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ABSTRACT The hesitant fuzzy set (HFS) can reflect the hesitation and uncertainty of decision-makers
for the reason that it uses some possible values instead of a certain value. Considering that there is still
no research on concept lattice or fuzzy formal concept analysis (FFCA) in a hesitant fuzzy environment,
in this paper, we propose the definition and the related theory of hesitant fuzzy concept lattice. Firstly,
we propose the hesitant fuzzy formal concept analysis theory and study the definition of hesitant fuzzy
concept lattice. Secondly, we provide two effective reduction methods of hesitant fuzzy formal context and
discuss the differences of them. Thirdly, we propose an incremental construction algorithm to construct
the hesitant fuzzy concept lattice. After that, we study the similarity calculation method of hesitant fuzzy
concepts. Finally, we design a practical application to validate the hesitant fuzzy concept lattice theory, which
is proven to be correct and effective.

INDEX TERMS Hesitant fuzzy set, fuzzy formal concept analysis, concept lattice, hesitant fuzzy element,
similarity.

I. INTRODUCTION
Concept lattice was first proposed byWille [1] in 1982, which
is a mathematical tool for data analysis and knowledge pro-
cessing. It mainly describes the relationships between objects
and attributes by a poset with concepts. Each node of the
concept lattice is called a formal concept, which contains
the intent and the extent [2]. At present, the concept lattice
theory has been widely used in data mining [3]–[5], software
engineering [6], [7], semantic retrieval [8], [9], ontology
construction [10]–[13], and other application fields. In order
to improve the retrieval efficiency of the library, Yu [14]
introduced concept lattice into the user sequence mining of
the digital library. The experiments showed that this method
could improve the performance of mining. To deal with the
problem of ontology construction of heterogeneous infor-
mation, Kiu and Lee [15] proposed an ontology merging
method-FCA merge, which combined formal concept analy-
sis, concept lattice, and natural language processing methods,
then the merged ontology was finally generated.

In a classical 0-1 formal context, the formal concepts
and the concept lattice are all precise. However, in practi-
cal applications, most of the relationships between objects
and properties are fuzzy and uncertain. The classical real
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number concept lattice theory cannot reflect the degrees of
attributes. Since the fuzzy sets theory [16] is a valid the-
ory about uncertainty, many researchers began to combine
fuzzy set theory with concept lattice, using membership to
express the fuzzy relationship between objects and attributes,
and thus fuzzy formal concept analysis [17] is proposed,
and fuzzy concept lattice [18] has become a new research
field. Quan and Siu [17] proposed the concept of fuzzy
formal concept analysis (FFCA), and they also showed that
FFCA had superior performance in dealing with information
with fuzzy attributes. Based on the theory of concept lattice,
Bêlohlávek [19] raised the definition of the fuzzy concept
in the fuzzy formal context, and he also proved that the
fuzzy concept theory satisfied almost all the properties of the
concept in the classical real number formal context. Krupka
and Laštovička [20] established the fuzzy formal context and
then studied the corresponding concept lattice construction
algorithm.

With the development of society, some uncertain informa-
tion is facing increasingly complex situations, so the fuzzy set
theory has been extended to a series of generalized types of
fuzzy sets, such as type-2 fuzzy set [21], interval-valued fuzzy
set [22], intuitionistic fuzzy set [23]–[25], and interval-valued
intuitionistic fuzzy set [26]. At the same time, many scholars
have studied the fuzzy concept lattice theory when the 0-1
membership is replaced by the generalized types of fuzzy set.
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Djouadi and Prade [27] use a sub-interval from the scale L
to build the formal context, and then get the interval-valued
fuzzy formal concepts. Lei [28] studied the formal concept
analysis in an intuitionistic fuzzy formal context, and the
notion of crisp-intuitionistic fuzzy concept was proposed.
Based on the linguistic value intuitionistic fuzzy algebra and
intuitionistic fuzzy formal context, Zou et al. [29] put forward
the linguistic value intuitionistic fuzzy formal context and
established the linguistic value intuitionistic fuzzy concept
lattice, then some related properties were discussed.

When the experts evaluate the membership of an attribute,
they are usually hesitant and irresolute, which may make it
hard to come to a definite conclusion. In order to permit
the membership having different possible values, Torra [30]
introduced the concept of hesitant fuzzy set (HFS), which
allows the membership to be a set of several possible val-
ues. When dealing with these complex evaluation problems,
the hesitant fuzzy theory may be more practical and appropri-
ate than other extended fuzzy set theories [31], [32]. When
the hesitant fuzzy relation between object and attribute is
described by hesitant fuzzy set, the further analysis of hesi-
tant fuzzy concept has important theoretical significance and
practical application value. What is more, a large number
of scholars continued to study the related theory of hesitant
fuzzy set. Based on these reasons, in this paper, we use
hesitant fuzzy set to describe the hesitant fuzzy relationship
between objects and attributes. The hesitant fuzzy formal
concept analysis is further carried out, and the simplification
and the construction method of hesitant fuzzy concept lattice
is discussed.

The remainder of this paper is organized as follows:
Section 2 reviews the concepts of FFCA and HFS.
In Section 3, some definitions and methods of hesitant fuzzy
formal concept analysis are proposed. The reduction method
and the construction algorithm of hesitant fuzzy concept
lattice are carried out, and the similarity calculation method
of hesitant fuzzy concept lattice is discussed. In Section 4,
a practical application example is provided to support our
studies. Finally, the paper endswith some concluding remarks
in Section 5.

