
We use Guiyang, the capital city of Guizhou, for the case
study. From field surveys, we know that in Guiyang’s rural
highway network, there are 50 roadways with heavy over-
loaded trucks. The truck volumes on the survey roadways
are shown in Table 3. Assuming that three OTCSs will be
built in Guiyang and a total of six enforcement vehicles are
equipped, the travel speed of each enforcement vehicle is
40 km/h, the working time at a point is 30 minutes, and the
maximum cruising time of an enforcement vehicle is 4 hours.

For the calculation, we first digitize the rural highway net-
work in Guiyang with the MapInfo platform, and discretize
the 50 roadways with heavy overloaded trucks into points to
form a demand point set. They are also the initial location
alternatives for OTCS. The spatial distribution of the demand
points is shown in Figure 2.
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TABLE 3. The traffic volumes on the surveyed roadways.

FIGURE 2. The spatial distribution of the demand points.

Then, according to each roadway’s length and the maxi-
mum cruise time (4 hours) of enforcement vehicle, we calcu-
late the covering roadways of each initial location alternative
to obtain the covering set of the initial location alternatives.
Considering the return time of enforcement vehicle and the
enforcement vehicle need to visit at least one demand point,
we can know that the travel time of each enforcement vehicle
is at most (4− 0.5)/2 hours, which is 1.75 hours. Calculat-
ing the roadways with heavy overloaded trucks that can be
reached by the enforcement vehicle within 1.75 hours, and
Table 4 shows the truck volume on the covered roadways of
each initial location alternative.

TABLE 4. Truck volume on the covering roadways of each initial location
alternative.

TABLE 5. The weight of each initial location alternative.

Analytic hierarchy process was used to comprehensively
evaluate all the initial location alternatives, and the weight
value of each initial location alternative is shown in Table 5.

Using the method in Chapter 2, we group the initial
location alternatives based on the rule that 85% of the
covered demand points are the same in two covering sets.
Finally, we keep the location alternatives that have the high-
est comprehensive weights to get a set of real alternatives,
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FIGURE 3. The spatial distribution of the location alternatives.

namely, J = (3, 17, 22, 27, 30, 48, 49, 50), which are shown
in Figure 3.

In the case of choosing three locations from eight
alternatives, there are 56 total combinations. For the
56 combinations, we change the multiple depots and the
multiple vehicles routing problem into a single depot and
multiple vehicles routing problem by integrating the three
OTCSs into a virtual OTCS. We can then solve the problem
using the above updated ACA.

For the calculation, we suppose that there are 50 ants,
we set the heuristic factor equal to 1, the expected factor equal
to 2, and the pheromone volatilization coefficient equal to
0.50. The total traffic volume on a travel path is set as the
pheromone increment on the path. The number of calculation
iterations is set as 100.

We compile the computing program using VBA in Excel
2016. Under one of the combinations, the relationship
between the pheromone increment and the number of calcu-
lating iterations is shown in Figure 4.

FIGURE 4. The relationship between the pheromone increment and the
iteration number.

Figure 4 shows that the pheromone increment increases
before the 20th generation of the calculation, but the increas-

FIGURE 5. Traffic volumes of routes with a different group number of
OTCS.

ing speed decreases gradually. After the 21st generation,
the pheromone increment is stable. This result means that
the routes of all the ants have been determined, and the
cruising routes in the context of this location combination are
obtained. For the 56 combinations, the traffic volumes on the
optimal cruising routes are shown in Figure 5.

It can be seen that the traffic volume on the cruising routes
of Group 37 is the largest. At this time, z22 = 1, z27 =
1 and z30 = 1. This means that three OTCSs should be
located at alternatives 22, 27 and 30, respectively, and the
corresponding cruising routes are shown in Figure 6.

FIGURE 6. Scheme of locations in the VRP.

