IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 23, 2020, accepted March 26, 2020, date of publication March 30, 2020, date of current version April 10, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984214

Convolutional Neural Networks for User
Identification Based on Motion Sensors

Represented as Images

CEZARA BENEGUI

Department of Computer Science, University of Bucharest, 010014 Bucharest, Romania

Corresponding author: Radu Tudor Ionescu (raducu.ionescu @ gmail.com)

AND RADU TUDOR IONESCU ", (Member, IEEE)

The research leading to these results has received funding from the EEA Grants 2014-2021, under Project contract

no. EEA-RO-NO-2018-0496.

ABSTRACT In this paper, we propose a deep learning approach for smartphone user identification based
on analyzing motion signals recorded by the accelerometer and the gyroscope, during a single tap gesture
performed by the user on the screen. We transform the discrete 3-axis signals from the motion sensors into a
gray-scale image representation which is provided as input to a convolutional neural network (CNN) that is
pre-trained for multi-class user classification. In the pre-training stage, we benefit from different users and
multiple samples per user. After pre-training, we use our CNN as feature extractor, generating an embedding
associated to each single tap on the screen. The resulting embeddings are used to train a binary Support Vector
Machines (SVM) model in a few-shot user identification setting, i.e. requiring only 20 taps on the screen
during the registration phase. We compare our identification system based on CNN features with two baseline
systems, one that employs handcrafted features and another that employs recurrent neural networks (RNN)
features. All systems are based on the same classifier, namely SVM. To pre-train the CNN and the RNN
models for multi-class user classification, we use a different set of users than the set used for few-shot user
identification, ensuring a realistic scenario. The empirical results demonstrate that our CNN model yields
a top accuracy of 90.75% in multi-class user classification and a top accuracy of 96.72% in few-shot user
identification. We thus believe that our system is ready for practical use, having a better generalization
capacity than both baselines. We also conduct experiments showing that the binary SVM provides better
results than the one-class SVM, although the negative samples added during training do not belong to the
attackers (known only at test time).

INDEX TERMS Convolutional neural networks, deep learning, user identification, biometric user identifi-
cation, motion sensor analysis.

I. INTRODUCTION
Nowadays, common mobile device authentication mecha-
nisms such as PINs, graphical passwords and fingerprint
scans offer limited security. These mechanisms are suscep-
tible to guessing (or spoofing in the case of fingerprint
scans) and to side channel attacks [1] such as smudge [2],
reflection [3], [4] and video capture attacks [5]-[7]. On top
of this, a fundamental limitation of PINs, passwords, and
fingerprint scans is that these mechanisms require explicit
user interaction.

Due to the world wide adoption of mobile devices and
the advancement of technologies, mobile devices are now

The associate editor coordinating the review of this manuscript and

approving it for publication was Hazrat Ali

VOLUME 8, 2020

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

equipped with multiple sensors such as accelerometers, gyro-
scopes, magnetometers, among others. The data recorded
by these sensors during the interaction of the user with the
mobile device can be used as biometric data to identify the
user. Indeed, one-time or continuous user identification based
on the data collected by the motion sensors of a mobile device
is an actively studied task [8]-[22], that emerged after the
integration of motion sensors into commonly used mobile
devices.

In this paper, we propose a novel deep learning approach
that can identify the user from a single tap on the smart-
phone’s touchscreen, using the discrete signals recorded by
the accelerometer and the gyroscope during the tap gesture.
Our approach is not aimed at replacing explicit authentication
methods such as face recognition or fingerprint scanning,

61255

https://orcid.org/0000-0003-0843-2548
https://orcid.org/0000-0002-9301-1950
https://orcid.org/0000-0003-3058-5794

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

which have typically higher accuracy rates. It is rather
designed to serve as an additional (implicit) verification
system. The main advantage is that our system does not
require explicit authentication. Instead, we can simply record
the motion signals generated while the user performs the
authentication with an explicit factor, i.e. face recognition
or fingerprint scanning. By adding the proposed implicit
verification system while keeping the user’s interaction to a
minimum (no extra steps are required during verification),
we provide an additional layer of security, eliminating many
of the attacks enumerated above.