II. PRELIMINARIES
A. FFCA
Nowwe give some related concepts of Fuzzy Concept Lattice
theory, which are defined as follows:
Definition 1 [17]:The tripleK = (G,M , I = ψ (G×M))

is called a fuzzy formal context, where G and M represent a
finite set of objects and a finite set of attributes respectively,
I is a fuzzy relationship subset which is defined on G × M ,
and each fuzzy relationship (g,m) ∈ I has a corresponding
membership v (g,m) ∈ [0, 1].

We can represent the fuzzy formal context as a two-
dimensional table, as shown in Table 1. Each fuzzy number
in the table expresses a fuzzy relationship between the object
and the attribute. Especially, when the fuzzy numbers are
0 or 1, it becomes a classical 0-1 formal context.

TABLE 1. Fuzzy formal context.

Definition 2 [17]: For a fuzzy formal context K =

(G,M , I ), let X ⊆ G and Y ⊆ M . When we give a
membership confidence threshold λ ∈ [0, 1], then there are
two mappings defined as follows:

1) X∗ = {m ∈ M |∀g ∈ X , v (g,m) ≥ λ };
2) Y ∗ = {g ∈ G |∀m ∈ Y , v (g,m) ≥ λ }.
Definition 3 [17]: Given a fuzzy formal context K =

(G,M , I ). Let X ⊆ G and Y ⊆ M . If X∗ = Y and
Y ∗ = X , then (X ,Y ) can be called a fuzzy formal concept.
Each attribute m ∈ Y has a membership vm that satisfies
vm = ming∈X v (g,m).

Because of the completeness of concept lattice theory, for
any fuzzy formal context, its formal concepts are fixed as long
as the simplification method of the fuzzy formal context is
unchanged.
Definition 4 [17]: Given a fuzzy formal context K =

(G,M , I ), the membership confidence threshold λ, and two
fuzzy formal concepts C1 = (X1,Y1) and C2 = (X2,Y2).
If X1 ∈ X2 and (X1,Y1) ≤ (X2,Y2), then we can describe the
complete lattice constructed by this partial order relation as
the fuzzy concept lattice of the fuzzy formal context K at the
confidence threshold.

If X1 ∈ X2 and (X1,Y1) ≤ (X2,Y2), then the complete
lattice constructed by this partial order relation is called the
fuzzy concept lattice of the fuzzy formal context K at the
confidence threshold λ.
Generally speaking, compared with the classical 0-1 for-

mal context, the size of fuzzy concept lattice may become
very large. Therefore, we can simplify the fuzzy concept
lattice by calculating the similarities between fuzzy concepts.
Definition 5 [17]: Let two fuzzy formal concepts C1 =

(X1,Y1) and C2 = (X2,Y2), then their similarity degree is
defined as:

ρ (C1,C2) =

∫ (
Y Y1∪Y21 ∩ Y Y1∪Y22

)
∫ (

Y Y1∪Y21 ∪ Y Y1∪Y22

) (2.1)

B. HESITANT FUZZY SETS
When we evaluate the attribute characteristics of an object,
lots of experts might be needed to express their individual
opinions on the same problem. However, the experts usually
have different opinions when they are considering the degree
that an alternative satisfies a standard. Therefore, different
values might be assigned to the alternatives. To solve this
problem, Torra [30] introduced the concept of hesitant fuzzy
set (HFS). In the HFS, the membership of an element to a
set is expressed as a hesitant fuzzy set, which contains some
possible values between [0,1].
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To be easily understood, Xia and Xu [32] expressed the
HFS as follows:

A = {< x, hA(x) > |x ∈ X} (2.2)

where hA(x) is a set of some different values in [0,1], denoting
the possible memberships of the element x ∈ X to the set A.
Besides, h = hA(x) is called a hesitant fuzzy element.

For example, let X = {x1, x2, x3} be a set, hA(x1) =
{0.1, 0.2, 0.5}, hA(x2) = {0.2, 0.6}, and hA(x3) =

{0.3, 0.4, 0.5}. Then we can express the HFS A as:

A = {< x1, (0.1, 0.2, 0.5) >,< x2, (0.2, 0.6) >,

< x3, (0.3, 0.4, 0.5) >}

For three hesitant fuzzy elements h1, h2 and h3, Torra and
Narukawa [33] defined the operations of the union, intersec-
tion, and complement as follows:

1) hc =
⋃

r∈h {1− r}
2) h1 ∪ h2 =

⋃
r1∈h1,r2∈h2 max {r1, r2}

3) h1 ∩ h2 =
⋂

r1∈h1,r2∈h2 min {r1, r2}
Definition 6 [34]: Given a hesitant fuzzy element h,

s (h) = 1
lh

∑
r∈h r is the score function of h, where lh is the

number of numbers in h; σ (h) is called the deviation function
of h:

σ (h) =
[
1
lh

∑
r∈h

(r − s (h))2
] 1

2

(2.3)

And then we can compare two hesitant fuzzy elements
based on s (h) and σ (h):
Definition 7 [34]: Let h1 and h2 be two hesitant fuzzy

elements, s (h1) and s (h2) be the score function values of h1
and h2, σ (h1) and σ (h2) be the deviation function values of
h1 and h2, then

1) If s (h1) < s (h2), then h1 ≺ h2;
2) If s (h1) > s (h2), then h1 � h2;
3) If s (h1) = s (h2), then:

(i) If σ (h1) = σ (h2), then h1 ∼ h2;
(ii) If σ (h1) < σ (h2), then h1 � h2;
(iii) If σ (h1) > σ (h2), then h1 ≺ h2.

