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ABSTRACT Due to the impracticability of generating true randomness by running deterministic algorithms
in computers, boot-loaders and operating systems undergo the lack of enough supplies of entropy at
boot-time. This problem remains a challenge and affects all computer systems, including virtualization
technologies. Unfortunately, this situation leads to undesired side effects, affecting the security of important
kernel components and causing large blocking waits in the start-up of userland processes. For example,
SSHD is delayed up to 4 minutes. In this paper, we analyze the boot-time entropy starvation problem,
performing a comprehensive analysis of the Linux kernel boot process revealing that the problem not
only affects userland applications but up to 33 kernel functions at boot time. Those functions are weakly
fed by random numbers from a non-initialized CSPRNG. To overcome this problem, we propose E-Boot,
a novel technique that provides high-quality random numbers to guest virtual machines. E-Boot is the first
technique that completely satisfies the entropy demand of virtualized boot-loaders and operating systems
at boot time. We have implemented E-Boot in Linux v5.3 and our experiments show that it effectively
solves the boot-time entropy starvation problem. Our proposal successfully feeds bootloaders and boot time
Linux kernel hardening techniques with high-quality random numbers, reducing also to zero the number of
userspace blocks and delays. The total time overhead introduced by E-Boot is around 2 µs and has zero
memory overhead, since the memory is freed before the kernel boot ends, which makes E-boot a practical
solution for cloud systems.

INDEX TERMS Cloud, virtualization, security, entropy, boot-time, operating systems.

I. INTRODUCTION
Cloud computing has undeniably transformed our society
and the way we interact with the world and with people.
Over the last decade, it has been gradually established as the
de-facto model, evolving and offering new possibilities for
both academia and industry. It provides unbounded comput-
ing resources on-demand, reducing costs due to economies of
scale [1]. Customers can benefit from vast computing power
and storage capabilities of large data centers following a
pay-as-you-go model, without the need to possess the nec-
essary hardware resources. Virtualization technologies are
one of the fundamental building blocks of cloud computing.
Resources utilization can be maximized along with a flexible
and efficient on-demand workload multiplexing, yielding to
potentially energy efficient infrastructures [2] by aggregating
the users demands.
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Nowadays, new cloud paradigms and virtualization tech-
nologies have emerged due to the compelling tendency to
shift to a finer granularity, with the aim of increasing the
ability to dynamically scale resource utilization and maxi-
mally exploit the infrastructure resources. Serverless compu-
ting [3], [4] is an example of cloud computing model that
has recently reached a relevant situation in its develop-
ment. In contrast to Infrastructure as a Service (IaaS) [5],
where the provider supplies storage, networking and virtu-
alization so that the client has full control over the system
from OS layer upwards, the serverless computing model
enables dynamic resource allocation, leaving the scaling of
infrastructure requirements to the provider. This approach
avoids over-provisioning of resources, eventually decreasing
effective costs.

Serverless computing allows developers to focus on
the application business logic without having to worry
about infrastructure management. This leads to the appear-
ance of new computing models and modern technologies
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offering native high scalability by following the Function
as a Service (FaaS) [6] paradigm, such as metacall.io
and quarkus.io. Similarly, virtualization technologies
are also increasingly leaning towards a finer granularity
and more efficient computing. An example of this trend
are micro-virtual machines (microVMs), which run cus-
tom and tightly fitted kernels that only feature components
strictly necessary for a given service, avoiding unneces-
sary processing and memory usage. One of the representa-
tive technologies of microVMs is Firecracker [7], an open
source virtual machine monitor (VMM) that uses the Linux
Kernel-based Virtual Machine (KVM) to create microVMs.
This lightweight approach allows a better fitting in workload
balancing and a reduction of the start-up time. In addition,
the model is security-aware and reduces significantly the
attack surface.

This is important because, given the significance that cloud
computing has in people’s lives, it is imperative to offer
security standards to protect the confidentiality, integrity,
and availability in all cloud computing architectures. Cloud
providers must ensure the highest possible level of security
in order to prevent attacks. Unfortunately, there are scenar-
ios where this is not always possible. An important exam-
ple is the boot-entropy starvation problem [8]–[11], which
appears when a system (e.g., boot-loader or operating system)
requires entropy at boot-time but it is unable to generate or
collect enough entropy.

The lack of enough entropy at boot-time derives into dif-
ferent problems, including the generation of weak crypto-
graphic keying material [9] and the synchronous blocking of
components [12]. As a result, some hardening and protection
techniques used by boot-loaders, operating systems and user-
land applications are weakened or they are blocked until the
quality entropy is available. The latter is not an option for
operating systems because stopping the boot process could
lead to a boot failure or unacceptable delay. This is a signif-
icant problem since it fails to meet the security requirements
of current cloud computing models. In this paper, we deeply
investigate this problem and propose a novel solution for
cloud computing.

The main contributions of this paper are the following:
• The problem of boot-time entropy starvation is
described, examining the reasons that cause it and the
derived consequences.

• We present a comprehensive chronological analysis of
the Linux kernel boot process with all the compo-
nents requesting random data during the boot-time,
identifying the cases in which there is insufficient
quality entropy available when these requests are
made.

• We propose E-Boot, a practical solution to boot-time
entropy starvation that provides high-quality entropy to
virtual machines in cloud systems at early stages of the
boot process.

• We implement the proposed solution in the Linux ker-
nel v5.3 for the x86_64 architecture and evaluate its

effectiveness and overhead, showing that the overhead
introduced by E-Boot is negligible.

The rest of the paper is organized as follows. Section II
provides a detailed background on entropy and the generation
of random numbers in modern computers, and an overview
of the concrete case of the cryptographically secure random
number generator present in the Linux kernel. Sections III, IV
and V enumerate and analyze the main entropy sources and
entropy collector techniques currently used, followed by a
description of entropy consumers, which request random data
to them. Section VI describes the boot-time entropy starva-
tion problem, along with the reasons causing it and its conse-
quences. In sectionVII we propose E-Boot, a solution to solve
this problem for virtualization technologies. Section VIII
presents an implementation of our design in Linux v5.3 for
the x86_64 architecture. Section IX provides an evaluation
of the implementation. Finally, section X concludes.

II. BACKGROUND
The importance of entropy and the generation of random
numbers are sometimes undervalued. Although the intuitive
idea is quite simple, having a good entropy source in deter-
ministic machines is a challenge. This section presents an
overview of entropy and generation of random numbers in
deterministic machines.

A. ENTROPY
Entropy is an abstract concept with multiple definitions that
vary depending on the area of knowledge. According to the
literature, there are three types of entropy [13]: thermody-
namic entropy, residual entropy and information entropy.
This might create confusion, since the same concept is used
with slightly differentmeanings. In this paper, we focus on the
latter definition of entropy, related to the information theory
field. Thereupon, information entropy is a foundational con-
cept that measures uncertainty or randomness. It is commonly
understood as the amount of surprise caused after producing
a random value. The higher the entropy, the more uncertainty
and, therefore, the more surprise there will be when reading
the result of a randomized process. It is an important concept
with several applications. For example, it is widely used in
many areas of machine learning (e.g., training of Decision
Trees [14]), for proving the security of unconditionally secure
cryptosystems [15], for detecting incipient damages in a 3D
9-bay truss-type bridge [16] and to derive the mutual infor-
mation measure in medical image co-registration [17].

Digital computers are deterministic physical machines.
By definition, it is not possible to produce true (information-
theoretically secure) random numbers from a finite state
machine [18]. This is a challenge for operating systems,
which try to mitigate this problem by collecting entropy
from external non-deterministic and unpredictable events and
chaotic sources, typically from hardware including peripher-
als and dedicated devices to generate randomness. However,
when an operating system starts its execution, there is usually
little or no entropy available until the kernel is initialized and
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able to start collecting entropy from those external sources.
In addition, certain systems as embedded devices and vir-
tual machines suffer more constraints to gather entropy for
different reasons, such as short boot times and/or the lack
of physical hardware providing uncertainty. This reduces
the random numbers that virtual machines can produce and
incurs a negative impact in security and performance.

B. PSEUDO-RANDOM NUMBER GENERATORS
Without random numbers, many applications would fail and
security could not be provided. In cryptography, random
numbers are needed to generate private and public keys,
initialization vectors, challenges, salts in password hashes,
etc. In science, random numbers are used for several different
applications, for example for running complex simulations
using Monte Carlo methods [20] and randomized controlled
trials [21].

