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ABSTRACT A novel trajectory-shaping guidance law with impact angle constraint is proposed for attacking
stationary targets in a three-dimensional environment. The guidance concept, derived from the inverse
dynamic method, is to design an analytical curve trajectory satisfying the impact angle in advance and
obtain reasonable control commands. The vehicle motion is decomposed in the horizontal and vertical planes
of the inertial coordinate system. Firstly, the trajectory in the vertical plane is designed as ellipse, which
can be shaped by adjusting its axis direction. An improved sliding mode control (SMC) method, which
adds position-dependent correction to the weight in sliding mode surface, is adopted to track the nominal
trajectory. Therefore, the vehicle approaches the ellipse quickly and smoothly in the early stage and hits the
stationary target accurately. Secondly, a third-order Bézier curve with adjustable parameters is employed
as the prior nominal trajectory in the lateral plane. When the vehicle deviates from the original trajectory
due to perturbation or self-limitation, it will turn to the updated curve in real time according to its own
condition. Moreover, coupling of acceleration commands in the two planes is resolved through acceleration
decomposition, which qualifies independent trajectory design in two planes and paves a new way to more
curve combinations. Nominal testing and Monte Carlo simulations on the proposed method are carried out.
Simulation results demonstrate that the proposed guidance law is highly designable and strongly robust.

INDEX TERMS Hypersonic vehicle, geometric guidance, elliptic guidance, descent guidance.

I. INTRODUCTION
In terminal guidance, the basic goal for a missile or vehicle is
to achieve a near-zero miss distance. Since the impact angle
has large ramifications on kill performance, maneuvering
ability, cooperative strike, etc., a specific impact angle is
usually required in advanced guidance law designs.

Plenty of techniques have been suggested for the design of
guidance algorithms, and proportional navigation guidance
(PNG) is a classical guidance law. True PNG, which means
the acceleration command is perpendicular to the line of sight
(LOS), is variously ameliorated to achieve specific impact
angle or flight time. A common refinement is to add a bias
term to PNG, so that the impact angle can be attained under
the premise of zero miss distance. Such bias is diverse and
can be selected according to constraints. In [1], Kim proposed
the bias proportional navigation guidance (BPNG) to realize
desired impact angle and verified its optimality. In [2], Erer
and Merttopçuoĝlu deduced the intercept angle increment
caused by the bias, and divided a trajectory into two stages.

The associate editor coordinating the review of this manuscript and
approving it for publication was Xiwang Dong.

When the terminal angle caused by integrated bias is equal
to the desired angle, an unbiased PNG is adopted instead.
In [3], an exponential bias is applied when the field-of-view
(FOV) and acceleration constraints are employed. However,
these two-stage BPNG methods are prone to generate abrupt
acceleration commands. Park [4] deduced the terminal impact
angle of PNG, and essentially constructed the state feedback
contributing to smoother acceleration commands. Another
refinement is to choose appropriate proportional gains, which
can be piecewise or time-varying. In [5], Ratnoo and Ghose
designed an orientation trajectory for initial phase with navi-
gation gain N < 2. Although the acceleration risks being dis-
continuous, the missile can switch to N ≥ 2 to achieve
any desired impact angle averting singularity phenomenon.
Considering the FOV and acceleration constraints, more
methods for selecting gains are listed in [6], [7]. In [8],
Liu et al. combined the optimal control and the PNGmethod,
and solved this optimal control problem by numerical
method. As a result, an off-line closed-loop gain optimization
strategy was proposed. Although PNG and its modifications
are simple in form, most of these methods inevitably rely on
the measurement of LOS angle and its rate.
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Optimal guidance (OG) laws have attracted extensive inter-
est due to minimum energy and multiple constraints. Assum-
ing small deviations from a collision triangle, most of OG
are developed by solving linearizing equations near the LOS.
Kim and Grider [9] seems to be the first to propose the linear
quadratic optimal guidance (LQOG) problem, and applied
Riccati equation to solve the feedback gain for constrained
angle requirement. In [10], Ryoo et al. proposed the opti-
mal impact angle guidance law for lag-free and first-order
autopilot. By using the third-order polynomial of range-to-go
to express the optimal trajectory, a more accurate estimation
of time-to-go is given to improve the accuracy of OG. In [11],
Shaferman and Shima proposed the LQOGwith known target
maneuver and further developed a linear quadratic differen-
tial game guidance law assuming optimal target maneuver.
However, the linear equation under the assumption of small
deviation is not always applicable to the actual engagement
scenario, so various simple restrictions are employed. In
[12], [13], the nonlinear feedback for quasilinear equation
is obtained by solving the state-dependent Riccati equation
(SDRE), and any impact angle can be achieved in spe-
cific rotated frame. In [14], Taub and Shima proposed fast
feedback solutions under time-varying acceleration bounds.
In [15], [16], Park et al. considered the FOV constraint,
and divided the trajectory into three segments according
to whether the equation constraint are satisfied. Unlike the
piecewise navigation gain for PNG, acceleration command
in each segment is solved by the optimal control. In [17],
the optimal trajectory with the impact angle requirement can
be refined to achieve desired time by compensating for the
time-to-go prediction error. In general, the optimal control
method can ensure the optimal maneuvering under differ-
ent conditions and analytical solutions for linear system are
beneficial for on-line planning. Nevertheless, the optimiza-
tion often requires high accuracy in modeling and measure-
ment or estimation of various states, which makes it difficult
to implement the guidance law.

As mentioned above, to deal with complex engagement
modeling problem, nonlinear control can also be applied to
devise guidance law. The common goal is to enforce both
terminal LOS angle and its derivative to zero. The classical
SMC method, which does not strictly necessitate a linear
differential equation, can generate effective feedback control.
In [18], Kumar et al. proposed nonsingular terminal slid-
ing mode control (TSMC) that averts the terminal singular
phenomenon. In [19], SMC method with FOV constraints
is presented, which avoids the abrupt acceleration command
like two-stage BPNG. In [20], sliding mode surfaces are
constructed for both impact angle and time, and the sta-
bility conditions are obtained applying Lyapunov candidate
functions. Besides, the superiority of SMC is that it can
track the unsuspected acceleration of the target in terms of
disturbance. In [21], Xiong et al. estimated the acceleration of
the target with a linear extended state observer in TSMC, and
performed excellent with respect to constant and sinusoidal
maneuver. Zhang et al. [22] similarly exploited nonlinear

disturbance observer in integral sliding mode control. In [23],
Ji et al. used adaptive sliding mode control to estimate dis-
turbance, and developed a continuous finite-time convergent
robust guidance law in a three-dimensional environment.
Other methods like feedback linearization in [24] and non-
linear mapping in [25] can also be employed for nonlinear
control to realize the desired impact angle. Although the non-
linear control method cannot obtain an optimal solution, it is a
more suitable trajectory planning method. Most importantly,
high precisionmay be guaranteedwhen the target information
is unknown.