Our approach is based on transforming the discrete 3-axis
signals from the accelerometer and the gyroscope into a
gray-scale image representation that can be provided as input
to deep convolutional neural networks (CNNs) [23], [24].
Our image representation is based on repeating the six
one-dimensional (1D) signals using a modified version of
de Brujin sequences [25], such that the 3 x 3 convolutional
filters from the first layer of the CNN get to “‘see” every
possible tuple of three 1D signals in their receptive field. After
transforming the motion signals accordingly, we pre-train
several CNN architectures in a multi-class user classification
setting. In the pre-training stage, we can leverage the use
of data from multiple users and multiple samples per user.
After pre-training and selecting the best-performing CNN,
we can employ the selected CNN as a deep feature extractor
that generates useful embeddings for each tap gesture. The
generated embeddings can then be used to train a lightweight
model, e.g. Support Vector Machines (SVM) [26], to identify
the user in a few-shot learning setting. We consider a few-shot
learning setting with 20 samples per user in order to enable
a fast registration process (20 taps on the screen are enough),
similar in terms of time to the registration processes used by
standard fingerprint or face authentication systems.

We conduct experiments in order to compare our user iden-
tification system based on CNN features with two baselines,
one that is based on handcrafted features [18] and one that
is based on recurrent neural network (RNN) features [17].
All models are evaluated in a few-shot user identification
context using the same classifier, namely a binary SVM.
Our CNN model (as well as the baseline RNN model) is
pre-trained on a multi-class user classification task. The users
involved in the multi-class user classification experiment are
different from those involved in the user identification exper-
iment, to simulate a realistic scenario. In order to conduct
our experiments, we modify the HMOG data set [20] by
extracting shorter signals from the original sessions and by
splitting the users in half, using the first half for the prelim-
inary multi-class user classification experiment and the sec-
ond half for the user identification experiment. Our binary
SVM based on CNN features exhibits a higher generalization
capacity, surpassing both baselines in the user identification
experiments. Moreover, according to McNemar’s statistical
testing [27] performed at a confidence level of 0.01, our
improvements over the baseline based on handcrafted fea-
tures are significant. With an accuracy of 96.72%, our SVM

61256

based on CNN features seems to be a viable solution for
practical usage.

We note that user identification is typically modeled as
an anomaly detection task, in which the anomalies are pro-
duced by attackers. Therefore, researchers [18]-[20] com-
monly employ outlier detection models, e.g. one-class SVM.
We thus compare our binary SVM, which is trained on nega-
tive samples that do not belong to the attackers (known only
at test time), with the one-class SVM. The results show the
benefit of adding negative samples during training, even if
the added data samples are not collected from the attackers,
for a fair comparison.

In summary, our contribution is threefold:

« We propose a novel gray-scale image representation of
the discrete signals, designed specifically to be useful as
input for CNNss.

o We propose to pre-train CNNs on a multi-class user
classification task in order to obtain useful embeddings
for few-shot user identification.

« We perform comparative experiments showing that our
method based on CNN embeddings surpasses both
machine learning methods based on handcrafted features
and deep learning methods based on RNN embeddings.

The rest of this paper is organized as follows. In Section II,
we provide an overview of user identification systems for
mobile devices, focusing mainly on systems based on ana-
lyzing motion sensors. In Section III, we present the pro-
posed data representation, our CNN architectures and our
user identification model. In Section IV, we present the data
set, the evaluation metrics and the performed experiments.
In Section V, we conclude our findings and propose some
future directions of study.

Il. RELATED WORK

The first studies in smartphone user identification used
keystroke dynamics [28]-[30], since the early smartphone
devices were equipped with hardware keyboards. To our
knowledge, the first study to propose the analysis of
accelerometer data in order to recognize the gait of a mobile
device user appeared in 2006 [31]. The approach proposed by
Vildjiounaite et al. [31] is to directly measure the similarity
between the sample of signal recorded during authentication
and a previously-recorded sample of signal that belongs to the
user. The samples are compared based on statistical features
extracted in the time domain or the frequency domain, with-
out using machine learning. More recent studies explored the
task of user identification based on machine learning mod-
els [8]-[22], attaining better results compared to statistical
models such as [31]. By modeling the user identification
task based on motion sensors as a classification task, var-
ious models following the standard training and evaluation
pipeline used in machine learning can be tested out. The
standard machine learning pipeline is essentially based on
two steps. The first step is to extract handcrafted features
from the discrete motion signals in the time domain or the

VOLUME 8, 2020

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

IEEE Access

frequency domain. The second step is to apply a standard
machine learning classifier.

However, some recent works [9]-[11], [19], [20] have
proposed to change the standard pipeline in order to obtain
improved performance. For instance, the method proposed by
Shi et al. [19] uses different modalities for user identification.
The approach builds a one-class classifier for each modality
and aggregates the results using a meta-classifier. Another
approach that employs multiple modalities is proposed by
Buriro et al. [9]. Their method is based on motion patterns
recorded by the motion sensors and voice patterns recorded
by the microphone during a phone call. Some works modify
the standard pipeline by adding a feature selection step before
classification. The approach described by Sitova ef al. [20]
uses Principal Component Analysis for feature selection. The
authors extracted statistical features specifically designed
for tap gestures on the touchscreen of the mobile device.
We also analyze tap gestures, but we extract deep CNN
features (instead of statistical features) from the motion
signals recorded during the taps. The approach proposed
by Buriro et al. [11] performs user authentication using data
recorded by the motion sensors as well as the touchscreen of
the mobile device. The authors performed feature selection
using the Recursive Feature Elimination method. There are
other approaches [10] that use the Information Gain for fea-
ture selection.