As discussed in the section II-A, digital computers are
deterministic physical machines and it is not possible to pro-
duce true random numbers from a finite state machine [18].
A Pseudo-Random Number Generator (PRNG) is a deter-
ministic algorithm capable of generating large sequences of
numbers derived from an initial state (or seed). The output
of a PRNG has similar properties to real random numbers,
and it will look random for anyone who does not know the
initial state. However, it is possible to reconstruct the exact
sequence of numbers produced by a PRNG knowing its initial
seed or internal state. This is a desired property in some cases.
For example, it allows the reproducibility of experiments and
simulations by only providing the initial seed value. Contrar-
ily, it can be fatal in the context of cryptography, since it
would allow attackers to easily bypass any security provided
by secret keys.

For cryptographic functions demanding high qual-
ity random numbers to generate secret keying material,
regular PRNGs are insufficient. A Cryptographically Secure
Pseudo-Random Number Generator (CSPRNG) is a sub-
class of PRNG with more restrictive properties, including
high-complexity for 1) reversing the internal state from a
given output, 2) predicting past and future outputs from a
given output, and 3) the ability to feed it without compro-
mising its correct operation. To have all those properties, it is
fundamental to seed the CSPRNG with high-entropy random
data. Otherwise, an attacker knowing the initial state of a
particular generator will be able to predict the entire output
sequence. A secure seed can be obtained from the output of
another CSPRNG, from non-deterministic physical processes
or from unpredictable events [22]–[27]. Once it is initialized
with a high-entropy seed, it can be used to reliably obtain
large sequences of artificial random numbers from a few
true random bits. Random numbers generated by a properly
seeded CSPRNG are considered computationally secure.

C. LINUX CSPRNG OVERVIEW
Most modern operating systems offer interfaces to one or
multiple internal CSPRNGs to allow userspace programs

and the kernel itself to obtain computationally secure ran-
dom numbers for any desired use, such as the Address
Space Layout Randomization [28], [29]. In this section,
we present the most recent CSPRNG design used by Linux
from version v4.8 [30] to 5.5.8, the most recent version at the
time of writing this paper.

Linux maintains special memory areas called entropy
pools, holding true random data derived from different
sources of entropy. When raw random data is added to an
entropy pool, the input is mixed with the already existing con-
tents using a linear-feedback shift register (LFSR) function.
This is how Linux allows updating its entropy pool with any
data without compromising the overall unpredictability of the
pool contents. Even if a chunk of totally predictable data is
mixed into an entropy pool, the uncertainty of its contents
does not decrease. Therefore, any pool contents update means
either increasing its entropy or keeping the same, but never
decreasing it.

Each pool has an associated conservative estimation of
available entropy in the corresponding pool. This estimation
is decoupled from the contents, implying that not all the
input beingmixed in the entropy pools is necessarily credited.
It is not always possible to accurately measure how much
entropy has a certain input. In such cases, the input is mixed
with the destination pool anyway, but without incrementing
the entropy estimation. This is because, in the worst case,
even if the input does not provide any additional entropy
(e.g., a totally predictable pattern) the existing unpredictabil-
ity of the pool contents is not decreased.

When random data is requested from an entropy pool,
the raw contents of the pool are never directly exposed.
Instead, the contents are hashed using SHA-1 and the result-
ing digest is folded by mixing the most significant bits with
the least significant bits using the XOR binary operation. The
resulting 80-bit value is the one returned as output.

The kernel tries to gather randomness from wherever pos-
sible throughout its execution uptime, feeding a primary
entropy pool called input pool. For example, a typically
reliable way to obtain true randomness is from the unpre-
dictable arrival of external events. Additionally, userland pro-
grams are also able to provide data to update the primary
input pool to increase the uncertainty. However, entropy
from userland is not always credited and only privileged users
can update the estimation accordingly to the data provided.

Linux offers essentially two different sources of pseudo-
random data: 1) a secondary entropy pool called blocking
pool and 2) a CSPRNG based on the ChaCha20 cryp-
tographic function [31]. Both are periodically fed with
true entropy from the input pool. On the one hand,
the blocking pool retrieves random data using the oper-
ation previously described, using the folded SHA-1 digest of
its contents. This pool is typically smaller than the primary
input pool, although this can be modified at compile
time. An important peculiarity of the blocking pool
is that random data requests to this pool depend on the
available entropy accounted by its associated estimation.
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TABLE 1. Overview of interfaces provided by the Linux kernel to obtain random values.

For each request, the entropy estimation decreases and, if the
estimation goes below a threshold, successive requests will
block until enough entropy is available. On the other hand,
the CSPRNG algorithm is based on the ChaCha20 stream
cipher to produce as many bytes as requested. At boot-
time, its state (primary_crng) is initialized, but for that
it requires at least 128 bits of true random data. Afterwards,
the CSPRNG is regularly re-seeded. The stream cipher allows
the kernel to produce an effectively large sequence of cryp-
tographically secure pseudo-random numbers from a small
amount of random data. In contrast with the blocking
pool, random data requests to the CSPRNG do not need to
block.

With this design, the kernel provides four different rele-
vant interfaces to generate random bits from its CSPRNG
and entropy pools, one for internal kernel usage and the
rest for userland programs. Table 1 shows an overview
of these four interfaces. The file /dev/random uses the
blocking pool to obtain random values. The file /dev/
urandom uses the CSPRNG instead. The function
get_random_bytes() also uses the CSPRNG, but it is
not reachable from userspace. Finally, the getrandom()
system call returns randomdata from either/dev/urandom
or /dev/random depending on the flag argument of the
call.

III. ENTROPY SOURCES
An entropy source is a device or technique from which
entropy or randomness can be directly produced. As we
highlighted in section II, it remains a challenge for oper-
ating systems to generate entropy. This section presents an
overview of characteristics and limitations of the main four
entropy sources from which a modern computer can obtain
true randomness. Later, we present a brief analysis of all of
them, synthesizing the relevant features when utilizing them
in virtualized operating systems.

A. OS EXTERNAL EVENTS
Unpredictable external events are a suitable method to obtain
true entropy in deterministic machines. One of the basic
entropy sources from which an operating system can derive
true randomness is by sampling events from human interface

devices (HID) and other interrupts, including events from
rotating disk drives, network adapters, mouse movements,
keys pressed, etc. In these cases, the main source of uncer-
tainty is obtained by taking a time-stamp when those HID
interrupts arrive with a high-resolution timer, which is typ-
ically available in all modern computers. Therefore, some
little entropy can be obtained from the unpredictability of the
arrival of such events.

However, this approach has some shortcomings when it
comes to virtual machines. The virtualization of disk devices
and the lack of any type of HID peripherals in these envi-
ronments substantially reduces the obtained entropy. Since
entropy comes from external events, the randomness gener-
ation bitrate is slow and the time required to gather enough
entropy as to initialize a CSPRNG could be large.

B. CPU JITTER
The high complexity of modern digital computers yields
opportunities to take profit from the unpredictability of small
fluctuations of different clocks at the nanometric scale to
obtain real entropy from deterministic machines. A practical
way to obtain true random numbers from modern digital
computers is by measuring the small timing variances in the
execution of machine instructions and non-modellable noise
derived from memory access times, exploiting the complex-
ity of operating systems and the underlying hardware [24].
Listing 1 shows an example of a random bit generator based
on the CPU jitter completely implemented in software. It
takes a base reference time-stamp, and a loop flips the value
of a boolean variable an undefined number of times, where
the condition of termination is that the current time-stamp is
greater than the reference plus a threshold. This is the general
idea followed by some programs such as TrueRand [32] and
its derivatives [33], [34]. Another approach is to measure how
much time a sleep operation takes [35].

However, the confidence of this method is controver-
sial [36]. Generally, since it relies on a lack of knowledge
of complex systems (existing workload, scheduler, state of
cache memories, etc), the generated output by using the
CPU jitter technique can be predictable to a knowledgeable
attacker. Similarly, in simpler systems (e.g., without multiple
execution threads and interruptions), the unpredictability is
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Listing 1. Example of a random bit generator function.

really challenging. Also, CPU jitter entropy is produced by
measuring timings, so it cannot produce large streams of
random bits in a short period of time.

C. HARDWARE RNG
Hardware RNG (HRNG) is a specialized hardware circuitry
used to obtain randomness from the inherent uncertainty of
physical phenomena such as thermal noise [37], [38], quan-
tum events [39], [40], frequency drift in oscillators [41], [42]
and analog feedback circuits [8], [43].