The emerging guidance idea is prior design, which can
devise the guidance law satisfying partial constraints in
advance. Especially in guidance laws considering impact
time, this idea is often applied by constructing the control
related to the time-to-go. Therefore, a common prior design
is to design acceleration command in advance. In [26], Kim
et al. designed the acceleration as the time-to-go polynomial,
which is optimal for lag-free system when the parameters
are selected properly. In [27], three variables are used to
construct augmented polynomials feedback satisfying the
constraints of miss distance, impact angle and impact time
simultaneously. Another prior design in trajectory-shaping
is the inverse dynamic method, that is, to design trajectory
in advance and deduce the control commands in reverse.
Yakimenko [28], Yakimenko and Lukacs [29] designed the
nominal trajectory in polynomial form and transformed it
into a nonlinear optimization problem by inverse dynamics
and obtained the suboptimal solution. Naghash et al. [30]
designed Bézier curve trajectory under the constraint of
acceleration and optimized parameters to maximize the ter-
minal velocity. In [31], [32], Zhou applied neural network
and secant method respectively to determine Bézier curve
parameters satisfying impact angle and terminal velocity
constraints. In [33], a circular trajectory could be updated
by controlling LOS angle equal to the approach-angle error.
Yoon [34] further proposed a relative circle guidance method
for tracking moving target.

Most of the traditional guidance laws may be summa-
rized as two-point guidance laws, which means the informa-
tion between vehicle and target is required. In consequence,
the implementation of guidance law depends on the measure-
ment or estimation of complex parameters, such as time-to-
go, LOS angle and its rate. In [35], Tsalik and Shima proposed
the concept of three-point guidance, that is, launcher, missile
and target are on the circular trajectory satisfying the impact
angle constraint. In [36], this method is extended to attack
moving target. Although the circular trajectory is generated
in real time, the circle satisfying the constraints is unique. In
[37], a nominal elliptical trajectory and the normal accelera-
tion along it in the rotated frame are proposed, but the rotation
angle is specific corresponding to flight path angle. In [38],
Livermore developed the elliptic guidance law into a three-
point guidance concept and applied a proportional–integral–
derivative (PID) controller to track the ellipse. In conclusion,
the three-point guidance concept is simple to implement and
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suitable for trajectory planning. In essence, the concept of
three-point guidance also utilizes the idea of inverse dynam-
ics, except that control methods may be employed to track
nominal trajectory. For the sake of simplicity, we refer to
these methods of designing trajectories adopting properties
of geometric curves as geometric guidance.

In this paper, a novel geometric guidance method in three-
dimensional scenario is proposed for bank-to-turn hypersonic
vehicle. The difficulty lies in the fact that when the ver-
tical or lateral acceleration changes signs, the bank angle
needs to be reversed quickly. However, the existence of con-
straints imposed on bank angle and its derivative limits lateral
maneuver, so it is vital to adapt to the reversal bank angle
requirement. As a result, a smooth geometric trajectory is
designed in advance to achieve desired impact angle. The
motion in vertical plane is to track elliptical trajectory, which
is partly derived from [38], but the judgmentmethod of ellipse
existence is exactly given. To avoid undesired acceleration
commands which frequently change signs, an improved SMC
method based on a position-dependent weight is developed.
The trajectory in lateral plane is a real-time updated Bézier
curve, which can accommodate reversed bank angle com-
mands and converge to desired impact direction. Nominal
testing and 500-runMonte Carlo simulations on the proposed
method are carried out.

The rest of paper is structured as follows: Section II
presents the problem formulation for hypersonic vehicle
descent guidance; Section III gives the derivation of the
geometric guidance law and the complete guidance process;
Section IV provides the simulation results to demonstrate the
performance of the proposed method; Section V gives the
conclusion.

II. PROBLEM FORMULATION
A. DESCENT DYNAMICS
Descent of a hypersonic vehicle is generally short in terms of
range covered. As such, guidance law is developed assuming
a flat earth and point mass vehicle. The dynamic equation can
be formulated as

ẋ = V cos γ cosψ, ẏ = V sin γ, ż = −V cos γ sinψ

γ̇ =
L cos σ
mV

−
g cos γ
V

, ψ̇ = −
L sin σ
mV cos γ

V̇ = −
D
m
− g sin γ (1)

where, V is the velocity, γ is the flight path angle, ψ is the
heading angle which is measured clockwise from the x-axis,
σ is bank angle, and x, y, z are the position coordinates of the
vehicle. L and D are aerodynamic lift and drag forces, which
can be represented as

L =
1
2
ρV 2CLSref , D =

1
2
ρV 2CDSref (2)

where, ρ is the local atmospheric density, Sref is the reference
area. The terms, CL and CD, are the lift and drag coefficients,
which can be simplified as

CL = fL (Ma, α), CD = fD (Ma, α) (3)

where,Ma is Mach number, α is angle of attack. In this paper,
the two functions fL , fD are analytic functions after fitting,
so the inverse functions can be obtained.

B. DESCENT TRAJECTORY CONSTRAINTS
Remark: In this paper, L, M , T represent ‘‘launch point’’,

missile (or vehicle) and stationary target respectively, where
‘‘launch point’’ can be a selected point in terminal guidance.
Variables with subscripts ’’L’’ and ’’T ’’ represent the desired
state of the missile (or vehicle) at the launch point and the
target point, rather than the movement of the two fixed points.
Except for normal overload n⊥, all variables with ‘‘⊥’’ in the
subscript represent projections in xy plane, while those with
‘‘H ’’ are projections in xz plane (i.e., the horizontal plane).
All variables in the rotated reference frame are denoted with
prime superscript. Variables with ‘‘new’’ in the subscript are
updated to simulate new Bézier curve.