III. HESITANT FUZZY CONCEPT LATTICE
A. FORMAL CONCEPT ANALYSIS OF HESITANT FUZZY
INFORMATION
When the relationships in the fuzzy formal context change
from the fuzzy real numbers to the hesitant fuzzy sets, the for-
mal context is called a hesitant fuzzy formal context.
Definition 8: K = (U ,A,V , f ) is called a hesitant fuzzy

formal context, in which U represents a nonempty finite set
of objects, A represents a nonempty finite set of attributes, V
is a set of hesitant fuzzy elements representing the possible
values of the memberships, and the information function f is
a mapping from U × A to V , ∀y ∈ A, f (x, y) ∈ V , where
f (x, y) is a hesitant fuzzy element.

For example, there is a hesitant fuzzy formal context K =
(U ,A,V , f ), whereU = {x1, x2, x3, x4},A = {y1, y2, y3, y4},

TABLE 2. Hesitant fuzzy formal context.

and the hesitant fuzzy formal context can be represented as a
two-dimensional table, as shown in Table 2:

When the hesitant fuzzy relationship is a number between
0 and 1, it is a general fuzzy formal context. Therefore,
the general fuzzy context can be regarded as a special case
of a hesitant fuzzy formal context.
Definition 9: Given a hesitant fuzzy formal context K =

(U ,A,V , f ). Let X ⊆ U ,Y ⊆ A. If X∗ = Y and Y ∗ = X ,
then (X ,Y ) can be called a hesitant fuzzy formal concept.
Each attribute y ∈ Y has a hesitant membership fa, which
satisfies fy =

⋂
u∈X f (u, y). The structure of all concepts in

the hesitant fuzzy formal context and the partial order rela-
tionships between them is called the hesitant fuzzy concept
lattice. Each hesitant fuzzy concept is regarded as a node in
the hesitant fuzzy concept lattice.

Take Table 2 as an example, let X = {x1, x3}, Y =
{y1 (0.3, 0.4, 0.5) , y2 (0.2, 0.3, 0.5, 0.6) , y5 (0.1, 0.3)}, then
we can get the following results according to Definition 9.

X∗ =
{
y1 (0.1, 0.5, 0.6) , y2 (0.1, 0.2, 0.3, 0.4) ,
y3 (0, 0.2) , y4 (0, 0.1, 0.2, 0.4) , y5 (0.1, 0.3)

}
,

Y ∗ = {x1} .

Proposition 10:Given a hesitant fuzzy formal contextK =
(U ,A,V , f ). Let X1,X2,X ⊆ U ,Y1,Y2,Y ⊆ A. Then we
can obtain the following properties:

1) X1 ⊆ X2 ⇒ X∗2 ⊆ X∗1 , Y1 ⊆ Y2 ⇒ Y ∗2 ⊆ Y ∗1 ;
2) X ⊆ X∗∗,Y ⊆ Y ∗∗;
3) X∗ = X∗∗∗,Y ∗ = Y ∗∗∗;
4) X ⊆ Y ∗ ⇔ Y ⊆ X∗.
Proof:

(1) Let X∗1 = Y1,X∗2 = Y2, then for any y ∈ A, we can get
the formulas as follows:
Y1 (y) =

⋂
∀x∈X1

f (x, y), Y2 (y) =
⋂
∀x∈X2

f (x, y).

Since X1 ⊆ X2, then we can get Y1 (y) ≥ Y2 (y),
so Y2 ⊆ Y1, that is X∗2 ⊆ X∗1 .
For any f (x, y) ∈ V , we can get the formulas as
follows:

Y ∗1 = {x ∈ U |f (x, y) ≥ Y1 (y) ,∀y ∈ A } ,

Y ∗2 = {x ∈ U |f (x, y) ≥ Y2 (y) ,∀y ∈ A } .

Since Y1 ⊆ Y2, then we can get Y1 (y) ≤ Y2 (y), so if
x ∈ Y ∗2 , there must be x ∈ Y ∗1 , that is, Y

∗

2 ⊆ Y ∗1 .
(2) Let X∗ = Z , then

X∗∗ = Z∗ = {x ∈ U |f (x, y) ≥ Z (y) ,∀y ∈ A },
in which Z (y) =

⋂
∀x∈X

f (x, y).

If x ∈ X , then f (x, y) ≥
⋂
∀x∈X

f (x, y) = Z (y), that is,

x ∈ X∗∗. Therefore, X ⊆ X∗∗.
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For any f (x, y) ∈ V , we can get Y ∗ =

{x ∈ U |f (x, y) ≥ Y (y) ,∀y ∈ A }. That is, for any x ∈
Y ∗ and y ∈ Y , we can get f (x, y) ≥ Y (y), so Y ∗∗ (y) =⋂
∀x∈Y ∗

f (x, y) ≥
⋂
∀x∈X

f (x, y) = Y (y).

Therefore, Y ⊆ Y ∗∗.
(3) Because X ⊆ X∗∗ and X1 ⊆ X2 ⇒ X∗2 ⊆ X∗1 , we can

easily get X∗∗∗ ⊆ X∗ and X∗∗∗ ⊆ X∗, that is, X∗∗∗ ⊆
X∗ ⊆ X∗∗∗. Therefore, X∗ = X∗∗∗.
The same as before, we can easily prove Y ∗ = Y ∗∗∗.