There are many manufacturers providing different kind of
HRNG devices. For example, a Trusted Platform Module
(TPM) is a cryptographic microprocessor which includes a
secure TRNG, similar to Intel’s 82802 Firmware Hub (FWH)
chip [44], [45]. The Unified Extensible Firmware Inter-
face (UEFI) is intended to be a modern replacement of the
Basic Input/Output System (BIOS) firmware interface [46],
offering several improvements such as faster boot and a
new disk architecture to support more and bigger partitions.
From version 2.4, the UEFI specification [47] defines an
entropy gathering protocol [48], designed for UEFI drivers
to provide randomness to upper levels from its internal RNG.
In addition, other devices as smart cards [49]–[51] and RNG
tokens can be used as a entropy source. RNG tokens are typ-
ically attached to the machine via USB port [52], for exam-
ple, the Altus Metrum ChaosKey [53] and YubiHSM [54].
HotBits [55] is another example that uses a commercial
monitor connected to the computer via serial port to derive
randomness by detecting radioactive decay events. Similarly,
there are peripherals and sensors that can obtain randomness
from other physical sources such as audio, video and radio
devices [56]–[59].

Another convenient approach to obtain random numbers
is by using on-CPU HRNG, which allows the obtaining
of entropy from the CPU itself by executing a machine
instruction. The CPU has an internal RNG that produces
as many entropy as required. Many CPU manufacturers
include a RNG in their specification. For example, the VIA
C3Microprocessors family with PadLock engine includes an
electrical noise-based RNG accessible through the xstore
instruction [60]. In similar way, recent x86 architectures
provides two assembler instructions, RDRAND and RDSEED.
According to Intel [61], both instructions are compliant
to the U.S. National Institute of Standards and Tech-
nology (NIST) standards on random number generators
(SP 800-90A, B & C) [62]. Although both instructions return

random numbers likewise, the implications of their usage
are subtly different. The difference is that RDRAND gets
the entropy from a cryptographically secure pseudo random
number generator and RDSEED from a true random genera-
tor. Similarly, s390 z14 IBM machines have the CPACF set
of cryptographic instructions [63], [64], and machines with
PowerISA 3.0 has the DARN instruction [65].

Having a dedicated HRNG, whether it is within a device
or integrated in the CPU, allows the programmer to obtain
cryptographically secure randomness. In most of the cases,
this randomness can be produced at fast bitrates. For exam-
ple, Intel’s rdseed and rdrand are capable of producing
742.4Mbit/s and 6.4 Gbit/s of random data, respectively [61],
while some USB RNG tokens can offer bitrates of around
327 Kbit/s [66]. However, there are also exceptional cases
where a HRNG offers low bitrates. For example, solu-
tions based on radioactive decay are typically limited to
800 bit/s [55].

Unfortunately, not all physical machines are equipped with
HRNGs. Even when any HRNG is available, it must be care-
fully used by virtual machines, because it can cause issues
when those virtual machines are migrated to other physical
machines lacking HRNGs. In addition, there are some users
and developers that do not fully trust in hardware-based
RNGs. In recent years, the appearance of news relating to
global cyberwar has motivated a public concern about espi-
onage campaigns carried out by intelligence agencies and all
kinds of threat actors seeking to introduce stealthy backdoors
in hardware to benefit their interests [67]–[72]. Furthermore,
in order to use HRNG devices, operating systems require to
load a driver in order to communicate with the device. Using
them can provide entropy to userland applications and to the
kernel itself, but only after the operating system is booted.
Therefore, even having a dedicated HRNG device fails to
provide entropy to key stages of the operating system boot
process where cryptographically secure random numbers are
required. An example is the kernel randomization security
mechanism present in all modern operating systems, where
entropy is required at a very early stage before the kernel
starts its execution. In addition, most of the HRNGs do
not provide any mechanism to update them in presence of
vulnerabilities [73].

D. DRAM RNG
Another source of randomness can be obtained from the
Dynamic random access memory (DRAM) chips. The main
idea is to misconfigure key low level DRAMmemory param-
eters to cause random alterations to memory cells, and use
them as source of entropy.

The main three approaches to obtain randomness from
DRAM are:

1) Violating standard timing parameters. When the
time to refresh memory is reduced below a threshold
recommended by the manufacturer, some errors are
produced and the value of some random memory cells
is changed [26].
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TABLE 2. Overview of entropy sources and their characteristics, with
regard to cloud environments.

2) Retaining cell charge. DRAM data is stored in capac-
itors that leak its charge when its bitline voltage goes
below a minimum (Vmin). This approach gets entropy
from cells that randomly fails for a given refresh
interval [74], [75].

3) Reading cell contents at power-up. When a device is
turned on, memory cell contents are unpredictable due
to interaction between different logic parts, such as pre-
charge, row decoder and column select [76], [77].

The approach that provides good entropy with the lowest
latency and highest throughput is ‘‘Violating standard timing
parameters’’ [26]. It offers more than 5 MiB/s of true random
data.

Unfortunately, the commands that govern the behaviour
of DRAM chips (i.e., row activation latency, power manage-
ment, etc.) are performed by the memory controller. Mem-
ory controller parameters are typically configured by the
firmware in the host machine before loading any operating
system. To prevent security issues, virtual machines can only
use a subset of physical resources, supervised by the hyper-
visor. Consequently, the exploitation of these techniques to
obtain randomness from DRAM is inflexible, unscalable and
prevents to use the DRAM chips being used to generate
random data. This results in a non-practical way to obtain
random data.

E. BRIEF ENTROPY SOURCES ANALYSIS
Table 2 summarizes the entropy sources discussed in this
section considering the random number throughput, virtual
machine migration and quality.

Sampling unpredictable external events from the OS is a
convenient method to obtain true randomness. Since this is
internally done by the operating system, virtual machines
can be migrated to other physical machines and use the
same approach to collect random numbers. However, in some
cases, the virtualization of devices and peripherals normally
reduces the obtained entropy and has low generation bitrate.
Hence, it requires a long period of time to generate effective
amounts of random data.

CPU Jitter is a software-based entropy source that gener-
ates random data from the CPU itself, exploiting the high
complexity of underlying systems. It is compatible with
virtual machine migration in cloud environments because
it does not require any specialized hardware to generate
random data. Using CPU Jitter to generate random data is
slow and a certain amount of time needs to be elapsed to

start generating randomness. In addition, unpredictability of
data generated by CPU Jitter in some specific simpler envi-
ronments (e.g., small and limited embedded devices or tiny
virtual machines) could be dubious and less than expected.

Hardware-based entropy sources, including HRNG
devices and on-CPU HRNGs, can offer true entropy with
a normally fast generation bitrate, with a few exceptions
(e.g., observing radioactive decay). Unfortunately, those
chips are not widely available in all physical machines which
introduces challenges to be used by virtual machines with
live migration support. In addition, these sources have trust
issues because they are typically black boxes, difficult to audit
and, sometimes, to update. But the deficiency that probably
matters most is that most of them require drivers and therefore
the entropy can not be used by the operating systems until
drivers are loaded. Unfortunately, this is preventing operating
systems to obtain entropy at key boot stages. This affects
hardening protection techniques that require entropy at early
stages of the boot-time.

Using DRAM chips as source of randomness provides
fast and true entropy based on unpredictable memory chip
failures. This entropy is available in early stages, includ-
ing pre-boot environments such as boot-loaders. However,
it prevents to use those chips while obtaining the entropy
and it also require firmware modifications. This makes the
approach unpractical, introduces overheads and reduces the
memory available during the entropy generation.

The entropy sources described in this section are the
four main techniques used for obtaining true randomness in
modern computers. By definition, they are the actual root
of entropy. However, these sources are not usually used
by entropy consumers (final applications) but by entropy
collectors instead.

IV. ENTROPY COLLECTORS
An entropy collector is a software program whose main
job is to obtain entropy from different entropy sources,
do some kind of processing and then provide random data
to entropy consumers. In this section, we present an overview
of the main entropy collectors, including different tools and
techniques.

A. USERSPACE ENTROPY DAEMONS
Userspace entropy daemons are programs that run in
userspace, normally as a background process, and are
intended to remedy low-entropy conditions and boost entropy
availability in the operating system. There are many available
entropy collector daemons at userspace. Following we show
the most well-known and widely used in Linux.