Initial and terminal state constraints are formulated as
x (t0) = xL , y (t0) = yL , z (t0) = zL
V (t0) = VL , γ (t0) = γL , ψ (t0) = ψL (4)

x
(
tf
)
= xT , y

(
tf
)
= yT , z

(
tf
)
= zT

γ
(
tf
)
= γT , ψ

(
tf
)
= ψT (5)

The constraints imposed on the control and control deriva-
tives are expressed as

αmin ≤ α ≤ αmax, |α̇| ≤ α̇max

σmin ≤ σ ≤ σmax, |σ̇ | ≤ σ̇max (6)

where α is the angle of attack, the terms, αmin, αmax, σmin,
σmax, α̇min and α̇max are all given constant values.
The constraint imposed on normal load is shown in (7).

|n⊥| ≤ n⊥max (7)

III. GEOMETRIC GUIDANCE LAW
In this section, the vehicle motion is decomposed in the
horizontal plane (xz plane) and the vertical plane (xy plane),
and the nominal trajectory in each plane is designed inde-
pendently. It is worth noting that the vertical plane is fixed
with the coordinate system, rather than the plane including
velocity vector. The nominal trajectory in xy plane is an
ellipse, and an SMC tracking strategy is adopted. Thismethod
can effectively achieve tiny miss distance and avoid frequent
reversal bank angles. The trajectory in xz plane is a real-
time updated third-order Bézier curve, which adapts well
to control constraints and accepts more flexible maneuvers.
Fig.1 shows the design method of three-dimensional geomet-
ric trajectory.

A. ELLIPTIC GUIDANCE LAW
1) ELLIPTICAL TRAJECTORY DESIGN
A qualified elliptical trajectory needs to pass through
two stationary points, L⊥, T⊥, and the corresponding tan-
gent direction should be consistent with vector VL⊥ and
VT⊥. Assuming an elliptical trajectory exists, in general,
Fig.2 shows the trajectory if the vehicle strikes the target
clockwise.
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FIGURE 1. Three-dimensional geometric trajectory.

FIGURE 2. Elliptical trajectory in clockwise direction.

FIGURE 3. Several irrational design scenarios.

The distribution of three representative target points T1⊥,
T2⊥ and T3⊥ on the ellipse is given, and desired terminal
velocity vectors are VT1⊥, VT2⊥ and VT3⊥. When there is an
intersection between the desired launch velocity and terminal
velocity (likeC1,C3 in Fig.2), only one velocity vector points
to the intersection. Otherwise, the terminal velocity is parallel
and reverse to the launch direction (like T2⊥ in Fig.2). There-
fore, Fig.3 shows several classical scenarios where elliptical
trajectory design will fail.

FIGURE 4. Nominal elliptical trajectory in rotated reference frame.

In this paper, an ellipse whose main axis is parallel to a cer-
tain axis of the reference frame is called a ‘‘standard ellipse’’.
The ‘‘standard ellipse’’ equation is solved at a specific rota-
tion angle in [37], [38], that is, the flight path angle at the
launch point or the target point, without a general analytical
expression. In fact, there is at most one ‘‘standard ellipse’’
after an arbitrary rotation angle is determined. The nominal
elliptical trajectory in rotated reference frame is displayed in
Fig.4.

In Fig.4, am is the normal acceleration required, at is the
tangential acceleration, λ is the rotation angle of elliptical
axis measured clockwise from the x-axis. The terms, a and
b are the lengths of two semi-axis. The rotation coordinate
relationship is represented as

x ′i = xi cos (λ)+ yi sin (λ)
y′i = −xi sin (λ)+ yi cos (λ)
γ ′i⊥ = γi⊥ − λ

, i = L/T (8)

The ‘‘standard ellipse’’ in the rotated reference frame is
formulated as(

x ′ − x ′0
)2/a2 + (y′ − y′0)2/b2 = 1 (9)

The tangent slope at any point
(
x ′, y′

)
on the ellipse can be

expressed as:

tan γ ′ = −b2
(
x ′ − x ′0

)/(
a2
(
y′ − y′0

))
(10)

When the parameter λ is determined, the elliptical trajec-
tory parameters to be solved are a, b, x ′0 and y′0. Assuming
infinite tangent is allowed, the problem is to solve (11) and
(12). (

x ′L − x
′

0

)2/a2 + (y′L − y′0)2/b2 = 1(
x ′T − x

′

0

)2/a2 + (y′T − y′0)2/b2 = 1 (11)

tan γ ′L⊥ = −b
2
(
x ′L − x

′

0

)/(
a2
(
y′L − y

′

0

))
tan γ ′T⊥ = −b

2
(
x ′T − x

′

0

)/(
a2
(
y′T − y

′

0

))
(12)
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FIGURE 5. The change of judgment variable 1 with λ under different
strike conditions.

To simplify the equation, the parametric equation is
adopted as follows{
x ′L = a sin θ + x ′0, y′L = b cos θ + y′0
x ′T = a sinβ + x ′0, y′T = b cosβ + y′0

, θ, β ∈ [0, 2π)

(13)

Substituting (13) into (12) yields the following algebraic
equation

−
(
b
/
a
)
tan θ = tan γ ′L⊥, −

(
b
/
a
)
tanβ = tan γ ′T⊥ (14)

So far, the original problem is transformed into solving
(13) and (14), and the parameters to be solved are a, b, θ ,
β, x ′0 and y′0.In the case of x ′L = x ′T or y′L = y′T , (13) leads
to a simple conclusion, i.e.,

∣∣tan γ ′L ∣∣ = ∣∣tan γ ′T ∣∣, so that it is
easy to judge whether a qualified elliptical trajectory exists.
Therefore, the derivation in the following paper is based on
x ′L 6= x ′T , y

′
L 6= y′T , and naturally

∣∣tan γ ′L ∣∣ 6= ∣∣tan γ ′T ∣∣. After
rearrangement, the simultaneous equation of (13) and (14) is
formulated as

x ′L − x
′
T

y′L − y
′
T
= −

a2

b2
tan γ ′L⊥

/
cosβ − tan γ ′T⊥

/
cos θ

1
/
cosβ − 1

/
cos θ

(15)

In terms of (14), (15) can be converted into an equation
about a/b, but the signs of cosβ and cos θ expect to be
identified. However, after verifying each case, the signs do
not affect the solution as (16), as shown at the bottom of this
page, where λLT denotes the LOS angle between the launch
point and the target in xy plane. Therefore, if and only if
1 > 0, the ellipse exists and is unique. When 1 = 1, the

elliptical trajectory degenerates into a circle. Then, (14) can
be simplified as

tan θ = −
√
1 tan γ ′L , tanβ = −

√
1 tan γ ′T (17)

Two simple inequality properties can be obtained by
observing (13) and rearranging (17) as follows|sin θ | > |sinβ| , if