The OTCSs of 22, 27 and 30 are located in Xiazhai of
Qingzhen City, Daba of Xiuwen County, and Yongshaba of
Kaiyang County, respectively. Near the three OTCSs, there
are plentiful mineral resources. Thus, there are many mine
trucks on the roadways, and most trucks are overloaded.
The cruising Route 1 of OTCS 22 passes through three
towns (Liyou, Lichangxiang and Wangzhuang) and many
coal mining areas. At the same time, the cruising Route 1 of
OTCS 22 mainly covers roadways S310, S106, S211, X068,
which are the main connectors between the cities and towns.
They are high-grade rural highways with heavy truck flows
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(3912 trucks per day). Cruising route 2 passes through two
towns (Zhanjie and Qingzhen), three scenic spots (such as
Hongfeng Lake), and several coalmines and cement factories,
and it also covers roadways S106, S210, X198, X067 and
Y019, which are high-grade rural highways with many trucks
(4850 trucks per day). The cruising route of OTCS 30 crosses
Xifeng County and Kaiyang County.

Figure 6 shows that by using the optimal location-routing
scheme, the enforcement vehicles can cover 28 roadways,
which accounts for 56% (28/50) of the roadways with heavy
overloaded traffic. The total daily traffic volume on the
50 rural highways is 45 493 trucks, and the total daily traffic
volume along the cruising routes is 29 387 trucks, which
accounts for 64.6% of the total. This means that the enforce-
ment vehicles cover 56% of the roadways but can monitor
64.6% of the trucks. The ratio of the truck coverage rate
to the roadway coverage rate may be used to represent the
OTCSs’ working efficiency. The calculation method is given
as Eq. (15). The bigger the value is, the more the trucks will
be monitored, and the higher the working efficiency of the
OTCS is and vice versa.

W = S1/S2 (15)

Here, W denotes the working efficiency of the OTCSs,
S1 denotes the truck coverage rate, and S2 denotes the road
coverage rate.

If we use the working efficiency in the case that the truck
coverage rate equals the road coverage rate (S1 = S2) is
the normal working efficiency. From Eq. (15), we know
that the normal working efficiency should be 1. Using the
optimal location-routing scheme, the working efficiency is
1.15 (64.6%/56%), which is higher than the normal working
efficiency.We can consider that thework efficiency ofOTCSs
in the case study is better.

VII. CONCLUSION
With the new working mode for overloading traffic control,
we determine a set of candidate sites for locating the OTCSs
by cluster analysis and analytic hierarchy processes, and
we collaboratively optimize the locations of OTCSs and the
cruising routes of the enforcement vehicles. The optimization
model is helpful to raise the effectiveness of overloading
traffic control when the number of OTCSs and the number of
enforcement vehicles are given. The case study based on the
data of Guiyang rural highway shows that in the case of the
optimal scheme, there are rich mineral resources and a large
number of mine trucks around the location of the OTCSs,
the cruising routes of the enforcement vehicles mainly cover
the high-grade roadways with large traffic volumes, and the
efficiency of the overloading traffic control is high. This
result illustrates that the method in this paper can effectively
help decision makers to implement location decisions for the
OTCSs and help to design cruising routes for enforcement
vehicles.

In order to simplify the study, we used the number of
overloaded trucks to represent the overloaded degree on road-

ways. However, in fact, the overloaded degree dose relate to
not only the number of overloaded trucks but also the over-
loaded cargos on the trucks. For some roadways with small
number of overloaded trucks, if the all overloaded trucks
are overloaded lots of cargos the overloaded degrees is not
necessarily smaller than the roadways with a large number of
overloaded trucks but each truck is overloaded a few cargos.
In this study this phenomenon is not taken into account. For
future studies, the definition of overloaded degree should
be given by considering more details. Moreover, we did not
consider the fluctuation of traffic flow at the demand point
in this study. For a more realistic and objective description
of the traffic flow at the demand point, in the future we may
consider put some method to forecast the traffic fluctuation
on roadways.
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