Haveged is an entropy daemon that relies on the proces-
sor’s volatile state [78]. It is based on the HAVEGE (HArd-
ware Volatile Entropy Gathering and Expansion) algorithm
to gather entropy using jitter timings from changes in the
processor state [79], [80] such as cache memories and branch
predictors. Rng-tools tries to obtain entropy from a dis-
crete list of sources (e.g., HRNG and CPU Jitter) to collect it
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and feed the kernel pool [81]. The daemon does not start if
none of its listed sources is available.

Entropy Gathering Daemon (EGD) is a daemon aimed to
be used in busy systems that do not feature the any special
devices or system call to obtain entropy from the kernel [82].
This entropy daemon is based on unpredictable events such as
the output of system administration programs (e.g., lastlog)
to obtain randomness. Other programs gather entropy from
peripherals using different techniques, for example exploiting
audio devices [56], [83], video devices [57] and measuring
time of sleep operations [35].

Userspace entropy daemons can be useful to avoid the
depletion of operating system’s entropy reserves in long-term
running systems with high demanding of randomness. How-
ever, they are not available at early boot-time, since they
cannot be executed until the system is completely booted and
running. This prevents operating systems and boot-loaders to
use this approach during the boot process where randomness
is required.

B. ON-DISK SEED FILES
The fundamental idea of on-disk seed files is to carry entropy
across reboots. At system shut-down, a random seed is saved
into a file in persistent storage. Next time the system starts
up, this seed can be used to feed the entropy reserves of
the operating system. This technique takes advantage of the
fact that a running system has potentially accumulated more
entropy than one just started. In situations where an attacker
has knowledge of the environment (i.e., hardware, start-up
activities, etc), the seed file makes it difficult to predict the
OS internal entropy state, from the second time the system
boots onwards.

In Linux systems, on-disk seed files are typically
managed by userspace startup scripts or by the init
process. Examples of them are sysVinit-scripts
and systemd-random-seed. On the other hand,
Systemd also uses a similar approach with its optional
EFI boot-loader (systemd-boot) [84], storing a ran-
dom seed in the EFI System Partition (ESP). Similarly,
Early-rng-init-tools is a package of tools for Linux
systems that uses different entropy sources and techniques to
fetch entropy to earlier phases in the boot process.

On-disk seed files can be useful to increase unpredictabil-
ity of OS internal entropy state, using entropy from previous
executions. However, they must be treated carefully. In cloud
environments, its usage in transient virtual machine instances
sharing a cloned generic image and live operating systems
can be dangerous, since an attacker using the same image has
exactly the same seed file. In these cases, the actual entropy of
the seed file should be considered zero. In addition, there is no
feasible way to measure how much entropy has a certain seed
file. Furthermore, on-disk seed file solutions based on EFI
are typically discouraged in virtualmachines, because the EFI
variable space and the disk space can be shared, cancelling the
security benefits [84]. Seed files must be handled secretly and
their contents must be immediately updated after using them.

In some cases, this fact imposes limitations, as the need of
synchronous blockage waiting for having enough entropy to
generate the seed file replacement.

C. COMPILER-ASSISTED LATENT ENTROPY
Compiler-assisted latent entropy is a technique that consists
in applying subtle modifications to an operating system at
compile time, without causing any semantic changes, adding
logic to obtain randomness from the kernel’s runtime state
when it is executed.

At the time of writing this paper, there is only one known
solution using this technique, which is Latent Entropy,
a GCC plugin [85] originally designed and written by the
PaX Team for grsecurity [86] and later ported to the Linux
upstream [87]. It has two parts: 1) static random values
settled by the compiler and 2) dynamic random values com-
puted at runtime. Essentially, different functions are instru-
mented with additional code that modifies local variables
with randomly selected operations, such as addition, shifts
and exclusive-or, and other values determined during the
build process. Initialization routines, functions called at ran-
dom times and functions with variable and unpredictable
loops are good candidates. At the epilogue of these functions,
the computed value of each local variable is mixed into a
global variable, which accumulates the entropy. Eventually,
the randomness of this global variable contributes to the
operating system’s internal entropy.

This technique provides per-build and per-boot random-
ness. On the one hand, static values and selected operations
in the modified functions are different per-build. On the other
hand, the unpredictability of the operating system’s runtime is
exploited to obtain dynamic per-boot randomness. For exam-
ple, the order of functions being called, different branches
taken within a function, etc. Interruptions and concurrency
can also increase its unpredictability. In addition, contents of
some registers such as the stack pointer or the frame pointer
can be used to add unpredictability, taking advantage of the
randomness provided by other mechanisms as kernel ran-
domization. It is a transparent technique, independent of the
hardware, that can be useful to increase the unpredictability
of operating system’s internal entropy state.

Unfortunately, this technique is still in an experimental
state and the actual overhead introduced by the OS modifica-
tions is unknown. Current versions of Linux do not credit this
entropy into the internal estimation. In addition, it is not fea-
sible to produce large quantity of randomness (e.g. 128 bits)
at early stages of the boot process.

D. REMOTE ENTROPY SERVICES
Remote entropy services are a combination of technologies
and techniques that allow users to obtain random data from
a remote server. Thus, machines with one or more entropy
sources can be exploited to provide randomness to remote
machines.

An important example of this technique employed in cloud
computing is known as Entropy as a Service (EaaS) [88].
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This model consists in remote delivery of high-entropy data
from a decentralized root of trust over a secure connection
where clients can make requests to obtain random numbers.
An implementation of this model is the client-server pair
pollinate [89] and pollen [90].
A similar approach is the use of public randomness

servers [91]. These servers typically offer randomness from a
single high-entropy source or from a combination of different
sources. For example, Random.org has an API to provide
random data through HTTPS.

Remote entropy services can be useful in environments
with internet access but with limited sources of entropy. These
services offer a large number of clients the possibility of
indirectly using expensive appliances in the server to obtain
true randomness by observing real unpredictable physical
events.

Unfortunately, in order to use remote entropy services,
the network must be ready and a secure channel must be
established to request random data. This is to ensure that the
random data is transferred securely. Otherwise, attackers can
use the random data requested by clients to break all client
applications where the remote random data is being used as a
unique entropy source. Unfortunately, this is the majority of
the situations and the main motivation of using those remote
services.

Therefore, since this approach requires the system to be
completely booted and it also requires high quality random
numbers to establish a secure connection, it cannot be used
by boot-loaders, operating systems or any device that requires
entropy at early boot stages. Even overcoming this strong
requirement, another issue discouraging clients of using a
remote service is the fact that the service is externalized.
Obtaining random data from remote servers forces clients to
extend the trusted computed base (TCB) and exposes them in
the presence of a server breach.

For private services such as EaaS, clients are forced to dele-
gate part of their security to remote services. This discourage
cloud providers from using remote servers as a trustworthy
approach.

E. VIRTUAL HRNG
Virtual HRNG is a technique used to enable virtual machines
to access a single physical HRNG. Rather than assign a
physical device to a single virtual machine, this technique
allows multiple guests to obtain entropy from a real HRNG
device.

A popular virtual HRNG solution used in the Linux
Kernel-based Virtual Machine (KVM) is Virtio-RNG.
It consists on virtualizing a HRNG device exposing a vir-
tual HRNG device to each virtual machine [92]–[94]. For
example, in Linux each guest will have a new /dev/hwrng
virtual device. Note that this does not affect the host’s internal
entropy pool state.

In case of lacking physical HRNG devices, virtio-rng
optionally allows to attach the virtual HRNG to other files
in the host machine. For example, virtio-rng can be attached

to the special file /dev/urandom or /dev/random
providing true random and pseudo random data respec-
tively. Although a virtual random generator is exported
from the point of view of virtual machines, reading
from /dev/random will consume entropy form the host’s
entropy pool. In this case, a rate-limit can be tweaked to avoid
host entropy depletion. The Xen hypervisor also has a similar
tool called xentropyd [95].
This technique basically offers the same benefits and limi-

tations as hardware RNGs. For example, it allows fast bitrate
streams of random data in guests, as long as it is available in
the host machine.

The main drawback of using Virtual HRNGs is that the
entropy is available too late. Boot-loaders cannot take advan-
tage of this approach when operating systems are loaded at
early boot stages. Drivers are necessary in the guest operating
system to manage the virtual device and consequently the
operating system boot process must be nearly completed.
Although adding this driver to the kernel core could be seen a
solution, the truth is that having this code in all kernels even
in those that the functionality is not required discourages this
approach to be implemented. In addition, this does not solve
the problem completely, since the boot-loader also requires
high quality random numbers (e.g., to load the OS in random
memory locations), and this approach would also require
code at the boot-loader level.