∣∣tan γ ′0∣∣ > ∣∣∣tan γ ′f ∣∣∣
|sin θ | < |sinβ| , if

∣∣tan γ ′0∣∣ < ∣∣∣tan γ ′f ∣∣∣ (18)

a =
(
x ′L − x

′
T
)/
(sin θ − sinβ) > 0,

b =
(
y′L − y

′
T
)/
(cos θ − cosβ) > 0 (19)

It can be concluded from (18) and (19) that the sign of a
sine or cosine of θ and β can be determined as follows

sin θ < 0, if x ′L < x ′T
sin θ > 0, if x ′L > x ′T
cosβ > 0, if y′L < y′T
cosβ < 0, if y′L > y′T

 if
∣∣tan γ ′0∣∣ > ∣∣∣tan γ ′f ∣∣∣

cos θ < 0, if y′L < y′T
cos θ > 0, if y′L > y′T
sinβ > 0, if x ′L < x ′T
sinβ < 0, if x ′L > x ′T

 if
∣∣tan γ ′0∣∣ < ∣∣∣tan γ ′f ∣∣∣

(20)

According to (17) and (20), the unique solution of θ and β
in interval [0, 2π) can be obtained. Then, all ellipse parame-
ters can be solved by (13) and (19).

Fig.5 depicts the change of judgment variable 1 in (16)
when γT⊥ = −90 deg and the sampling interval is 0.02π .
Apparently, it seems difficult to give an accurate range of λ
from (16) with 1 > 0, not to mention that there may not be
an ellipse as shown in Fig.3. This phenomenon hinders the
strategy of real-time updating ellipse, so that this paper adopts
an effective tracking method. However, as shown in Fig.5,
a continuous and effective interval of λmay be easy to obtain
in some cases. Since 1 is only determined by four angles λ,
λLT , γL⊥ and γT⊥, it is advisable to make an effective interval
table of λ according to these angles.

To show the design effect of elliptical trajectory, a series
of desired trajectories with launch point at (0 km,30 km) and
target point at (100 km,0 km) are shown in Fig.6 and Fig.7.
Fig.6 shows a series of trajectories with rotation angle λ = 0
deg, and various desired trajectory properties are shown
in Table 1. It is apparent that the ellipse design adapts to vari-
ous conditions even under a fixed rotation angle. Fig.7 shows
the effect of λ on elliptical trajectories when γL⊥ = 20
deg and γT⊥ = −90 deg. Obviously, the only degree of
freedom left, λ, shapes the elliptical trajectory substantially.

1 = 1(λ, λLT , γL⊥, γT⊥) = a2
/
b2

=
sin
(
γ ′L⊥ + γ

′

T⊥

)
− 2 tan

(
λ′LT

)
cos

(
γ ′L⊥

)
cos

(
γ ′T⊥

)
tan2

(
λ′LT

)
sin
(
γ ′L⊥ + γ

′

T⊥

)
− 2 tan

(
λ′LT

)
sin
(
γ ′L⊥

)
sin
(
γ ′T⊥

) (16)
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FIGURE 6. Elliptical trajectories when λ = 0 deg.

FIGURE 7. The effect of λ on elliptical trajectories.

TABLE 1. Desired trajectory properties for Fig. 6

In a nutshell, even though there is only one design parameter,
the elliptical trajectory can be greatly adjusted.

2) IMPROVED SLIDING MODE GUIDANCE LAW
Inspired by [38], this paper guarantees the tracking effect
by enforcing the sum of the distance between the vehicle
and two foci constant. This simple guidance concept is the
reason why the ellipse is chosen as a nominal trajectory.
However, the PID control method does not adapt well to
disturbance, because suitable general parameters may be dif-
ficult to obtain. Besides, PID tends to generate acceleration
commands changing signs frequently, which leads to reverse
bank angle requirement. Therefore, SMC is applied to ensure
the stability of this nonlinear system.

FIGURE 8. Elliptical trajectory tracking method.

The method for the vehicle to track the elliptical trajectory
is displayed in Fig.8. The distances between the vehicle to
foci f1 and f2 are marked as d1 and d2, respectively.

The foci f1
(
x ′1, y

′

1

)
and f2

(
x ′2, y

′

2

)
are defined in rotated

reference frame as
c =

√∣∣a2 − b2∣∣
x ′1 = x ′0 + c, x

′

2 = x ′0 − c, y′1 = y′2 = y′ (ifa ≥ b)
y′1 = y′0 + c, y

′

2 = y′0 − c, x ′1 = x ′2 = x ′0 (ifa < b)

(21)

To apply SMC method, the desired signal yd (t) and track-
ing signal yt (t) are chosen as

yd (t) = 2max {a, b}

yt (t) = d1(t)+ d2(t) (22)

Any order derivative of the constant desired signal is zero,
then of course, ÿd (t) = ẏd (t) = 0. The common sliding
surface and the corresponding reaching law are designed as{

S = (ẏt − ẏd )+ ν (yt − yd )
Ṡ = −εsat(S/φ)− KS

, ε, ν,K , φ > 0 (23)

where, ν, ε and K are weights. Saturation function sat(x) is
defined as

sat(x) =

{
x, |x| ≤ 1
sgn(x), |x| > 1

(24)

When ν approaches infinity, only the tracking error is con-
sidered, and the error on the sliding surface is zero. However,
if ν is chosen too large, the trajectory will vibrate seriously
in the early stage of terminal guidance, especially under the
limited condition (6). If ν is too small, the tracking effect
cannot be guaranteed. Therefore, (23) can be improved by
steadily increasing the weight ν over time. Nominal trajectory
determined in advance, the position can also be adopted to
adjust the weight ν.
After added the power form weight correction term,

the improved sliding surface is defined as

S= ẏt−ẏd+
(
ν+υ(x−x0)p

/(
xf −x0

)p)
(yt−yd ) (25)
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The derivative of sliding surface is expressed as

Ṡ = d̈1 + d̈2 +
(
ν + υ(x − x0)p

/(
xf − x0

)p)
(ẏt − ẏd )

+ υpẋ(yt − yd ) (x − x0)p−1
/(

xf − x0
)p (26)

where
di=

√(
x ′−x ′i

)2
+
(
y′−y′i

)2
ḋi=

(
ẋ ′
(
x ′−x ′i

)
+ẏ′

(
y′−y′i

))/
di

d̈i=
(
V 2
⊥
−ḋ2i +ẍ

′
(
x ′−x ′i

)
+ ÿ′

(
y′−y′i

))/
di

, i=1, 2

(27)

In terms of geometric properties, the first and second
derivatives of x ′ and y′ can be expressed as

ẋ ′ = V⊥ cos γ ′⊥, ẍ ′ = −am sin γ ′
⊥
− at cos γ ′⊥

ẏ′ = V⊥ sin γ ′⊥, ÿ′ = +am cos γ ′
⊥
− at sin γ ′⊥ (28)

A notable property is that the tangential acceleration affects
the velocity and the normal acceleration affects the trajectory
shape. In fact, in case of small disturbance, the velocity vector
approximately follows tangent direction of the dotted ellipse
in Fig.8. If normal acceleration is appropriate, the vehicle
moves approximately along the dotted ellipse, so the influ-
ence of at on yt (t) can be ignored.