(4) Because X1 ⊆ X2 ⇒ X∗2 ⊆ X∗1 , we can get X ⊆ Y ∗ ⇒
Y ∗∗ ⊆ X∗. And because Y ⊆ Y ∗∗, we can get Y ⊆
Y ∗∗ ⊆ X∗. So X ⊆ Y ∗ ⇒ Y ⊆ X∗;
Because Y1 ⊆ Y2 ⇒ Y ∗2 ⊆ Y ∗1 , we can get Y ⊆ X∗ ⇒
X∗∗ ⊆ Y ∗. And because X ⊆ X∗∗, we can get X ⊆
X∗∗ ⊆ Y ∗. So Y ⊆ X∗ ⇒ X ⊆ Y ∗.
Therefore, X ⊆ Y ∗ ⇔ Y ⊆ X∗.

This completes the proof.

B. REDUCTION OF HESITANT FUZZY FORMAL CONTEXT
When we analyze a general formal concept, we usually sim-
plify it by setting a membership confidence threshold (see
Definition 2), and then the quantity of fuzzy concept lattice
is reduced, and the construction process of the fuzzy concept
lattice is simplified. In the same way, we set a member-
ship confidence threshold for the hesitant formal context.
However, in practical application, we usually have different
tolerance for different attributes of a thing. For instance,
when a bank recruits some employees, it may require men
whose heights are over 170cm, but when a clothing company
recruits models, it might require men over 180cm. There-
fore, we replace the unique attribute membership confidence
threshold with a set of membership confidence threshold T =
{t1, t2, . . . , tN }, so as to meet the different requirements of
different attributes, where N is the number of attributes in the
hesitant fuzzy formal context.
When we use the confidence threshold to simplify the

hesitant fuzzy formal context, we cannot directly compare a
real number with a hesitant fuzzy element. In this situation,
we propose two methods to simplify the formal context.
1) Score Function Reduction Method (SF Method): Sim-

plify the hesitant fuzzy formal context by comparing
the score function value of the hesitant fuzzy ele-
ment with the confidence threshold value. If the score
function value s(h) of the hesitant fuzzy element h is
greater than or equal to the confidence threshold of the
attribute, then the hesitant fuzzy element is reserved.
Otherwise, it is assigned as 0.

2) Score Function and Deviation Reduction Method (SFD
Method): Because the uncertainty of hesitant fuzzy
elements represents the instability of its attribute evalu-
ation. In practical application, we may hope to obtain a
more reliable and stable result while retaining the com-
plete information of hesitant fuzzy elements. In this
method, both the score function value s (h) and the
standard deviation σ (h) affect the simplification result.

TABLE 3. Score function values of hesitant fuzzy formal context.

TABLE 4. Deviation degrees of hesitant fuzzy formal context.

TABLE 5. Simplified hesitant fuzzy formal context by SF method.

TABLE 6. Simplified hesitant fuzzy formal context by SFD method (k = 1).

If s (h) − kσ (h) is greater than or equal to the confi-
dence threshold of the attribute, then the hesitant fuzzy
element is reserved. Otherwise, it is assigned as 0.
Note: k is a constant. In general, k ≥ 0. The value of k
depends on the decisionmaker’s preference for specific
things. When k = 0, the SFD Method becomes the SF
Method. That is, SFMethod is a special case of the SFD
Method.

For example, when we give a membership confidence
threshold set T = {0.4,0.3,0.2,0.2,0.4}, then we simplify the
hesitant fuzzy formal context in Table 2 by two methods
respectively:

First, we calculate the score function values and deviation
degrees of the hesitant fuzzy elements in the formal context,
which is shown as Table 3 and Table 4:

Then we can get the simplified hesitant fuzzy formal con-
texts as shown in Table 5 and Table 6:

Comparing Table 5 with Table 6, it can be found that the
SFD Method which considers deviation degree has a higher
standard for memberships, and the obtained formal context
will be simpler.
Definition 11: For a hesitant fuzzy formal context K =
{U ,A,V , f }, given a membership confidence threshold set
T , in which each confidence threshold is between 0 and 1.
Let X ∈ U and Y ∈ A, then there are two mappings defined
as follows:

1) X∗ = {ai ∈ A |∀x ∈ U , f (x, ai) ≥ ti } ;
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2) Y ∗ = {x ∈ U |∀ai ∈ A, f (x, ai) ≥ ti } ;

For example, in Table 5, let X = {x2, x3} and Y = {a3, a5}.
Then we can get the results as follows:
X∗ = {a3, a5}, Y ∗ = {x2, x3}, and ({x2, x3} , {a3, a5}) is

called a hesitant fuzzy formal concept.

f ({x2, x3} , a3) = f (x2, a3) ∩ f (x3, a3)

= {0.7, 1} ∩ {0.1, 0.5} = {0.1, 0.5} ,

f ({x2, x3} , a5) = f (x2, a5) ∩ f (x3, a5)

= {0.2, 0.6} ∩ {0.9, 1} = {0.2, 0.6} .

Definition 12: Given two hesitant fuzzy formal concepts
C1 = (X1,Y1) and C2 = (X2,Y2) in the hesitant fuzzy formal
context K = {U ,A,V , f }, and the membership confidence
threshold set T . If X1 ∈ X2 and (X1,Y1) ≤ (X2,Y2), then the
complete lattice constructed by this partial order relation is
called the fuzzy concept lattice of the fuzzy formal context K
at the confidence threshold set T.