Although this is possible, to have a virtual HRNG client
present in the boot-loader is not a minor change. For instance,
the work being done in the Linux kernel boot-loader is rela-
tively simple, so it would be difficult to justify this overhead.
As we discus in section VI, this suggests that an appropriate
solution is requiredwhen high quality random data is required
at early boot stages.

F. BRIEF ENTROPY COLLECTORS ANALYSIS
In order to facilitate the comprehension and highlight the
importance of entropy collectors, in this section we present
a brief analysis of them.

Userspace entropy daemons gather randomness from sev-
eral entropy sources to enhance the overall operating system’s
entropy. As userland processes, they do not impose limita-
tions to virtual machine migration and are quite portable.
However, userland entropy daemons are not usable when the
entropy is required at early boot-time stages. They are gener-
ally dependent on the availability of strong entropy sources.
Otherwise, the provided randomness of these programs could
be of poor quality.

On-disk seed files can be useful to carry entropy across
reboots. However, seed files must be treated cautiously for
several reasons. There is no feasible and secure way to mea-
sure how much entropy they contain. Also there are hidden
issues that could prevent this approach for being used. For
example, in cloud environments, virtual machine instances
may share the same seed file. Additionally, they cannot be
used in early stages of the boot process because the filesystem
needs to be available.
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FIGURE 1. Flow of entropy/randomness from sources to collectors and consumers. Sources are the one
generating the entropy. Collectors obtain entropy from entropy sources and provide random data to entropy
consumers. It is also possible to obtain randomness directly from sources, but this is not recommended for
most applications.

Compiler-assisted latent entropy exploits the unpre-
dictability of potential variations in the kernel’s runtime state
to collect randomness. These variations can be caused by
different reasons, for example interruptions upon external
events, concurrency and address randomization. Unfortu-
nately, it is not feasible to produce large quantity of random-
ness at early stages of the boot sequence with this technique.
Furthermore, the actual obtained entropy is unknown, and
part of their values are settled at compile time, providing zero
effective entropy.

Remote entropy services offer the possibility of obtaining
randomness through internet services. Although this tech-
nique can be useful in some scenarios, it cannot be used at
early stages of the boot process. It requires to have the net-
working system up and working, as well as some high quality
random numbers prior to establish a secure connection.

Virtual HRNGs allow host machines to expose physical
HRNG devices to guest virtual machines. Guests can benefit
from fast streams of true random numbers. However, the use
of physical HRNG imposes restrictions to migrate the vir-
tual machines to other hosts lacking the required hardware.
In addition, guest operating systems need a driver to commu-
nicate with the host backend, which limits its usefulness at
early boot-time.

V. ENTROPY CONSUMERS
Entropy consumers, the right square of figure 1, are applica-
tions and OS components consuming entropy during its exe-
cution time to provide secure properties to the final user. For
example, in order to provide a secure channel using HTTPS
or SSH having high quality random numbers is required.
Although entropy consumers are usually userspace appli-

cations obtaining random data from entropy collectors, it is
also possible to talk directly with entropy sources. However,
this would require to allow direct access to those sources and
also add this functionality to each application. This approach
would probably break applications and virtual machines,
since we can not guarantee that all physical hosts will have

the same entropy sources. To alleviate this problem, entropy
collectors provide this abstraction layer in order to provide
high quality randomness to the entropy consumers while deal
with the specific entropy sources of the particular host.

The same approach is being used at different levels. For
example, an operating system can be at the same time an
entropy collector and consumer. In this case the issue is not
having an abstraction layer but to use an internal algorithm
(entropy collector) fed from some random data obtained from
an entropy source. This approach allows operating systems to
have an unlimited high quality random numbers for itself and
also to export an interface to enable userspace applications
(entropy consumers) to obtain randomness.

VI. THE PROBLEM: BOOT-TIME ENTROPY STARVATION
As we have discussed and analyzed in sections III, IV and V,
there are many solutions to generate and collect entropy to be
consumed by the final user. Unfortunately, after analyzing all
the literature, we found that none of those techniques can be
employed to solve the boot-time starvation problem [8]–[11].

The issue of lacking enough entropy at boot-time is derived
from the fact that it is not feasible to generate real randomness
by only running deterministic algorithms in computers, espe-
cially in virtual machines and embedded devices. For exam-
ple, operating systems are not able to gather enough entropy
to initialize its internal CSPRNG [36] in early stages of the
boot process. This forces to choose between two options.
The first would be to block-and-wait random requests until
there is enough entropy. This is not something desired or
adopted, since the booting process could be stalled and the
system could never boot. The second approach would be to
return as much entropy as available instead of block-and-
wait. Unfortunately, when the returned data is being used
in security protection mechanisms such as kernel hardening
techniques, those could be seriously weakened.

In the case of Linux, for instance, its internal CSPRNG
needs a minimum entropy threshold of quality randomness
available to seed the initial state, and it is not ready until this
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requirement is fulfilled. In headless systems without periph-
eral devices generating entropy, such as keyboard and mouse,
the time needed to generate the minimum entropy threshold
is larger. In cloud virtual machine instances, the missing
opportunities to get good entropy from hardware is not only
due to the lack of peripherals but also to the virtualization
of other components as interrupt requests and block devices.
At the time of writing this paper, the availability of high
entropy at the early kernel startup is a current concern.

A less obvious issue that could magnify the problem is how
some OS improvements affect the entropy generation. For
example, as of September 2019, Linux kernel developers had
a controversial discussion in the last stages of v5.3 develop-
ment cycle [12] due to an improvement in the ext4 filesystem
that indirectly caused unexpected boot hangs because the
applied changes produced less interrupts early in the boot
phase, which produced less entropy. In fact, this blocking
problem in Linux systems has been going around for some
time, since the incorporation of the getrandom() system
call by libraries such as OpenSSL [96]–[98]. An example
is the Secure Shell (SSH), a widely used service that pro-
vides authenticated and encrypted remote access. Its dae-
mon (SSHd) maintains an internal PRNG, which is initially
seeded when the program starts. That seedmight be requested
directly to the kernel or to the OpenSSL library which, in turn,
maintains another internal PRNG that also needs to be seeded.
Eventually, this entropy originally comes all the way down
from the kernel, bymeans of the getrandom() system call.
The default behaviour of this system call is to block the caller
if the CSPRNG is not ready. This blocking behaviour leads to
prohibitive long delays in the boot time of services requiring
secure random numbers waiting for the proper CSPRNG ini-
tialization. This prevents users and administrators to connect
remotely to the machine until the CSPRNG is ready, resulting
in prohibitive connection delays. Furthermore, in situations
where the blocked services are the only ones capable of
providing fresh randomness into the system, it could even
cause deadlocks.

The alternative approach to block-and-wait is to return as
much entropy as available at the moment of the request. The
problem of this approach is that non-blocking requests to an
OS CSPRNG made during this low-entropy state produce
potentially predictable pseudo-random numbers. This may
lead to serious security problems [99], [100] if any of those
weak random values are used to eventually generate sensitive
data, such as long-term cryptographic keys. For instance,
Heninger et. al. [9] performed a large survey of TLS and SSH
servers, discovering a widespread presence of vulnerable
keys due to insufficient entropy during key generation. Even
though not all the requests made to the CSPRNG during the
non-initialized state might be intended to be computationally
secure, it is conceptually wrong to request random data to a
non-initialized CSPRNG. Unexpected security problems can
arise by letting this happen [101]. For example, the Linux
kernel ratelimit feature hides repeating messages if a
certain limit is reached, to avoid flooding the message buffer

of the kernel. If there are several requests to the uninitialized
CSPRNG, the logs will only warn about a small part of them,
potentially hiding any dangerous read which actually needed
to be cryptographically strong [102].

Summarizing, the boot-time entropy starvation problem
leads into two main issues:

1) Weakened Protection Techniques: Bootloaders and
early stages of operating systems require entropy to
securely protect some parts of the OS. For example,
in Linux, the boot-loader uses random numbers for ker-
nel randomization, and during the Linux boot process
some hardening techniques also require random data.
A more detailed list with Linux components can be
found in table 3.