Substituting (28) into (27) and ignoring the tangential
acceleration leads to the following equation.

ÿt (t) = d̈1 + d̈2

≈

(
V 2
⊥
− ḋ21

)/
d1 +

(
V 2
⊥
− ḋ22

)/
d2

−
((
x ′ − x ′1

)/
d1 +

(
x ′ − x ′2

)/
d2
)
sin γ ′

⊥
am

+
((
y′ − y′1

)/
d1 +

(
y′ − y′2

)/
d2
)
cos γ ′

⊥
am (29)

When (29) is substituted, (26) can be simplified as

Ṡ ≈ bam − kamam (30)

where, the terms bam, cam and kam are defined as

bam =
(
V 2
⊥
− ḋ21

)/
d1 +

(
V 2
⊥
− ḋ22

)/
d2

+
(
ν + υ(x − x0)p

/(
xf − x0

)p) (ḋ1 + ḋ2)
+υpẋ(yt − yd ) (x − x0)p−1

/(
xf − x0

)p
kam =

((
x ′ − x ′1

)/
d1 +

(
x ′ − x ′2

)/
d2
)
sin γ ′

⊥

−
((
y′ − y′1

)/
d1 +

(
y′ − y′2

)/
d2
)
cos γ ′

⊥
(31)

To reduce the acceleration vibration, the approach velocity
of the sliding surface is also weighted in the form of power.
A novel reaching law is chosen as

Ṡ = −εsat(S/φ) (x − x0)p
/(
xf − x0

)p
− KS (32)

To prove its stability, Lyapunov function is chosen as

VS = 0.5S2 ≥ 0 (33)

The time derivative of VS along (32) is

V̇S = SṠ

= −ε(x − x0)p
/(
xf − x0

)pSsat(S/φ)− KS2
= −ε(x − x0)p

/(
xf − x0

)pmin
(
S2/φ, |S|

)
− KS2

≤ 0 (34)

The reaching speed can be estimated as
V̇S ≤ −ε

(
x − x0
xf − x0

)p
φ − Kφ2, if VS ≥ 0.5φ2

V̇S = −2
(
ε

φ

(
x − x0
xf − x0

)p
+ K

)
VS , if VS < 0.5φ2

(35)

Obviously, the Lyapunov function will converge in finite
time, and so will the sliding mode. Based on (32) and (35),
(25) the significance and selectionmethod of these six param-
eters can be concluded as
ν, υ, p: These three positive parameters are designed to

adjust time constant of the first-order system in (25) when
S = 0. The improved form allows large errors in the early
stage and accurate terminal miss distance.
ε, K , p: Similarly, these parameters are applied to adjust

the dynamic characteristics of system in (32).
φ: This parameter limits the reaching speed caused by

excessive sliding mode, and thus improves the stability of the
system.

Apparently, substitute (32) into (30) and rearrange it, nor-
mal acceleration can be expressed as

am =
ε(x − x0)p

/(
xf − x0

)psat(S/φ)+ KS + bam
kam

(36)

where, positive parameters ε, φ, K , υ, ν and p are selected
according to aerodynamic models and simulation conditions.
Under small disturbance, the effect of normal acceleration
on distance adjustment always exists, so there is no singular
phenomenon, i.e., kam 6= 0.

B. BÉZIER CURVE GUIDANCE LAW
In the early 1960s, Bézier curve was developed by Pierre
Etienne Bézier and Paul de Faget de Casteljau. Bézier curve
is defined as a spline function represented by polynomials
on interval [0,1]. The trajectory shape can be adjusted by
rearranging interpolation points, so it is widely employed in
trajectory planning [28]–[32]. In [39], an standard definition
of n-order Bézier curve is given as

P (τ ) =
n∑
i=0

BiJn,i (τ ), τ ∈ [0, 1] (37)

where Bi are chosen weights and function Jn,i (τ ) are defined
as

Jn,i (τ ) =
n!

i! (n− i)!
τ i (1− τ)n−i (38)

The r-th derivative of Bézier curve is formulated as

d rP (τ )
/
dτ r =

(
n!
/
(n− r)!

) n−r∑
i=0

1rBiJn−r,i (τ ) (39)
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FIGURE 9. Third-order Bézier curve trajectory.

where{
10Bi = Bi
1kBi = 1k−1Bi+1 −1k−1Bi

, k = 1, 2 · · · r (40)

From (39) and (40), an sufficient and unnecessary condi-
tion for monotonicity of function P are formulated as follows{
∀i,Bi+1 − Bi > 0⇒ dP

/
dτ > 0

∀i,Bi+1 − Bi < 0⇒ dP
/
dτ < 0

, i = 0, 1 · · · n− 1

(41)

When the n-order Bézier curve is used to define an trajec-
tory in xz plane, weights are selected as

Bix =


xL , i = 0
xT , i = n
xi, 0 < i < n

, Biz =


zL , i = 0
zT , i = n
zi, 0 < i < n

(42)

where Bix and Biz are weights for x and z coordinates, respec-
tively. A third-order Bézier curve trajectory is depicted by
Fig.9 in which ψL , ψT ∈ (−0.5π, 0.5π).
To achieve the desired impact angle, the coordinates of the

interpolation point are defined as follows

x1 = xL + k1 (xT − xL) , z1 = zL + tan (−ψL) (x1 − xL)

x2 = xL + k2 (xT − xL) , z2 = zT − tan (−ψT ) (xT − x2)

(43)

where k1 and k2 are adjustable parameters. From (37), (38)
and (42), the curve is eventually formulated as:{
x=(1−τ)3 xL+3τ (1−τ)2 x1+3τ 2 (1−τ) x2+τ 3xT
z=(1−τ)3 zL+3τ (1−τ)2 z1+3τ 2 (1−τ) z2+τ 3zT