The methods described in [17], [21] combine the two stan-
dard steps (feature extraction and classification) into a single
step, by training deep neural network models in an end-to-end
fashion. Similar to these works [17], [21], we propose an
approach based on deep neural networks. Neverova et al. [17]
proposed the use of recurrent connections to model temporal
variations of the signals. We take a different approach and
propose to use convolutional neural networks in order to
obtain deep embeddings of the motion signals recorded by the
accelerometer and the gyroscope. It is important to note that
Neverova et al. [17] and Sun et al. [21] used convolutional
neural networks as baselines, showing better results with their
recurrent neural networks. While Neverova et al. [17] used
the discrete temporal signals as input for their baseline CNNss,
we propose a novel approach to convert the temporal signals
into a 2D gray-scale image representation to be used as input
for our CNN. As shown in our user identification experi-
ments, the embeddings learned by our CNN are more robust
than the embeddings learned by the baseline RNN, leading
to significant performance improvements. Another approach
based on training neural networks for biometric user identi-
fication is proposed by Sun et al. [21]. While they use recur-
rent neural networks to recognize users based on keystroke
dynamics, we propose to use convolutional neural networks
to recognize users based on motion data recorded during
screen taps. While works such as [17], [21] require longer
interactions from the user, our method is designed to identify
the user based on 1.5 seconds of motion signals recorded
during a single tap gesture. Furthermore, our method requires
only 20 samples (taps) during the user registration phase.

VOLUME 8, 2020

(M

Tap on
screen

Record motion signals

T

Accelerometer Gyroscope

Transform to image

it

Our gray-scale image representation

lExtract CNN features

Our CNN feature extractor

lCIassify using SVM
/

Identify user

4

Yes No

FIGURE 1. Our user identification pipeline based on analyzing motion
signals recorded during the user’s screen tap. The signals are combined
into a gray-scale image representation which is provided as input to a
CNN that is pre-trained on multi-class user classification. A binary SVM
trained on a few examples is used to identify the user. Best viewed in
color.

lil. METHOD

A. IMAGE REPRESENTATION

As illustrated in Figure 1, our first step is to turn the discrete
signals acquired from the smartphone’s accelerometer and

61257

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

gyroscope sensors into gray-scale images. We start with six
discrete signals of potentially different lengths, represented
in the time domain. Although the motion signals are sup-
posed to be recorded at 100 Hz, depending on the processes
running on the mobile device, the operating system will not
report exactly 100 values per second at perfectly equal time-
intervals. Furthermore, the accelerometer and the gyroscope
report motion events independently. Although the signals
reported for the three axes of a motion sensor are of the same
length, the signals reported by two different motion sensors
could be of different lengths. We thus have to normalize the
motion signals to a fixed length. Since we record signals
for 1.5 seconds at 100 Hz, we expected them to be formed
of 150 discrete values. Hence, the signals that are longer
or shorter are resized using linear interpolation to a fixed
length of 150 values. After resizing a signal, we subtract its
minimum magnitude such that each value becomes positive.
Each signal is now a vector of 150 positive components. Since
the independent signals can have different magnitude scales,
e.g. when the motion projected on one axis is much higher in
terms of magnitude than the motion projected on another axis,
we independently normalize the vectors using the Ly-norm.
Then, we rescale the values to the interval [0, 255], in order
to use the full range of values available for gray-scale images.