C. CONSTRUCTION OF HESITANT FUZZY
CONCEPT LATTICE
1) FUZZY CONCEPT LATTICE CONSTRUCTION ALGORITHMS
In fact, the algorithmic construction ideas of the classical
0-1 concept lattice and the fuzzy concept lattice are consis-
tent. The most significant difference only lies in the calcula-
tion of memberships when dealing with binary relationships.
Therefore, we can explore the construction process of the
hesitant fuzzy concept lattice by studying the construction
method of classical 0-1 concept lattice.

Due to the completeness of the concept lattice, even for
a moderate amount of data, the complexity of the algo-
rithm is significantly increased, resulting in a huge data
structure, so the construction of concept lattice is also very
time-consuming. Since the concept lattice was proposed,
the construction algorithms and their improvement meth-
ods [35]–[38] have been intensely studied at home and
abroad.Whatever construction algorithm is used, for the same
formal context, the concept lattice constructed is unique and
not affected by the order in which the data or attributes are
arranged. So far, the concept lattice construction algorithms
can be mainly divided into three types: batch processing
algorithms [39], [40], incremental algorithms [36], [41], [42],
and distributed algorithms [43].

Among these three types of algorithms, incremental con-
struction algorithms have high efficiency and have been
widely used. Incremental algorithms construct concept lat-
tices by gradually adding new nodes. When a new node is
inserted, the entire data set does not need to be recalculated.
It only needs to intersect the node to be inserted and each
concept in the concept lattice, then execute relevant actions
according to the result of the intersection, such as the Godin’s
algorithm [42]. The incremental algorithm is very convenient
for the maintenance of the concept lattice. Therefore, in this
paper, we draw lessons from the classical incremental algo-
rithm to construct the hesitant fuzzy concept lattice.

2) HESITANT FUZZY CONCEPT LATTICE INCREMENTAL
CONSTRUCTION ALGORITHM
In the process of constructing the concept lattice with hesi-
tant fuzzy information, we apply Godin’s incremental algo-
rithm to the formal context with hesitant fuzzy information.
Besides, we add a simplification process of the hesitant fuzzy
formal context. In the algorithm, we mainly observe two
principles:

1) In order to reduce the scale of the concept lattice
and extract essential knowledge, the simplification pro-
cess of the hesitant fuzzy formal context ought to be
arranged before generating the concept lattice nodes.

2) Calculating the memberships should be placed after all
nodes are generated, which can avoid repeated calcula-
tion of memberships in the process of node update.

The algorithm steps are as follows:
Step 1. Set a group of membership confidence thresholds,

and then the attributes which are below the corresponding
membership confidence threshold should set to zero (using
the SF Method or the SFD Method), indicating that one
object does not have this attribute; otherwise, we can think
that the object has this attribute. After this step, we divide
the hesitant fuzzy formal context into two parts: the clas-
sical real number formal context and those hesitant fuzzy
sets.
Step 2. Simplify the classical real number formal context,

that is, remove redundant rows and columns, and mark them.
Step 3. Select one concept node, and add a new concept

node in turn, then compare the new concept node with the
existing ones, take corresponding measures by analyzing
the relationships between them. Their relationships can be
divided into the following situations.

Case 1 (New node): For a newly generated concept node,
if there is no node in the original concept lattice with the same
intent as the concept node, then the concept node is called a
new node;

Case 2 (Update node): For a newly generated concept node,
if its intent is equivalent to the intent of a node in the original
concept lattice, and there is an intersection between their
extent, then we need to update this original node. The extent
of the update node is the union of two nodes’ extent, and the
intent does not change.

Case 3 (Child inheritance node): For a newly generated
concept node, if the intent of a node in the original concept
node contains all of the attributes of the new concept node,
then the original concept node is called the inheritance node
of the new concept node.

Case 4 (Invariant node): For a newly generated concept
node, if its intent is equal to that of a node of the original
concept lattice, and the extent is a subset of the original
concept node’s extent, then the node of the concept lattice
remain unchanged.

Repeat Step 3 until all the nodes are traversed.
Step 4. Add the redundant objects and attributes removed

into the concept lattice.
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TABLE 7. Hesitant fuzzy formal context.

TABLE 8. Simplified hesitant fuzzy formal context.

Step 5. Draw the Hasse diagram and calculate the hesitant
fuzzy memberships of new nodes’ attributes.

Let us give an example to illustrate the flow of the algo-
rithm. The hesitant formal context is shown as Table 7.
Step 1. Let the membership confidence threshold set T =

{0.4,0.3,0.2,0.2,0.4,0.2}, then we simplify the hesitant fuzzy
formal context in Table 7 by the SF Method, which is shown
as Table 8:
Step 2. Remove redundant rows and columns, and mark

them:

TABLE 9. Simplest hesitant fuzzy formal context.

where x2 ∼ x5, a3 ∼ a6, a4 ∼ a5.
Step 3. Select one concept node ({x1} , {a1, a2}), and add

a new concept node, such as ({x2} , {a2, a3}), then compare
the two nodes, we can find that the new node ({x1, x2} , {a2})
is generated. For this new node, ({x1} , {a1, a2}) and
({x2} , {a2, a3}) are its child inheritance nodes.
Repeat step 3 until all the nodes are traversed. Then we can

generate all the concept nodes, which are shown as follows:
Layer 0: C0 ({x1, x2, x3, x4} , {∅});
Layer 1: C1 ({x1, x2, x4} , {a2}), C2 ({x2, x3} , {a3}).
Layer 2: C3 ({x1} , {a1, a2}), C4 ({x2} , {a2, a3}), C5({x3},
{a3, a4});
Layer 3: C6 ({∅} , {a1, a2, a3, a4}).
Step 4. Add the redundant objects and attributes removed

into the concept lattice, so the concept nodes are adjusted as
follows:

Layer 0: C0 ({x1, x2, x3, x4, x5} , {∅});
Layer 1: C1 ({x1, x2, x4, x5} , {a2}), C2({x2, x3, x5},
{a3, a6})
Layer 2: C3 ({x1} , {a1, a2}), C4 ({x2, x5} , {a2, a3, a6}),

C5 ({x3} , {a3, a4, a5, a6});

FIGURE 1. Hesitant fuzzy concept lattice Hasse diagram.