2) Blocking CSPRNG requests: On systems that are not
equipped with special hardware to generate random
numbers, even when the kernel has been fully loaded,
the CSPRNG could take up to several minutes to be
initialized as shown in figure 4. For those systems, this
delay is unacceptable since the problem is propagated
to any userland application requesting random data to
the kernel. As a result, those servers could be unavail-
able for minutes after a system reboot.

VII. THE SOLUTION: E-BOOT
In this section, we present E-Boot, a novel technique that
solves the boot-time entropy starvation problem discussed
in section VI by providing high-quality entropy to virtual
machines before they start their execution. E-Boot is the
first solution that completely satisfies the entropy demand of
virtualized boot-loaders and operating systems. Our approach
enables boot-loaders and operating systems to access to
high-quality random numbers from their very first assembler
instructions without requiring any hardware support.

The main idea of E-Boot is to bring high-quality entropy
from the hypervisor to guest virtual machines. This enables
virtual machines to fulfill all early random data required,
as well as to produce their own cryptographically secure
random numbers at very early stages of the boot process.
The technique can be applied by virtualization technologies
(e.g., cloud computing environments) to solve the problem of
lacking boot-time entropy where kernel hardening techniques
require high-quality entropy to prevent and mitigate attacks.

Although many applications and devices can take advan-
tage of E-Boot, the main benefits that offers for cloud
computing are:

1) Entropy available before VMs are executed: The
hypervisor fills a pre-reserved area in guest memory
with random numbers. With this approach, once the
virtual machine starts its execution, it can first access
this pre-reserved area to retrieve the random numbers
and later start its real execution. As a result, kernels
and boot-loaders have entropy available from the very
first assembler instructions. This is the first step shown
in figure 2. The hypervisor fills all pre-reserved areas
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FIGURE 2. Design of E-Boot. Before a virtual machine is started, ¬ the hypervisor injects entropy into the guest’s memory. ­ When the guest virtual
machine starts its execution, the pre-reserved area filled with random data is already present and reachable from the beginning. All early random data
requests can be fulfilled. The OS’s internal CSPRNG can be initialized early, allowing the generation of cryptographically secure random numbers. ®
Kernel components and userspace programs are benefited from it, obtaining secure random data and avoiding blocking waits.

of all available and compatible virtual machines with
random numbers.

2) Hardened kernel security: The entropy from the pre-
reserved area can be used to early initialize the internal
CSPRNG that all modern operating systems have. This
is the second step shown in figure 2. For example,
in Linux, there are many security techniques applied
during the boot to harden the kernel. Those techniques
require random numbers to be effective but, as we dis-
cussed in section VI, there is a lack of entropy and those
techniques try to do a best effort. Using E-Boot, we can
guarantee that the CSPRNG will be fully initialized
and all hardening techniques employed during the boot-
time will be fully satisfied with all the random numbers
required.

3) Prevents userland blocks: Unlike what it might be
expected, the problem of entropy starvation persists
after the kernel has been completely loaded. As we
discuss in the section IX, and show in figure 4,
the CSPRNG initialization can be delayed up to 4 min-
utes. This time is required to collect enough entropy to
initialize the CSPRNG, and therefore to provide ran-
dom data to userspace applications. With E-Boot, this
time is reduced to zero, and servers and applications are
not blocked anymore.

It is important to note that E-Boot does not depend on
external hardware, and it is fully compatible with live vir-
tual machine migration including load balancing, resource
management and availability. In addition, it does not inter-
fere with the execution of any service running in the guest
virtual machines [103]. As with any virtualized environment,
guests should trust the hypervisor and therefore, the provided
entropy.

Figure 2 shows the design of E-Boot. In step ¬ , the hyper-
visor fills the pre-reserved area of all virtual machines with
random numbers. The hypervisor is responsible for selecting
a proper source of randomness. Once this operation is com-
pleted, the hypervisor must indicate to the guest that the job
was done. For example, by indicating the quantity of present

entropy in the pre-reserved area or by setting a flag. This
brings transparency and backwards compatibility with other
hypervisors that do not support E-Boot, since guest can ignore
the entire pre-reserved area if the pre-reserved area was not
filled or has zero entropy.

When the virtual machine starts its execution, the pre-
reserved pool filled with random data is already available
within its memory, ready to use whenever it is needed.
Hence, the guest OS is able to use this entropy from the
very first instruction in order to satisfy different random data
requests from itself. As shown in step ­ of figure 2, E-
Boot enables operating systems to add randomness into their
internal entropy pools in order to initialize their CSPRNG as
soon as possible. This will ensure that all requests from the
OS kernel and from userspace (step ® in figure 2) programs
are provided with the required high-quality random data.
Note that guests do not require any additional driver running
the entire virtual machine lifespan and this process is only
being executed once at boot-time. The same principle applies
to boot-loaders.

Therefore, E-Boot solves boot-time starvation and
all derived problems with an efficient, transparent and
lightweight approach, while being compatible with virtual
machine live migration. Cloud systems and virtualization
technologies can be benefited from it in multiple ways. On
the one hand, it potentially accelerates the boot time of
services that are otherwise blocked waiting for a CSPRNG
initialization for obtaining secure random numbers. On the
other hand, it provides strong security for those fundamental
components that are necessarily established at an early stage
in the boot process and remain untainted throughout the
operating system lifespan, such as kernel randomization or
memory hardening used by the Linux SLAB allocator at
boot-time. It also enables the possibility to debug certain
workloads that use deterministic PRNGs, providing known
seeds to produce controlled and repeatable states across
different boots.

This solution can be especially beneficial for virtual-
ization technologies that focus on security while offering

61882 VOLUME 8, 2020



F. Vano-Garcia, H. Marco-Gisbert: E-BOOT: Preventing Boot-Time Entropy Starvation in Cloud Systems

FIGURE 3. Implementation overview of the proposed E-Boot in the Linux kernel v5.3 for the x86_64 architecture.

multi-tenant serverless services with a lightweight approach
to minimize the attack surface, such as Firecracker [7]. Using
E-Boot, micro-virtual machines can benefit from the avail-
ability of quality entropy from the beginning of their execu-
tion, without needing any additional driver being loaded in
the kernel or any channel connected to the host machine.

VIII. E-BOOT IMPLEMENTATION IN LINUX
In this section, we present the implementation of the proposed
E-Boot in the Linux kernel v5.3 for the x86_64 architecture.
Figure 3 shows an overview of it. Following the design pre-
sented in section VII, the first step is to enable the hypervisor
to transfer high-quality random numbers to the pre-reserved
memory area of all virtual machines.

When the Linux kernel is built from sources, not only the
Linux kernel is compiled for a specific architecture but a boot-
loader capable to load the kernel is also built. On x86_64 and
other architectures, by default the kernel is compressed and
a single file named vmlinuz containing the compressed
kernel and the bootloader is created. In cloud computing,
this vmlinuz is loaded into memory by the hypervisor to
later transfer the execution flow to it, more specifically to the
Linux bootloader code contained in the vmlinuz file.
The Linux bootloader is responsible for loading the Linux

kernel into memory and transfer its execution control to it.
Since, at this early stage, protection techniques such as the
kernel randomization are already underway, E-Boot must be
implemented in a way that provides entropy to the Linux
bootloader before the kernel is loaded. In addition, after the
kernel has been decompressed and loaded but before the
execution control is transferred to the Linux kernel, E-Boot
must copy random data from the Linux bootloader to the

Linux kernel pre-reserved area. Once the entropy has been
copied, then the bootloader will transfer the execution flow
to the Linux kernel.

Therefore, E-Boot provides to the Linux bootloader
entropy for itself but also for the Linux kernel. The memory
space to hold the entropy of both must be pre-reserved in
the bootloader. We have calculated that 32 bytes of entropy
are enough for both, to solve entropy starvation and to offer
enough randomness for all early random requests. The boot-
loader consumes 16 bytes of entropy to assist kernel random-
ization step ® in figure 3, and the Linux kernel consumes
also 16 bytes of entropy to early start its internal CSPRNG,
step ° in figure 3.