Next, we choose to consider each 1D discrete signal as a
row vector and concatenate the vectors column-wise in a spe-
cific sequence that allows repetition. The sequence is chosen
by taking into consideration that recent CNN architectures,
e.g. GoogleNet [32] and ResNet [33], use convolutional
filters with a receptive field (spatial support) not higher than
3 x 3. Given that we want to employ such modern design rec-
ommendations into our CNN architectures, we need to make
sure that every possible tuple of three 1D signals is “seen” by
the first convolutional layer. We build our sequence of signals
based on the principles of de Brujin sequences [25]. We first
associate digits from 0 to 5 to identify our signals in the
generated sequence. A de Brujin sequence of order n (length
of tuples, in our case, n = 3) on an alphabet ¥ of size k
(number of signals, in our case, k = 6) is a cyclic sequence in
which every possible string of length n (in our case, triplet) on
¥ (inourcase, ¥ = {0, 1, 2, 3, 4, 5}) occurs exactly once as a
contiguous subsequence. Different from de Brujin sequences,
we do not need to include triplets of signals that represent
rearrangements of triplets that are already included in our
sequence. We also do not need triplets of repeating symbols,
e.g. (3,3, 3). In order to build our sequence of signals we
employ a simple Greedy algorithm, which adds the minimum
amount of signals to the sequence in order to include a new
triplet, which was not previously included in the sequence.
While the minimum length of a de Brujin sequence forn = 3
and k = 6 is 218, we obtain a shorter sequence of length
25. Our sequence is 0, 1, 2, 3,4,5,0,2,4,5,1,3,0,4, 1,
2,5,3,0,2,0,5, 1, 3, 4. We consider our sequence as a
pseudo-de Brujin sequence. Using the generated pseudo-de
Brujin sequence, we build our gray-scale image representa-
tion of 25 x 150 pixels. In Figure 2, we illustrate some image

61258

o S . T —— = =
— ——— — - — - -
— — - — - -

FIGURE 2. Gray-scale images of 25 x 150 pixels resulted after our
conversion of the discrete signals recorded at 100 Hz for 1.5 seconds.

representations constructed for a set of randomly selected
recording sessions, each of 1.5 seconds in length. After
obtaining the image representations, we provide them as the
input for the convolutional neural networks described in the
following section.

B. CNN-BASED FEATURE EXTRACTION

Recent methods for object recognition [24], [32]-[34] and
other computer vision tasks [35]-[40] are based on deep
learning [41], [42]. The main approach in this area is rep-
resented by CNNs [24], [32], [34]. Convolutional neural net-
works are a particular type of feed-forward neural networks
that are designed to efficiently process images through the
use of a special kind of layer inspired by the human visual
cortex, namely the convolutional layer. Following the success
of transfer learning from pre-trained CNNs [38]-[40], [43],
we consider them as potentially-useful feature extractors for
smartphone user identification, given our custom gray-scale
image representation derived from motion signals. Instead of
considering pre-trained CNN models on ImageNet [44] as
others [38]-[40], we devise a multi-class user classification
task in order to train our models, before transferring them to
the user identification task. This ensures that our CNN models
are specifically adapted to the same kind of input images.

In this work, we propose four CNN architectures of differ-
ent depths. Each architecture is composed of a different num-
ber of convolutional (conv) layers followed by a fixed number
of fully-connected (fc) layers. We use Rectified Linear Units
(ReLU) [45] as activation functions on all layers, except for
the classification layer which has Softmax activations.

Our first CNN architecture is composed of a conv layer,
2 fc layers and a Softmax classification layer. The conv layer
is composed of 32 filters with a 3 x 3 spatial support. The
filters are applied at a stride of 1 and the input is zero-padded
to preserve the spatial dimension. The convolutional layer

VOLUME 8, 2020

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

IEEE Access

is followed by a max-pooling layer with a pool size of
2 x 2. The max-pooling layer is followed by 2 fc layers, each
of 256 neurons. We use dropout [46] on each fc layer, with
the dropout rate set to 0.4. The fourth and final layer is a fc
(Softmax classification) layer with 50 neurons, correspond-
ing to the number of classes (users) from our multi-class user
classification task.

The second CNN architecture is composed of 6 layers,
namely 3 conv layers, 2 fc layers and a Softmax classification
layer. The first conv layer is composed of 32 filters witha3x 3
spatial support. The filters are applied at a stride of 1 and
the input is zero-padded to preserve the spatial dimension.
The second conv layer is composed of 64 filters, while the
third conv layer is composed of 128 filters. As the first conv
layer, the filters from the second and the third conv layers
have a receptive field of 3 x 3 components and are applied at
a stride of 1. All activation maps are zero-padded to preserve
the spatial dimension. Each convolutional layer is followed
by a max-pooling layer with a pool size of 2 x 2. After the last
max-pooling layer, we have 2 fc layers with identical settings
as in the first CNN architecture. The sixth and final layer is a
Softmax classification layer composed of 50 neurons.

The third CNN architecture is composed of 9 layers,
namely 6 conv layers, 2 fc layers and a Softmax classifi-
cation layer. The 9-layer CNN architecture is derived from
the 6-layer CNN architecture, by replicating each conv layer
exactly once. Therefore, the first and the second conv layers
of the 9-layer CNN have 32 filters, as the first conv layer
of the 6-layer CNN. Similarly, the third and the fourth conv
layers of the 9-layer CNN have 64 filters, as the second conv
layer of the 6-layer CNN. The same rule applies to the fifth
and the sixth conv layers of the 9-layer CNN, which have
128 filters. In the 9-layer CNN, only the second, the fourth
and the sixth conv layers are followed by max-pooling layers
with a pool size of 2 x 2. The other layers and parameters are
the same as in the 6-layer CNN architecture.