Layer 3: C6 ({∅} , {a1, a2, a3, a4, a5, a6}).
Step 5. Generate the Hasse diagram as Fig.1 and calculate

the hesitant fuzzy memberships of new nodes’ attributes as
follows.

Layer 0: C0 ({x1, x2, x3, x4, x5} , {∅});
Layer 1: C1 ({x1, x2, x4, x5} , {a2 {0.1, 0.2, 0.3, 0.4}}),

C2 ({x2, x3, x5} , {a3 {0.1, 0.5} , a6 {0.2, 0.3}})
Layer 2: C3({x1}, {a1{0.5, 0.7, 0.9}, a2{0.2, 0.3,

0.5, 0.7}}), C4({x2, x5}, {a2{0.1, 0.3, 0, 4, 0.6}, a3{0.6, 0.8},
a6{0.6, 0.9}}), C5({x3}, {a3{0.1, 0.5}, a4{0.5, 0.6, 0.8, 1},
a5{0.9, 1}, a6{0.2, 0.3}});
Layer 3: C6 ({∅} , {a1, a2, a3, a4, a5, a6}).
The flow chart of the algorithm is shown in Figure 2:
From the program flow chart, we can see that since we

separate the calculation process of membership from the
process of generating nodes, the core process is equivalent to
the construction of the classical real number formal context,
and the fuzzy memberships only need to be calculated once.
Besides, we added the process of formal context simplifica-
tion steps before the core process, which can significantly
reduce the number of calling commands circularly in the core
process.

D. SIMILARITY CALCULATION OF HESITANT
FUZZY CONCEPTS
When we calculate the similarities between hesitant fuzzy
concepts, sometimes different attributes have different influ-
ences on specific circumstances. Therefore, in this part,
we assume that the weights of the attributes are different, then
the similarity between hesitant fuzzy concepts is defined as
follows:
Definition 13:Let two hesitant fuzzy formal conceptsC1 =

(X1,Y1) and C2 = (X2,Y2), V1 and V2 be the weights of Y1
and, Y2 then their similarity degree (considering weights) is
defined as:

ρ (C1,C2) =

∫ (
V1s

(
Y Y1∪Y21

)
∩ V2s

(
Y Y1∪Y22

))
∫ (

V1s
(
Y Y1∪Y21

)
∪ V2s

(
Y Y1∪Y22

)) (3.1)

where s (•) is the score function of hesitant fuzzy set.
In practical application, we often calculate the similarity

between concepts according to different goals, and then the
impact of different attributes on decision-makers may be
different. Considering the preferences of decision-makers for
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FIGURE 2. Flow chart of hesitant fuzzy concept lattice incremental construction algorithm.

different attributes, we need to calculate the weight of each
attribute first. At present, there are many methods of calcu-
lating the weights, including subjective weighting methods,
objective weighting methods [26], and combinatorial weight-
ing methods [27]. In this section, we take into account the
characteristics of the data and the decision-makers’ subjective
preference of different attributes. Therefore, we design a
combinatorial weighting method to calculate the weights of
the hesitant fuzzy formal context.
Definition 14: Given a hesitant fuzzy formal context K =

(U ,A,V , f ), for each attribute a ∈ A,X ⊂ U , let the
importance degree pa > 0, then the weight va of the attribute
a is defined as:

va = pa · eminx∈X s(f (x,a))−maxx∈X s(f (x,a)) (3.2)

where s (•) is the score function of hesitant fuzzy set.
Formula 3.2 indicates the following characteristics:
1) The importance of attribute is proportional to weight.
2) If the volatility of an attribute is great, then it can be

considered that the attribute is not stable and might
have a small impact on the perceptions of decision-
makers, so the volatility of the attribute is in inverse
proportion to the weight.

3) There is a possibility that maxx∈X s (f (x, a)) =
minx∈X s (f (x, a)). In this case, va = pa. Otherwise,
va < pa.

Let us take Table 7 as an example, if the confidence
threshold set T = {0.4,0.3,0.2,0.2,0.4,0.2}, the importance

degree set P = {2,1,3,1,1,2}, then the score function values
are shown as Table 3, and we can get the weights as follows:

v1 = 2∗e0.2−0.7 = 2e−0.5;

v2 = 1∗e0.25−0.425 = e−0.175;

v3 = 3∗e0.1−0.85 = 3e−0.75;

v4 = 1∗e0.15−0.725 = e−0.575;

v5 = 1∗e0.2−0.95 = e−0.75;

v6 = 2∗e0.15−0.9 = 2e−0.75.