To implement E-Boot, we have defined the pre-reserved
area which consists of two main parts: 1) a header containing
metadata information and 2) a buffer containing the random
data, which will be referred to as the payload. The pay-
load buffer is populated by the hypervisor when the virtual
machine is loaded into memory. The header contains a 2-byte
magic number and other two 1-byte fields for flags and
for the entropy size. The purpose of the magic number
is to identify the pre-reserved area unambiguously, to avoid
unwanted side-effects. The flags field is used for two pur-
poses: 1) to allow the guest to provide a hint to the hypervisor
about the entropy preference (i.e., true or pseudo randomness)
and 2) to allow the hypervisor to inform the guest that it
supports E-Boot. The size field indicates how much random
data has been placed in the buffer. We have ¬ modified
two linker scripts [104] of the Linux source code, called
vmlinux.lds.S, one for the boot-loader and another for
the kernel. These scripts are mainly used to describe and
control the memory layout of the generated Executable and

VOLUME 8, 2020 61883



F. Vano-Garcia, H. Marco-Gisbert: E-BOOT: Preventing Boot-Time Entropy Starvation in Cloud Systems

Linkable Format (ELF) file, which is the file format used by
the Linux kernel. The pre-reserved area is statically allocated
within an ELF section of the images (boot-loader and kernel).

In order to provide the entropy to the guest virtual machine,
as shown in step ­ of figure 3, we have modified the Qemu
Virtual Machine Monitor v4.2 [105]. After Qemu has loaded
the guest vmlinuz image file into memory, the E-Boot
parses the file in order to find and fill the pre-reserved
area of the bootloader. Before writing the random numbers,
a magic number check is done by using the first field of
the pre-reserved area header. This is to allow the hypervisor
to know that the guest virtual machine is compatible with
E-Boot. The second field in the header is one byte reserved
for flags. Those flags are to pass information between the
hypervisor and the guest virtual machines. For example, the
first bit of the flags is set by the hypervisor to indicate that
it supports E-Boot. This bit can be later checked by the
virtual machine to know that it is running under a hypervisor
supporting E-Boot. The second bit is used by the hypervisor
to know whether the entropy requested must be from a true
random number generator or from a CSPRNG. This bit is set
at compile time and cannot be modified unless the vmlinuz
file is patched. The rest of the bits are unused. The third field
of the header is the entropy size contained in the pre-reserved
area payload. It is requested by the guest virtual machine at
compile time. The hypervisor uses this value to know how
many random numbers are being requested. If the provided
entropy by the hypervisor is less than the requested, this size
field will be updated accordingly, indicating howmuch actual
entropy has been written in the pre-reserved memory area of
the guest.

Once the hypervisor has completely updated the guest’s
pre-reserved area, it passes the execution control to the guest
bootloader, which will decompress the kernel into a physi-
cal memory. If kernel randomization is enabled [106], [107],
the bootloader will calculate the physical and virtual
addresses of the final kernel location. As shown in step ® of
figure 3, with E-Boot those two random addresses are calcu-
lated using two 8-byte random values from the pre-reserved
area. Actually, our implementation performs an XOR of the
provided random bytes with the little available entropy. This
is to ensure that, if the hypervisor does not support E-Boot,
the kernel randomization will be as good as before.

After calculating the final virtual and physical addresses,
the Linux kernel is decompressed. The boot-loader parses the
extracted (kernel) ELF file tomove loadable segments to their
corresponding address. E-Boot uses the same approach than
the one followed in the bootloader. It locates the pre-reserved
area, step ¯ of figure 3, and it transfers 16 random bytes from
the pre-reserved area of the bootloader to the pre-reserved
area of the Linux kernel. Then, the bootloader updates the
flags and transfers the execution control to the Linux kernel.

At the very first moment the kernel starts its execution,
the random numbers are already available in its pre-reserved
area and ready to use. As described in section II-C, Linux
implements a CSPRNG based on the ChaCha20 [31] cipher,

which needs 128 bits of entropy to initialize it. For this
reason, as step ° of figure 3 shows, E-Boot provides 16 bytes
(128 bits) of random data, to be able to early initialize the
Linux CSPRNG. Doing an early CSPRNG initialisation not
only solves the problem of entropy starvation but it also
satisfies all hardening techniques employed during the kernel
boot time. The left-hand column of the table 3 shows a
full list of the components and techniques that are benefited
from the proposed E-Boot. Note that any future technique,
even techniques with high demand on high-quality random
numbers at very early stages, will be completely satisfied
thanks to the early CSPRNG initialization done by E-Boot,
as step ± of figure 3 shows.
To preserve full compatibility with hypervisors not sup-

porting E-Boot, the random data is actually mixed with
the kernel’s internal entropy pool. This will ensure that the
CSPRNG will have the same behaviour when no entropy is
provided to guest virtual machines.

To summarize, we define two statically allocated E-Boot
sections for both the kernel and the boot-loader. The hypervi-
sor provides the required random data prior to virtual machine
start-up. The random data payload size in our implementa-
tion is 32 bytes, which are used for kernel randomization
and CSPRNG initialization. However, this is completely cus-
tomisable. In this case, the boot-loader consumes 16 bytes
for kernel randomization and transfers another 16 bytes to the
kernel.

IX. EVALUATION
In this section, we evaluate how effective E-Boot is for
solving the boot-time entropy starvation problem in Linux.
Table 3 shows all boot-loader and Linux kernel components
that are addressed by the proposed E-Boot. Later, we evaluate
the spatial and temporal overhead to demonstrate its feasi-
bility on real systems. At the end of the section, the NIST
Statistical Test Suite is used to assess the entropy generation
in guests.

To obtain the real impact of E-Boot, we have performed
a comprehensive analysis of the Linux kernel v5.3 boot pro-
cess (for the x86_64 architecture) to ascertain all the kernel
components that require random data in early stages, identi-
fying the cases in which there is insufficient quality entropy
available when these requests are made. Since Linux requires
128 bits (16 bytes) to initialize its CSPRNG, we will refer
to ‘‘sufficient entropy’’ when Linux has collected 128 bits
or more of high-quality entropy. Otherwise we will refer as
‘‘insufficient entropy’’, since the CSPRNG will not be able
to initialize and all requests to its CSPRNG during the boot
time will not be satisfied.

The experiments were carried out running an Arch Linux
virtual machine with kernel v5.3, LXDE graphical desktop
and full networking (NAT mode provided by Qemu). It exe-
cutes only basic init-system processes and an SSH server. The
physical machine used to run the experiments has an Intel
Xeon W-2155 processor (Skylake server microarchitecture)
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TABLE 3. Kernel functions called at boot time while there is insufficient quality entropy as to initialize the CSPRNG, comparing Standard, Virtio-RNG and
PNAME. The At column shows the first occurrence of each kernel function (in milliseconds). A tick (3) means that there is enough quality entropy
available when the corresponding function is reached. † Note that this is the elapsed time since the bootloader started its execution, but the count is
reset when the kernel gains control. ‡ Random secret hash seeds are typically used to obtain an uniformly key distribution and to mitigate algorithmic
complexity attacks against hash tables.
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FIGURE 4. Chronology of the kernel components requiring entropy at early boot-time, comparing availability of quality entropy with Standard, virtio-rng
and E-Boot.

and 32 GiB of SDRAM memory. The hypervisor used is
KVM (Linux kernel 4.19-lts) along with Qemu v4.2.0.

Table 3 shows a list of Linux kernel functions requiring
early random data while there is not enough entropy as to
initialize the CSPRNG.We have identified a total of 33 kernel
functions that are affected by the lack of quality entropy
with a standard Linux compilation. When E-Boot is used, all
random data requests by those 33 functions are satisfied and
the starvation problem is addressed.

In order to assess the effectiveness of our implementation,
we compare E-Boot with current state-of-the-art alternatives
that provide entropy to the kernel, considering the worst and
best-case scenarios. On the one hand, we consider a standard
kernel without any other entropy source than OS external
events as the worst-case scenario. The reason is that although
true randomness obtained by OS external events is a basic
and built-in entropy source available in any standard Linux
kernel, it takes a while to produce enough quality entropy
solely with this source. This is because it is slow and unable
to produce large streams of random bits in a short period of
time. In our experiments up to 4 minutes as shown in figure 4.

On the other hand, the current recommended approach
to relax boot-time entropy starvation situations is to use
virtio-rng as a virtual HRNG. Virtio-rng is able to provide
fast-rate streams of random data to guest virtual machines,
and therefore initialize the CSPRNG long before that the
standard Linux. Hence, virtio-rng can be considered as the
best-case scenario. It is important to note that virtio-rng can
be compiled as a loadable kernel module or built-in. Although
the default option is to compile it as a module, we have built
virtio-rng as built-in to have it available as soon as possible
during the kernel boot process. Therefore, we are comparing
E-Boot against the best case of the best available solution.