Our fourth and deepest CNN architecture has 12 layers,
namely 9 conv layers, 2 fc layers and a Softmax classification
layer. The 12-layer CNN architecture is derived from the
6-layer CNN architecture, by replicating each conv layer
exactly twice. The first 3 conv layers contain 32 filters,
the following 3 conv layers contain 64 filters and the last
3 conv layers contain 128 filters. In the 12-layer CNN, only
the third, the sixth and the ninth conv layers are followed
by max-pooling layers. We note that, in the 12-layer CNN
architecture, we preserve the other (fc) layers and param-
eters (stride, kernel size, pool size, dropout rate) from the
previously-presented CNN architectures.

All models are trained using the Adam optimizer [47] with
the categorical cross-entropy loss function. We opted for the
Adam optimizer because Kingma et al. [47] demonstrated
that it converges faster than other stochastic gradient descent
alternatives. We train and test our CNN architectures on the
multi-class user classification task, in order to select the
best-performing architecture. After finding the best CNN
model, we remove its Softmax layer and use the activation

VOLUME 8, 2020

maps from the last remaining fc layer as feature vectors
(deep embeddings). Given that the last fc layer is formed
of 256 neurons irrespective of the CNN architecture, we will
obtain 256-dimensional embeddings.

C. FEW-SHOT USER IDENTIFICATION

In a realistic user identification scenario, we do not have
access to a set of samples performed by attackers (imper-
sonators) in order to build a binary classification model.
Therefore, we can either train an outlier detection model,
e.g. a one-class SVM [19], or use a pool of negative data
samples that belong neither to the rightful user nor to the
attackers and train a binary classifier. We opt for the second
approach and model the user identification task as a binary
classification task, in which the positive samples belong to the
rightful user and the negative samples belong to a set of users
that have nothing in common with the attackers (involved
only at test time). In this context, we employ the binary SVM
classifier. Nevertheless, we later show empirical evidence in
favor of binary SVM over one-class SVM.

For binary classification problems, kernel classifiers [48],
such as SVM, look for a discriminative function g that assigns
positive labels (41) to examples that belong to one class and
negative labels (—1) to examples that belong to the other
class. The function g is linear in the feature space and can
be expressed as follows:

g(x) = sign({w, x) + b), (D

where x is a feature vector, w and b are the weight vector and
the bias term learned by the kernel classifier and (-, -) is the
dot product. In our case, x is a 256-dimensional feature vector
provided by a CNN.

Different kernel classifiers may use different criteria to find
an optimal vector of weights. The SVM classifier [26] aims at
finding the vector w and the bias b that define the hyperplane
which separates the training samples by a maximum margin.
Mathematically, the SVM classifier chooses the weights w
and the bias term b that satisfy the following optimization
criterion:

1
min = 3 11— yi(w, i) + bl + Clhw?, ()

i=1

where n is the number of training samples, y; is the label
(+1 or —1) of the training example x;, C is a regularization
parameter, [x]4 = max{x, O} and [|-112 is the Lp-norm.
Kernel classifiers rely on a kernel function to embed the
data in a high-dimensional space, in which non-linear rela-
tions become linear. A kernel function captures the intuitive
notion of similarity among pairs of data samples from a spe-
cific domain, and can be any function defined on the respec-
tive domain that is symmetric and positive definite. We opt
for two popular kernel functions, namely the linear kernel,
which is given by the dot product between pairs of samples,
and the Radial Basis Function (RBF) kernel, which is given

61259

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

by the following equation:
krsr (xi, x7) = exp(—y Il — x11%), 3)

where x; and x; are two data samples, exp(-) is the exponential
function and y is a parameter that controls the range of
possible output values for the RBF kernel.

IV. EXPERIMENTS

A. DATA SET

In order to successfully test the identification of users, we use
a data set which contains values from two motion sen-
sors, the accelerometer and the gyroscope, collected from
100 users while sitting [20]. We record the motion sensor
values while users perform a single tap on the screen. The
recording starts with 0.5 seconds before the tap event and ends
with 1 second after the tap event. Both sensors report values
on three axes (X, y, z) at about 100 Hz. Hence, an example is
composed of six discrete signals, three from each sensor, cor-
responding to the three axes (X, y, z), respectively. Given that
each signal is recorded for 1.5 seconds at about 100 Hz, it is
represented by roughly 150 values. For each user, we collect
motion signals for the first 200 tap events. In total, we have
20.000 data samples.