Next, we can calculate the similarity degrees of the
concepts. The similarity degree of C1({x1, x2, x4, x5}, {a2
{0.1, 0.2, 0.3, 0.4}}) and C3({x1}, {a1{0.5, 0.7, 0.9}, a2{0.2,
0.3, 0.5, 0.7}}) is:

ρv (C1,C3)

=
v2 ∗ s ({0.1, 0.2, 0.3, 0.4})

v1 ∗ s ({0.5, 0.7, 0.9})+ v2 ∗ s ({0.2, 0.3, 0.5, 0.7})
= 0.1337.

IV. AN APPLICATION OF HESITANT FUZZY CONCEPT
LATTICE
In this part, an example is provided to show the practical
application of the hesitant fuzzy concept lattice. Nowadays,
there are many new energy cars in the market, which not
only enrich the choice of consumers but also cause many
consumers’ choice difficulties. Therefore, we introduce a new
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TABLE 10. New energy car evaluation data.

TABLE 11. Simplified hesitant fuzzy formal context.

energy car quick evaluation and recommendation method
based on the hesitant fuzzy concept lattice theory.

We take all kinds of new energy cars as the extent of the
hesitant fuzzy formal context and evaluate the key attributes
of these cars, which are called the intent of the hesitant fuzzy
formal context. Suppose that a customer wants to buy a new
energy car with a price between 50000-70000 dollars. In this
price range, there are 16 types of new energy cars, such as
Mercedes Benz EQC, Wei Lai ES8, Jaguar I-PACE, Volvo
XC60, Volvo S60L, Eulogize MDX, etc. For convenience,
we mark them Car 1, Car 2, Car 3,. . ., Car 15, and Car 16.

A. METHOD FLOW AND DATA PROCESSING
Now we begin to evaluate some critical criteria of these car
types: A = {Security, Fuel-efficient, Resale value, Engine
power, Cost performance}. Sometimes it is impossible to get
the crisp values of the criteria, so we can use hesitant fuzzy
elements to describe vague information of these car types.
Generally speaking, the evaluation and recommendation of
new energy cars need to investigate the experience-based
data to present the preference information with hesitant fuzzy
values, which contains critical criteria of different new energy

car types. The new energy car evaluation data are listed as
Table 10.

Table 10 is also a hesitant fuzzy formal context. For
the reason that different consumer groups usually focus on
different indicators when choosing cars, we need to make
targeted analysis according to specific consumer groups,
so we need to set the importance degrees of the attributes:
P = {3,1,2,1, 2}. Next, we need to follow these steps:
Step 1. Build the hesitant fuzzy concept lattice by using the

incremental construction algorithm put forward in this paper:
1) According to the memberships in the hesitant fuzzy

formal context, we set a confidence threshold set T =
{0.6,0.75,0.56,0.74,0.72}, and apply the SFMethod (the SFD
Method: k = 0) to filter out unimportant information.
Besides, we need to divide the hesitant fuzzy formal con-

text into two parts: the classical real number formal context
(see Table 12) and those hesitant fuzzy sets.

2) Remove redundant rows and columns, and then the
formal context is as follows

3) Generate all the nodes, and add the redundant objects
and attributes removed into the concept lattice, and draw the
Hasse diagram, which is depicted as Fig. 3.

VOLUME 8, 2020 59781



X. Yang, Z. Xu: Hesitant Fuzzy Concept Lattice and Its Application

TABLE 12. Classical real number formal context.

TABLE 13. Simplest classical real number formal context.

FIGURE 3. Hasse diagram of hesitant fuzzy concept lattice.

4) Calculate the hesitant fuzzy memberships of new nodes’
attributes.

It can be shown that the memberships are still hesitant
fuzzy elements. Compared with the real number fuzzy con-
cept lattice, hesitant fuzzy concept lattice can maximumly
retain the complex information, and thus can better express

the fuzzy relationship between objects and attributes in uncer-
tain environment.

After the construction of concept lattice, the new energy
vehicles in the same hesitant fuzzy concept node have simi-
lar attributes. Through the obtained hesitant fuzzy concepts,
we can easily choose out all the types of new energy vehi-
cles with specific attribute information. Take Concept C2 as
an example, its extent is (6; 13), and its intent is (security
{0.80,0.82,0.83}; resale value {0.56,0.58}; cost performance
{0.72,0.73}). It shows that both Car 6 and Car 13 are safe,
value preserving, and cost-effective. Besides, the hierarchical
relationship between concepts is helpful for consumers to
adjust their purchase targets. In a chain of the hesitant fuzzy
concept lattice, the new energy vehicles contained in the
lower concepts must be evaluated higher than that contained
in the upper concepts. This rule tells us that when we want
to look for new energy vehicles with higher performance
based on the existing requirements, we can search down
in the Hasse diagram of hesitant fuzzy concept lattice. For
example, at first, a buyer chose the new energy vehicle types
in C3 according to his preference, but then he has higher
requirements for the performance, so he looks for the lower
concepts and then gets C2 and C4, which havemore attributes
than C3, and the membership of the original attribute (secu-
rity) remains unchanged or increases. Therefore, it is no doubt
that the concept lattice theory can help consumers to select
products more appropriately and quickly.

However, the hesitant fuzzy concept lattice contains much
more information than the classical concept lattice. When the
generated concept lattice becomes large, it is not conducive
to the discovery of knowledge, so we need to simplify the
hesitant fuzzy concept lattice and then extract more refined
information.
Step 2. According to a customer’s purchase preference,

the importance degree set P = {3,1,2,1,2}, then the weights
of indices can be obtained by Definition 14:

V = {1.73, 0.74, 1.31, 0.70, 1.47}

and the similarity matrix can be calculated as Table 15:
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TABLE 14. Hesitant fuzzy concepts.