(44)

where τ = 0 represents the starting point of the trajectory, and
τ = 1 represents the end. Without loss of generality, suppose
xL < xT . To map x to τ , there should be dx

/
dτ > 0. From

(41), that is, k1 < k2. The first and second derivatives of the
third-order Bézier curve with respect to τ are as follows

dx
dτ
= −3

(
(1− τ)2 xL −

(
3τ 2 − 4τ + 1

)
x1

+

(
3τ 2 − 2τ

)
x2 − τ 2xT

)

dz
dτ
= −3

(
(1− τ)2 zL −

(
3τ 2 − 4τ + 1

)
z1

+

(
3τ 2 − 2τ

)
z2 − τ 2zT

)
(45)

d2x
dτ 2
= 6 ((1− τ) xL + (3τ − 2) x1 + (−3τ + 1) x2 + τxT )

d2z
dτ 2
= 6 ((1− τ) zL + (3τ − 2) z1 + (−3τ + 1) z2 + τ zT )

(46)

Radius of curvature ρn and lateral acceleration azn are
defined as

ρn =

(
1+

(
dz
dx

)2
)1.5/

d2z
dx2

, azn =
V 2
H

ρn
(47)

where

d2z
dx2
=
d
( dz
dx

)/
dτ

dx
/
dτ
=

(
d2z
dτ 2
·
dx
dτ
−
d2x
dτ 2
·
dz
dτ

)/(
dx
dτ

)3

(48)

The online updating strategy given in this paper is to ensure
vehicle hits the target along the nominal trajectory when
undisturbed. The preconditions for updating the trajectory are
shown in (49) and (50).

xL,new ≡ xL , xT ,new ≡ xT
x1,new ≡ x1, x2,new ≡ x2 (49)

z2,new ≡ z2, zT ,new ≡ zT
τnew ≡ τ = τ (x) (50)

Apparently, the properties of the updated and previous
trajectories on the x-axis are identical, and the monotonicity
of (41) remains.

The method of updating the trajectory is shown in Fig.10.
The updated Bézier curve is determined by LH ,new, P1,new,
P2 and T , which satisfies the constraint of zero miss distance
and desired impact angle. According to the current position
MH (x, z) and the heading angle ψ , interpolation points can
be updated. Therefore, the additional equation to determine
the new trajectory is formulated as

dznew
/
dxnew

∣∣
τnew
= dz

/
dx
∣∣
τ
= − tanψ

znew|τnew = znew|τ = z (51)

Substituting (44) and (45) into (51) yields the following
two equations.

(1−τ)2 zL,new−
(
3τ 2−4τ+1

)
z1,new+

(
3τ 2−2τ

)
z2−τ 2zT

(1−τ)2 xL−
(
3τ 2−4τ+1

)
x1+

(
3τ 2−2τ

)
x2−τ 2xT

= − tanψ

(1−τ)3 zL,new+3τ (1−τ)2 z1,new+3τ 2 (1−τ) z2+τ 3zT
= z (52)

The coordinates of the simulated initial states can be
obtained as [

zL,new z1,new
]T
= A−1B (53)

VOLUME 8, 2020 64939



H. Zhou et al.: Three-Dimensional Geometric Descent Guidance With Impact Angle Constraint

FIGURE 10. Updated and previous Bézier curve trajectories.

where the matrices A and B are defined as

A =
[
−3 (1− τ)2 3

(
3τ 2 − 4τ + 1

)
(1− τ)3 3τ (1− τ)2

]
B =

[
tan (−ψ) dx

/
dτ − 3

(
−3τ 2 + 2τ

)
z2 − 3τ 2zT

z− 3τ 2 (1− τ) z2 − τ 3zT

]
(54)

The inverse matrix A−1 is directly expressed as

A−1=
[
−τ
/
(τ−1)2 (3τ−1)

/
(τ−1)3

−1
/
(3τ−3) 1

/
(τ−1)2

]
(0 ≤ τ < 1)

(55)

So there is always a unique solution to (53) before hitting
the target. However, as τ approaches 1, (55) indicates that
terminal singularity could exist. The update should terminate
when τ is sufficiently close to 1, so that the accuracy will not
be unduly affected. Because if the vehicle still deviates much
when the update ceases, it can be determined that terminal
constraints are not satisfied.

C. CONSTRAINED CONTROL COMMANDS
Normal acceleration ayn and lateral acceleration azn are
defined as

ayn = L cos σ
/
m

azn = L sin σ
/
m (56)

Substitute (2) into (56) and rearrange it, lift coefficient can
be expressed as

CL = 2L
/(

ρV 2Sref
)
= 2mayn

/(
ρV 2Sref cos σ

)
(57)

Furthermore, the solution of the control is represented by
azn and ayn as

σ = arctan
(
azn
/
ayn
)

α = f −1L (Ma,CL) = f −1L

(
Ma, 2mayn

/(
ρV 2Sref cos σ

))
(58)

If the motion information can be measured and the projec-
tions in xy and xz plane can be solved, then am can be obtained
in subsection A, and azn can be solved in subsection B. Hence

FIGURE 11. Decomposition of acceleration in three-dimensional
environment.

FIGURE 12. Decomposition of acceleration in xy plane.

the crux is to calculate the projection of each variable and
determine the relationship between ayn, azn and am.
The acceleration of the vehicle is decomposed in the flat

earth model in Fig.11, where the real-time acceleration vector
is the synthesis of vectors ayn, ayt , azn and g. Fig.12 shows
decomposition of acceleration in xy plane, where the vectors
am and at , synthesized by vectors ayn⊥, ayt⊥, azn⊥ and g, can
be considered as total acceleration. Since vectors V and ayt
are collinear, their projections in xy plane are also collinear.
In terms of the projections of the two vertical vectors ayn and
ayt may intersect in xy plane, 1σ depicts the angle between
vectors ayn⊥ and am.
When γ and ψ are given, the unit form of all vectors in

Fig.11 can be expressed. Consequently, the projection vector
of each unit vector on any plane and the corresponding pro-
jection angles can be solved. These angles are formulated as

σayn = arccos
(√

1− sin2 ψ sin2 γ
)

σayt = arccos
(√

1− sin2 ψ cos2 γ
)

σV = σayt (59)

where the terms σayn , σayt and σV are angles between vectors
ayn, ayt , V and their projections ayn⊥, ayt⊥ and V⊥ in xy
plane. Since the projection vectors and projection angles are

64940 VOLUME 8, 2020



H. Zhou et al.: Three-Dimensional Geometric Descent Guidance With Impact Angle Constraint

solved, several significant design parameters can be solved as
(60)–(63), as shown at the bottom of this page.