The data set is randomly split into two equal parts, such
that each half contains a disjoint set of 50 users (users in
one half are different from users in the other half). The first
part of the data set, containing 50 users (with 200 samples
per user), is used to train the neural models for the task
of multi-class user classification. We use 160 samples per
user for training and the rest of 40 samples per user for
validation, corresponding to an 80%—-20% split of the data.
Hence, there are 8.000 samples for training and 2.000 samples
for validation. The first part of the data set is also used for
hyperparameter tuning of the neural models and the SVM
models.

The second part of the data set, containing the other
50 users (with 200 samples per user), is used for the user
identification experiments. To simulate a realistic setting,
we train a binary SVM classifier for each user, including
only 20 positive samples and 100 negative samples. Since we
have 50 users, we obtain 50 binary classification problems.
The binary models are tested on 100 positive samples and
100 negative samples. When a binary model is trained and
tested, we are careful to select the negative training and test
examples from disjoint subsets of users. By using a disjoint
subset of users during inference, we make sure the classifi-
cation models do not cheat by making use of features spe-
cific to the negative users seen during training. This ensures
that our user identification experiments simulate a realistic
setting, in which samples coming from potential imperson-
ators are not available during training. On the second part
of the data set, we also compare the binary SVM models
with one-class SVM models that employ similar features and
settings, to ensure a fair comparison. The only difference is
that the one-class models are trained on 20 positive samples
(the 100 negative samples are simply excluded).

61260

TABLE 1. Confusion matrix (also known as contingency table) of a binary
classifier with labels +1 or —1.

Ground-truth labels

Labels +1 —1
Classifier +1 true positive (7' P) false positive (F'P)
predictions -1 false negative (F'IN) | true negative (T'N)

B. EVALUATION METRICS

In order to evaluate the deep learning models on the
multi-class user classification task, we employ the classi-
fication accuracy. To evaluate our baseline and proposed
models on the user identification task, we compute the
binary confusion matrix for each user. The binary confu-
sion matrix contains the number of true positives (TP), false
positives (FP), false negatives (FN) and true negatives (TN),
as shown in Table 1. We then extract metrics such as the
accuracy (ACC), the false acceptance rate (FAR) and the false
rejection rate (FRR).

The accuracy of the model is given by the total number of
correct predictions divided by the total number of predictions.
Thus, the accuracy is given by:

TP + TN
ACC = . @)
TP +1TN + FP + FN

The false acceptance rate is the ratio between the number
of false acceptances and the sum of all negative samples (false
positives and true negatives):

_FP
~ FP+1N’
The false rejection rate is the ratio between the number

of false rejections and the sum of all positives samples (false
negatives and true positives):

FAR (5)

FN

FRR = ———.
FN +TP

(6)
C. BASELINES

In this subsection, we present in detail the baseline methods.
The first baseline method is based on a recent work by
Shen et al. [18], that uses handcrafted features. The sec-
ond baseline method is based on another recent work by
Neverova ef al. [17], that uses features learned by Long
Short-Term Memory (LSTM) networks [49] with convolu-
tional layers (ConvLSTM). The LSTM is a type of RNN
architecture that solves the vanishing gradient problem
known to affect RNN models. As for our four CNN mod-
els, the ConvLSTM is pre-trained on the multi-class user
classification task, then used as feature extractor on the user
identification task. In the user identification experiments,
both baseline models employ an SVM classifier, for a fair
comparison to our CNN model.

1) BASELINE BASED ON HANDCRAFTED FEATURES
The values recorded by the motion sensors cannot be used
directly as input for a user classifier, as the signals contain

VOLUME 8, 2020

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

IEEE Access

a large amount of noise. In order to extract useful character-
istics for a given user, one approach is to compute several
statistical features that can embed some particularities of the
users from our data set. Therefore, on each of the six discrete
1D signals that form an example, we compute the following
handcrafted features, as Shen et al. [18]:

¢ Mean — is the mean value of a discrete 1D signal;

e Min — is the minimum value of a discrete 1D signal;

o Max — is the maximum value of a discrete 1D signal;

« Variance — represents the variance value of a discrete
1D signal;

« Kurtosis — describes the width of the peak of a discrete
1D signal;

o Skewness — represents the orientation of the peak of a
discrete 1D signal;

o Quantiles — are the quantiles of a discrete 1D signal,
computed from 30% to 80%, increasing by a 10% step.