TABLE 15. Similarity matrix.

By calculating the similarity between these hesitant fuzzy
concepts, those new energy vehicles with similar evaluation
can be easily found and compared with each other.
Step 3. To make it easier to get hidden rules, we need to

set a similarity threshold, and then merge the hesitant fuzzy
concepts with high similarity, to reduce the size of hesitant
fuzzy concept lattice.

If we let the similarity threshold= 0.7, then the simplified
hesitant fuzzy concepts are sh own as Table 16:

The merged concept lattice makes the classification
rougher, but it is conducive to knowledge discovery and
selection for the customers.

In this application, based on the theory and methods pro-
posed in this paper, we finally extract the hesitant fuzzy
concepts and construct the hesitant fuzzy concept lattice.
Therefore, it is proven that although the hesitant fuzzy infor-
mation makes the formal context more complex, we can sim-
plify the data processing process by effective simplification
methods, and finally get the fuzzy concepts with uncertain
information. Besides, the membership expressed by hesitant
fuzzy element expresses more potential information. The
more significant the variance of the hesitant fuzzy element
is, the worse the stability of the attribute might be. When
the decision-maker tends to the conservative choice, the final
decision-making can be adjusted by turning to the SFD sim-
plification method of the hesitation fuzzy formal context,

FIGURE 4. Changes of the simplified hesitant fuzzy formal context.

which takes the variance of the hesitant fuzzy element into
account.

B. DISPERSION ANALYSIS OF HESITANT FUZZY SETS
In certain circumstances, the discreteness of attributes affects
the decisions of people. Take a clothing designer as an
example. If the clothes he designs are sometimes trendy, but
sometimes unsalable, then we can think that his works always
have significant volatility and instability, which affects the
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TABLE 16. Simplified hesitant fuzzy concepts.

FIGURE 5. Changes of hesitant fuzzy concept lattice.

industry’s evaluation of him to some extent. Therefore, in this
section, we adjust the relevant parameter of the experiment
appropriately, and then discuss the influence on the experi-
ment by observing the changes in the results.

According to the research above, we can use the SFD
method (the membership threshold of the attribute is set to
s (h)− kσ (h)) to simplify the hesitant fuzzy formal context,
in which the standard deviation of hesitant fuzzy sets is
considered. If the decision-makers pay more attention to the
stability of attributes, then the value of k can be increased;
On the contrary, the value of k can be reduced. Therefore,
we can set k = 0, k = 0.7, and k = 1, and then observe the
differences in experimental results.

1) The changes of the simplified hesitant fuzzy formal
context are shown in Figure 4:

We can see from Figure 4 that when k changes from
0 to 0.7, some attributes of Car 13, Car 14, and Car 15 are
filtered out, and when k increases to 1, some attributes of
Car 2 and Car 10 are filtered out. This phenomenon shows
that the higher the requirement for the stability of attributes,
the simpler the hesitant fuzzy formal context is.

2) The changes of hesitant fuzzy concept lattice are shown
in Figure 5:

When the value of k increases gradually, we can find the
following phenomena from Figure 5:

Firstly, the number of concept nodes has changed, and new
nodes appear. For example, when k increases to 0.7, two

fuzzy concept nodes emerged for the reason that the attributes
of Car 2 and Car10 have changed. Secondly, the extent and
intent of some concepts have altered. What is more, the hier-
archical relationship of concept lattice has also changed.
When k = 0, Car 6 and Car 13 are in the same chain of
concept lattice, Car 13 contains all the attributes of Car 6; But
when k increases to 1, Car 6 and Car 13 are not in the same
chain. Thirdly, some objects contained in the lower concepts
move upward, which shows that the increase of k makes
the decision-maker reduce the evaluation of these objects’
attributes. In other words, the higher the hesitation level of
the attribute is, the lower the evaluation of the object is.

V. CONCLUSIONS AND FURTHER STUDY
The hesitant fuzzy concept lattice not only contains more
uncertain information but also reflects the stability of the
attributes. compared with other fuzzy concept lattices, when
dealing with hesitant and irresolute evaluation problems,
the hesitate fuzzy concept lattice is more practical and appro-
priate. In a way, it can reduce data errors and information loss.
Based on these reasons, in this paper, the following innovative
achievements have been achieved:

Firstly, we introduced the hesitation fuzzy set theory into
the formal context, and built the hesitant fuzzy formal con-
text, and then we studied the formal concept analysis theory
with hesitant fuzzy information. Secondly, we provided two
effective reduction methods of hesitant fuzzy formal context
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and compared the results of these two methods. Thirdly,
we proposed an incremental construction algorithm for hes-
itant fuzzy concept lattice. Next, we proposed a method to
calculate the similarity of hesitant fuzzy concepts, and also
discussed the calculation of the weights. Finally, we provided
a practical application to prove the correctness and validity of
the theory and methods proposed in this paper, and we also
discussed the influence of the dispersion of hesitant fuzzy sets
on the result. We can see from the controlled experiment that
the more discrete the hesitant fuzzy set is, the less reliable the
attribute is. In other words, the hesitant fuzzy set can reflect
the stability of the attribute.

However, in reality, the information is mainly in the form
of natural language from various media instead of numerical
values. In order to solve this problem, in the future, we can
apply the linguistic hesitant fuzzy set to concept lattice theory,
so as to solve the transformation of natural language and
numerical value. Besides, for the reason that the weights of
attributes depend on specific applications, so the calculation
of weights can be further studied.
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