Obviously, according to the rules of vector synthesis, the
projection vector of normal acceleration in xy plane can be
represented as

ayn⊥=(am+g · cos (γ⊥)+azn · sinψ · sin γ⊥)
/
cos (1σ)

(64)

Therefore, ayn can be directly obtained from azn and am as

ayn=
ayn⊥

cos
(
σayn

)= am + g · cos (γ⊥)+ azn · sinψ · sin γ⊥
cos (1σ) · cos

(
σayn

)
(65)

From (65), motions in the two planes have been indepen-
dently decoupled, and the normal acceleration command can
be generated by compounding.

The final control command to be applied is ascertained by
applying physical constraints and rate constraints. Therefore,
a series of adjustments have been made to the desired control.

The effect of normal load constraint on acceleration com-
mand is formulated as follows:
if
√
a2yn+a2zn<n⊥maxg,

{
a1yn=ayn
a1zn=azn

if
√
a2yn+a2zn ≥ n⊥maxg,

a
1
yn=aynn⊥maxg

/√
a2yn+a2zn

a1zn=aznn⊥maxg
/√

a2yn+a2zn
(66)

where the terms a1yn and a
1
yn are acceleration commands after

preliminary adjustment. From (58), the initial control com-
mand can be obtained as

σ = arctan
(
a1zn
/
a1yn
)

α = f −1L

(
Ma, 2mayn

/(
ρV 2Sref cos σ

))
(67)

Control adjustment caused by physical constraints is rep-
resented as

σ1 = max (min σ, σmax), σmin)

α1 = max (min(α, αmax), αmin) (68)

In terms of rate constraints, control command is finally
modified as follows:

σ2 = min
(
σprev +

(
t − tprev

)
σ̇max, σ1

)
α2 = min

(
αprev +

(
t − tprev

)
α̇max, α1

)

σc = max
(
σprev −

(
t − tprev

)
σ̇max, σ2

)
αc = max

(
αprev −

(
t − tprev

)
α̇max, α2

)
(69)

where the terms σ2 and α2 are intermediate control variables.
The terms tprev, αprev and σprev are the time, angle of attack
and bank angle magnitudes from previous calculation steps,
respectively. The terms σc and αc denote final control com-
mands.

In conclusion, although the trajectory is designed with
the idea of inverse dynamics, the acceleration command is
derived from the decomposition method rather than directly
from the desired trajectory shape in each plane. On the one
hand, this method allows the trajectory in the two planes to
be independently designed. On the other hand, acceleration
commands are required, not the real-time trajectory shape
which is unknown when applying a tracking method.

D. IMPLEMENTATION PROCESS OF GUIDANCE LAW
After the establishment of subsectionA-C, the complete guid-
ance process can be obtained as shown in Fig.13. In Fig.13,
the term, e, represents the margin of error for Bézier guidance
law. In this paper, the trajectory parameters (λ, k1, k2) are
chosen fixed before the guidance procedure. In terms of
constraints in (6) and (7), it seems difficult to predict the
parameters of feasible nominal trajectories, mainly because
the derivative of control is not directly related to the shape
of trajectories. Consequently, trajectory parameters satisfying
(16) and 0 < k1 < k2 < 1 are all considered feasible. Simu-
lation results in section IV show that a wide range of feasible
trajectory parameters for the selected vehicle model are well
acceptable.

IV. NUMERIC RESULTS AND DISCUSSION
To evaluate the performance and robustness of the proposed
guidance law, several nominal cases and Monte Carlo sim-
ulations with dispersions and uncertainties are carried out.
Due to the dispersion of aerodynamic coefficient and initial
position, SMC method and real-time updating strategy are
applied in vertical plane and lateral plane respectively.

A. NOMINAL TRAJECTORY DESIGN
It should be noted that, to implement the Bézier curve guid-
ance law, the design conditions must be limited to γT ∈
[−0.5π, 0) andψT ∈ (−0.5π, 0.5π). However, in the rotated
xz coordinate system, the terminal heading angle can be
adjusted to meet the design constraints.

VH = V cos γ (60)

V⊥ = V cos (σV ) (61)

γ⊥ = arctan
(
tan γ

/
cosψ

)
(62)

1σ = arccos

 cosψ√
cos2 ψ sin2 γ + cos2 γ

√
cos2 ψ cos2 γ + sin2 γ

 (63)
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FIGURE 13. Guidance procedure.

TABLE 2. Desired trajectory properties for Fig. 14.

TABLE 3. Simulation boundary conditions.

To demonstrate the feasibility of geometric trajectory,
the results of nominal trajectory design are given in this sub-
section. Table 2 shows desired trajectory properties, where
launch point is located at (0 km, 30 km, −5 km), and target
point is located at (100 km, 0 km, 0 km). Trajectory parame-
ters are taken as k1 = 0.3, k2 = 0.8 and λ = −10 deg.
Various nominal elliptical trajectories in xy plane are

depicted in Fig.14. It is worth noting that, as shown in the
comparison of case 1, case 2 and case 3, elliptical trajectories
vary with heading angles under fixed desired terminal flight
path angles. This phenomenon occurs because xy plane is a
projection plane fixed with reference frame, rather than the
vertical plane containing the velocity vector.

Fig.15 shows the Bézier curve trajectories in xz plane.
In contrast to Fig.14, there are three pairs of identical tra-
jectories, because Bézier curves are determined only by the
heading angles.

Fig.16 depicts the three-dimensional trajectories. The
results show that the nominal trajectory can achieve the
desired terminal flight path angle and heading angle, and can
be further shaped by adjusting parameters k1, k2 and λ.

FIGURE 14. Nominal elliptical trajectories in xy plane.

FIGURE 15. Nominal Bézier curve trajectories in xz plane.

FIGURE 16. Three-dimensional geometric trajectories.

TABLE 4. Desired impact angles.

B. NOMINAL CASES
endenumerate In this subsection, six nominal cases with var-
ious desired impact angles are adopted to verify the perfor-
mance and applicability of the proposed method. The initial
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FIGURE 17. Three-dimensional trajectories.

FIGURE 18. Real-time updated Bézier curve trajectories in xz plane.

FIGURE 19. Trajectories in xy plane.