The experiments results are summarized in the table 3. The
three last columns indicate which solution provides entropy
for each random data request. From the total of 33 affected

kernel functions, virtio-rng is able to provide entropy earlier
than standard, fixing the last 12 cases (36.36%), but there
are still 21 being affected because of the insufficient entropy
available. The reason is that virtio-rng needs the kernel to be
initialized prior to be ready to supply random data. Therefore,
kernel components needing entropy before that point are
unable to benefit from it. An example is kernel randomiza-
tion, which needs entropy just onemillisecond after the kernel
starts. In contrast, our solution addresses all of them (100%)
because it is able to provide the needed entropy from the
very beginning, including components requiring entropy in
the boot-loader before Linux starts.

Figure 4 represents a chronology of boot-loader and ker-
nel execution time. It shows kernel components requir-
ing entropy at early boot-time, along with important
events as the kernel initialization and the moment that
virtio-rng is ready. It is important to note that, in this
figure, kernel functions have been grouped into compo-
nents for sake of clarity and only the first request is repre-
sented. For example, Userland Stack Protector &
ASLR consists of several kernel functions (arch_rnd(),
create_elf_tables(), etc.). Also, time count is reset
when the kernel is executed because they are two different
execution environments.

With the standard configuration, the kernel is not able
to generate enough quality entropy until after more than
4 minutes (245 seconds in average). To illustrate the example
presented in section VI, we have measured the start-up time
of OpenSSH v8.1. Our experiments showed that the SSHd
server was around 4 minutes blocked in the getrandom()
system call (244 seconds in average), and did not start
accepting incoming connections until then. Both E-Boot and
virtio-rng effectively remove this delay, because when the
random requests from SSH arrive (at 1500ms) both virtio-rng
and E-Boot have initialized the CSPRNG, and therefore
the userspace entropy requests were successfully satisfied.
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TABLE 4. Spatial overhead of the proposed E-Boot with a total
of 32 random bytes of random data provided by the hypervisor to be used
by the Linux boot-loader and kernel.

Consequently, user experience is considerably improved,
since they can use those userland services as soon as the
system boots, without having to wait more than 4 minutes
to the CSPRNG initialization.

Although in userspace applications there is not much dif-
ference between using virtio-rng or E-Boot, virtio-rng is
not able to provide entropy to bootloaders or initialize the
CSPRNG at early stages of the Linux boot process. As shown
in figure 4, virtio-rng is only able to provide entropy approx-
imately after 360 ms, and therefore is not able to provide
entropy to previous Linux components requiring it. Table 3
shows the detailed list of those components. In our experi-
ments 63.63% of the functions were not satisfied by virtio-rng
when it was compiled as a built-in, but this number reached
75.75% when it was compiled as a module.

A. SPATIAL OVERHEAD
E-Boot introduces a negligible spatial overhead. The code
added to the Linux kernel is simple and small. The
pre-reserved areas increase the size of the generated kernel
image file. The increment is caused by the addition of the
E-Boot section in both images, boot-loader and kernel, which
are statically allocated. This overhead is the sum of the header
(4 bytes) plus the number of random bytes required.

Table 4 shows the spatial overhead in bytes. In our imple-
mentation, we use 36 bytes for the boot-loader (4 bytes for the
header + 32 for random data) and 20 bytes for the E-Boot
area of the Linux kernel (4 bytes for the header + 16 for
random data). Note that the bootloader does not consume the
32 bytes but it contains the 16 bytes of random data of the
Linux kernel.

The spatial overhead of the boot-loader is 68 bytes, includ-
ing the 36 bytes of the E-Boot area. The overhead of the
implementation is 316 bytes for the kernel image, including
the 36 bytes of the E-Boot area. Therefore, the total spatial
cost of the E-Boot areas including the code necessary to
implement the E-Boot is 440 bytes, which is less than 0.01%
of overhead.

Although the overhead is negligible, we implemented
E-Boot within the init sections to ensure that the memory is
freed after the kernel is booted. Therefore, the actual memory
overhead when Linux is running is zero.

B. TEMPORAL OVERHEAD
The temporal overhead introduced by E-Boot is almost neg-
ligible. Our experiments showed that 2 µs is the total time
overhead when we add the boot-loader and the kernel over-
head introduced by E-Boot.

TABLE 5. Detailed temporal overhead of the E-Boot implementation,
showing time in nanoseconds.

The temporal overhead introduced by E-Boot slightly
affects the latency of the virtual machine start-up, includ-
ing the hypervisor and the guest kernel. However, once
the guest is booted, the run-time cost is zero, since the
code and the memory used are freed. The implementa-
tion of E-Boot introduces overhead in the following parts.
1) In the hypervisor, when it parses the guest image file
to locate the E-Boot section. 2) In the hypervisor, when it
populates the pre-reserved area with random data. 3) In the
boot-loader, when it accesses to the pre-reserved memory
region containing the random values to load two 8-byte values
for kernel randomization. 4) In the bootloader, after kernel
decompression the kernel image file is parsed to locate its
E-Boot section. 5) In the bootloader, when it copies the
remaining entropy to the kernel pre-reserved memory region.
6) Finally, in the kernel, whet it accesses to the 16 random
bytes to feed its internal CSPRNG.

After running one million different executions of each of
the above parts, as table 5 shows, we obtained a total overhead
of about 2 µs. The hypervisor overhead is around 1.2 µs and
for the guest is around 826 ns. The kernel only performs a
simple load and write operation and its overhead is 90 ns.
Therefore, we can conclude that the total temporal overhead
introduced by E-Boot is negligible.

C. ENTROPY ASSESSMENT
In virtualization technologies, the hypervisor must be trusted
by design. Likewise, E-Boot relies on the hypervisor’s ability
to provide quality entropy through the pre-reserved area.
Consequently, it is the hypervisor’s responsibility to ensure
the quality of the entropy provided. However, the design
of E-Boot contemplates the scenario where the hypervisor
cannot provide entropy to their guests. The guests will use the
entropy provided by the hypervisor only if the hypervisor set
the proper flag that will be later read by the virtual machine.

Therefore, there is no risk or necessity to assess the entropy
generated by the hypervisor. In our implementation we use
the entropy provided by E-Boot directly to feed the CSPRNG
of Linux. To ensure that this process is correct and we are
not introducing any weakness into the CSPRNG of Linux,
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TABLE 6. NIST statistical tests results showing the p-values and the
proportion of passing sequences, with a significance level α = 0.01. The
total data size is 2.91 GiB, consisting of 1000 samples of 25 ∗ 106 random
bit-streams each. To pass a test, the p-value must be at least α, and the
proportion of passing sequences must be at least 0.980.

we have assessed its output using the NIST Statistical Test
Suite (STS) [108].

The null hypothesis is that the Linux random number
generator in the guest virtual machines is working correctly
after seeding it with the E-Boot provided entropy. For this
tests, we have executed 1000 virtual machine instances pro-
viding different random values in the pre-reserved area. After
seeding and initializing the guest random number generator,
we extracted 25 millions of random bits from each virtual
machine execution.

Table 6 presents the empirical results of the NIST’s STS,
showing that all tests were passed successfully and con-
firming the null hypothesis. P-values of different sub-tests
(e.g., Non-Overlapping Template) have been combined using
the Fisher’s method [109]. The obtained results confirm
that E-Boot is not introducing weaknesses in the guest’s
randomness generation.

X. CONCLUSION
In this paper, we analyzed the boot-time entropy starvation
problem and how it affects bootloaders, operating systems
and userspace applications. We analyzed the Linux kernel
boot process, revealing that the problem not only affects user-
land applications but up to 33 kernel functions were weakly
fed by random numbers.

To overcome this problem, we proposed E-Boot, a novel
technique that provides high-quality random numbers to
guest virtual machines. E-Boot is the first technique that
completely satisfies the entropy demand of virtualized boot-
loaders, early boot stages of operating systems and userland
applications.

We have implemented E-Boot in Linux v5.3 and our exper-
iments showed that it effectively solves the boot-time entropy
starvation problem. Our proposal successfully feeds boot
time Linux kernel hardening techniques and also reduces to
zero the number of userspace blocks and delays. The evalua-
tion results showed that the total time overhead introduced by
E-Boot is around 2 µs and has zero memory overhead since

thememory is freed before the kernel boot ends, whichmakes
E-boot a practical solution for cloud systems.
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