Moreover, we add to the handcrafted features, Pearson
and Kendall’s Tau correlation values between all the possible
combinations of 1D signal pairs, irrespective of sensor type.
An example is thus represented by 72 statistical features
(12 features x 6 signals) and 30 correlation features (2 fea-
tures x 15 signal pairs). We provide the handcrafted features
as input to an SVM classifier.

2) BASELINE BASED ON CONVLSTM FEATURES

In this section, we present another baseline method, which is
based on a pre-trained ConvLSTM as feature extractor. As for
our four CNN models, we resize the recorded 1D signals to a
fixed length of exactly 150 components. We resize the signals
using linear interpolation and obtain an input size of 6 x 150
components for the ConvLSTM. Since the LSTM network
handles temporal inputs directly, we do not need to convert
the temporal signals to gray-scale images, as for the CNN
models.

The architecture of the ConvLSTM is composed of 6
layers and is similar in size to our best-performing CNN
architecture. The first layer of the model is a convolutional
LSTM layer with 64 filters and a kernel size of 1 x 3.
In this layer, we use ReLU [45] as the activation function.
The first layer is followed by another convolutional LSTM
layer, having the same kernel size and the same activation
function, but a higher number of filters, i.e. 128. The sec-
ond convolutional LSTM layer is followed by yet another
convolutional LSTM layer with 256 filters. Typical LSTM
architectures have no more than two or three LSTM layers,
which are sufficient to model the temporal variations of the
input signals. Therefore, after the third convolutional LSTM
layer, the activation maps are flattened. Then, we have a
fully-connected layer of 256 neurons with ReL.U activations,
followed by another fully-connected layer of 256 neurons
with ReLU activations. The sixth and final layer is the clas-
sification layer, which contains 50 neurons (corresponding
to the number of users in the multi-class user classifica-
tion data set) having Softmax activations. The chosen loss

VOLUME 8, 2020

TABLE 2. Number of learnable parameters of the considered deep neural
networks based on convolutional or convolutional LSTM layers.

Model Number of parameters
6-layer ConvLSTM 3,181,874
4-layer CNN 4,040,000
6-layer CNN 3,055,154
9-layer CNN 3,248,914
12-layer CNN 3,442,674

function is the categorical cross-entropy. As for our CNN
models, we employ the Adam optimizer [47]. We compare
our four CNN architectures with the ConvLSTM architecture
in terms of the number of learnable parameters in Table 2.
We observe that the CNN models have about the same num-
ber of parameters as the ConvLSTM model. In all CNN archi-
tectures, the first fully-connected layer has the largest number
of parameters (over 2.4 million). Because we variate only the
number of conv layers, the total number of parameters does
not change by much from one CNN to another. We note that
the 4-layer CNN has slightly more parameters than the other
CNN models because it has only one max-pooling layer and
the activation maps just before the first fc layer are larger in
size.

After training the ConvLSTM model on the multi-class
user classification task, we remove the classification layer
and use the activation maps from the last fully-connected
layer of 256 neurons as features. Hence, we obtain 256 fea-
tures, which we provide as input to an SVM classifier.

D. PARAMETER AND IMPLEMENTATION CHOICES

For our four CNN models, we set the hyperparameters as
described next. We train each CNN model for 50 epochs
using a learning rate of 1073, By applying early stopping to
prevent overfitting, the training stops after about 40 epochs
for every model. We also considered weight decay in order
to prevent overfitting, but the results were slightly worse.
We use dropout [46] on the two fully-connected layers,
using a dropout rate of 0.4. Regarding the mini-batch size,
we experiment with four sizes: 16, 32, 64 and 128. We hereby
note that Jastrzgbski et al. [50] observed that the learning
rate and the mini-batch size are strongly correlated. Further-
more, they note that similar performance can be obtained
with specific combinations of learning rate and mini-batch
size, i.e. the learning rate should be proportional to the
mini-batch size. Instead of trying various learning rates and
mini-batch size combinations, we decided to fix the learn-
ing rate to 1073 and find the optimal mini-batch size that
corresponds to our fixed learning rate. After conducting the
experiments on multi-class user classification (presented in
Section IV-E), we decided to use the shallower 6-layer CNN
with a mini-batch size of 32 in the subsequent experiments.
With the CNN architecture and the mini-batch size fixed,
we proceed by trying out different image representations as
input. Based on the empirical evidence, we decided to use the
image representation based on de Brujin sequences. We also

61261

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

explored thinner or wider architectures which produce 128
or 512 features instead of 256. Here, we opted for the CNN
model that produces 256-dimensional feature vectors. Further
details are provided in Section IV-E.