TABLE 5. Bounds of constraint limits.

and terminal boundary conditions for the simulated nominal
cases are shown in Table 3. The desired terminal impact
angles are listed in Table 4, and initial flight path angle and
heading angle are 0 deg. Table 5 shows the upper and lower
bounds of the constraints imposed on control commands.

FIGURE 20. Velocity profiles.

FIGURE 21. Flight path angle profiles.

FIGURE 22. Heading angle profiles.

TABLE 6. Guidance and trajectory parameters.

All trajectory design parameters and guidance parameters are
listed in Table 6. Results of nominal simulations are shown in
Fig.17-25.

The three-dimensional trajectories and their projections
are depicted in Fig.17-19. Obviously, all trajectories start
from the same origin and end at their destinations. Fig.20-22
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FIGURE 23. Angle of attack profiles.

FIGURE 24. Bank angle profiles.

FIGURE 25. Normal load profiles.

shows the profiles of velocity, flight path angle and head-
ing angle, respectively. Although the terminal velocity is
not controlled, its dispersion range is not wide, while the
flight path angle and heading angle both reach the specified
terminal value accurately. Fig.23 illustrates angle of attack
profiles, which continuously change without reaching the
boundary. The terminal radius of curvature obviously affects
the rate of terminal angle of attack, therefore it is necessary
to choose an appropriate λ. To be a contrast, as shown in
Fig.24, bank angle maintains its boundary value for a long

TABLE 7. Final state errors for various cases.

TABLE 8. Statistics of dispersion in 500 Monte Carlo runs.

FIGURE 26. Three-dimensional trajectories.

FIGURE 27. Trajectories in xz plane.

time due to insufficient lateral maneuver-ability. Therefore,
the real-time update strategy in lateral plane is essential and
effective. Fig.25 depicts the profiles of load during the flights.
Obviously, all path constraints are enforced strictly.
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FIGURE 28. Trajectories in xy plane.

FIGURE 29. Velocity profiles.

FIGURE 30. Flight path angle profile.

Table 7 summarizes the statistics of final state errors
for various cases. All miss distances are not greater than
0.01m, and all flight path angle and heading angle errors
are not greater than 0.02deg. Due to stop criterion of real-
time update, the error of heading angle is slightly larger than
the error of flight path angle. The nonlinear system tracking
ellipse is stable, and the real-time updating of Bézier curve
is convergent. In general, the simulation results of nominal
cases show that the proposed guidance law is effective.

C. MONTE CARLO SIMULATIONS
In this subsection, to further evaluate the performance and
robustness of the proposed guidance law, 500-run Monte

FIGURE 31. Heading angle profiles.

FIGURE 32. Angle of attack profiles.

FIGURE 33. Bank angle profiles.

Carlo simulations are conducted under a wide distribution
of random dispersions and uncertainties which are listed
in Table 8.

The dispersions and uncertainties in Table 8 include
not only aerodynamic coefficients and atmospheric density,
which strongly affect the dynamics, but also initial con-
ditions. Initial and terminal boundary conditions are listed
in Table 3. Results of 500-run Monte Carlo simulations are
depicted in Fig.26-34.

As shown in Fig.26, despite the dispersion and uncertain-
ties, the vehicle hits the target accurately. Fig.27 displays
Bézier trajectories in xz plane, which are scattered in the
early stage to fit bank angle constraint, and finally converges
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FIGURE 34. Normal load profiles.

FIGURE 35. Statistics of terminal errors for the 500 runs.

steadily to the target. Trajectories in xy plane are depicted
in Fig.28. Obviously, the vehicle approaches the nominal
ellipse in xy plane quickly and smoothly, and then follows
closely. The proposed ISMC guidance method corrects the
deviation in the early stage and meets the severe terminal
strike requirements at the same time. Fig.29 shows velocity
profiles. The terminal velocity distribution for the 500-run
Monte Carlo simulations is almost within 200 m/s. Profiles of
flight path angle and heading angle are shown in Fig.30 and
Fig.31, respectively. It is apparent that desired impact angle

is achieved under perturbation. Fig.32 depicts angle of
attack profiles. Although the early trajectory adjustment may
require its maximum, the angle of attack changes steadily
near terminal moment. By contrast, as shown in Fig.33, bank
angle changes relatively drastically, and its threshold is taken
for a long time. The terminal rate of bank angle is relatively
obvious and the sign is uncertain. Fig.34 displays profiles of
normal load, which is always below its limit.

Statistics of terminal errors for the 500 runs are shown
in Fig.35. All miss distances are mostly within 0.1 m
and the maximum is within 0.8 m. All angular errors are
within 0.2 deg. The results show that the proposed method
is robust and has strong engineering practicability for the
hypersonic model selected in this paper.

V. CONCLUSION
In this paper, a novel three-dimensional geometric guidance
law with terminal impact angle constraint is proposed, which
is implemented by controlling the launch point, aircraft, and
target on a certain curve. The nominal trajectory in the vertical
plane is an adjustable elliptic curve that satisfies terminal
angle constraint, and elliptic equations for different rotation
angles of main axis are given. The ISMCmethod is employed
to track the nominal elliptical trajectory, which effectively
reduces the trajectory vibration. The online planning strategy
of updating the third-order Bézier curve is adopted in lateral
plane due to inadequate lateral maneuverability. The nominal
trajectories in two planes can be greatly shaped by adjusting
the trajectory parameters. To verify the effectiveness of the
proposed guidance law, 500-run simulations are carried out
considering perturbations in the initial state, and error in
aerodynamic and atmospheric modelling. The experimental
results indicate that the proposed guidance law has strong
adjustability and excellent robustness.

In this paper, both the ISMC tracking method and the real-
time update strategy are employed in the lateral plane. The
significant geometric difference between the two methods is
that the radius of curvature is controllable for tracked trajecto-
ries, while for real-time updated trajectories is unpredictable
due to control constraints. Since there is a gravitational accel-
eration in the vertical plane, the sign of the resultant normal
acceleration is related to radius of curvature. Obviously, if the
tracking method is utilized in two planes simultaneously, it is
difficult to meet the control constraints. When simultaneous
updating strategy is adopted, the bank angle is prone to be
reversed frequently in case of demanding lateral maneuvers
(like case 2, 4 and 6 in Table 4), which could result in missing
the target.

The acceleration commands in the two fixed planes are
decoupled by decomposition method, so the guidance law is
independent of range-to-go. At the same time, it renders it
possible to combine various analytic curves in two planes.
In the future, more complex constraints and optimality may
be realized by adjusting trajectory parameters or selecting
more efficient analytic curves.
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