For the baseline ConvLSTM model, we keep the same
hyperparameters as for the CNN models, for a fair compari-
son. We thus set the learning rate to 10~ and train the model
for 50 epochs using mini-batches of 32 samples. By applying
early stopping to prevent overfitting, the training stops after
40 epochs. We use dropout on the two fully-connected layers,
using a dropout rate of 0.4. The ConvLSTM model produces
256-dimensional feature vectors, just as the CNN model.

For the binary or the one-class SVM models, we try out two
kernels, namely the linear kernel and the RBF kernel. For the
RBF kernel, we set the parameter y as follows:

1
m - Var(X)’

where m is the number of features, X is a matrix containing
the training data and Var(-) is a function that computes the
variance.

In order to obtain optimal results, we adjust the SVM
model by tuning the regularization parameter C using
grid search on the multi-class user classification data set.
As possible values for C, we consider values in the set
{0.1, 1, 10, 100}. When using the linear kernel, the best value
for the parameter C is 1, irrespective of the features (hand-
crafted or deep). When using the RBF kernel, we obtained
better results with C = 100 for the handcrafted features and
C =1 for the deep (CNN or ConvLSTM) features. The bias
term of each SVM model is independently adjusted, such that
the difference between the FAR and the FRR is less than 1%.
This ensures a fair comparison in terms of accuracy between
models.

While the neural models are implemented in Tensor-
Flow [51], we employ the Scikit-learn [52] implementation
of the binary and the one-class SVM.

y = N

E. MULTI-CLASS USER CLASSIFICATION RESULTS

In Table 3, we present the results obtained by our four differ-
ent CNN architectures on the multi-class user classification
task. Since neural networks are sensitive to the initialization
of the weights, we train each model for 5 times, report-
ing the average results. The 4-layer CNN attains the worst
results, having some trouble even in fitting on the training
data. We note that, as the architecture grows from 6 layers
to 12 layers, the validation accuracy tends to drop slightly.
Given that our training data is limited to 8.000 examples,
with 160 samples per class, we conclude that the deeper
networks are perhaps too deep with respect to our training
set size. Besides trying different architectures, we also tested
various mini-batch sizes: 16, 32, 64 or 128. The empirical
results presented in Table 3 indicate that a mini-batch size
of 32 is the optimal value for all CNN architectures. While
the 6-layer CNN trained on mini-batches of 16 samples yields
a better training accuracy (94.77%), the 6-layer CNN trained

61262

TABLE 3. Train and validation accuracy rates of our CNN architectures
with various depths, on the multi-class user classification task. Each
architecture is trained with four different mini-batch sizes. The best
results are highlighted in bold.

Model Batch size Accuracy
Training | Validation
6 8321% | 84.80%
) 88.82% | 87.30%
4-layer CNN 64 63.90% 83.70%
128 36.96% | 76.75%
6 94.77% | 88.85%
) 0 T7% | 90.75%
6-layer CNN o4 91.56% | 89.15%
128 90.85% | 8835%
6 83.80% | 85.75%
) 93.60% | 9025%
9-layer CNN o4 93.16% | 88.85%
128 01.82% | 87.40%
6 93.26% | 85.90%
%) 93.56% | 88.50%
12-layer CNN oa 902.05% | 87.60%
128 8930% | 8435%

TABLE 4. Train and validation accuracy rates of our 6-layer CNN
architecture with various image representations, on the multi-class user
classification task. The best results are highlighted in bold.

Model Image representation Accuracy
Training | Validation
zero-padding 94.13% 90.05%
6-layer CNN | pseudo-de Brujin sequence | 94.17% 90.75 %
all triplet arrangements 90.52% 87.80%

on mini-batches of 32 samples has a stronger generalization
capacity, attaining an accuracy of 90.75% on the validation
set. We thus choose the 6-layer CNN based on mini-batches
of 32 samples for the subsequent experiments.

Having determined the optimal CNN architecture, we per-
formed a set of experiments to determine if the optimal image
format should be based on de Brujin sequences. We compare
our representation generated with the help of a pseudo-de
Brujin sequence with two baselines, one that considers a
single copy for each of the 6 signals (zero-padding the input
until it reaches the same size as our image representation) and
one that considers all possible triplets formed of the 6 signals.
We report the corresponding results in Table 4. The empiri-
cal results indicate that formatting the input image using a
pseudo-de Bruijn sequence is a better choice than applying
zero-padding or than using all arrangements at once. For the
rest of the experiments, we opt for our image representation
generated as detailed in Section III-A.

After setting out the CNN architecture and the optimal
image format, we conducted further experiments to deter-
mine the optimal size of the embedding. In addition to the
original 6-layer CNN that produces 256-dimensional embed-
dings, we try out a thinner model producing 128-dimensional
embeddings and a wider model producing 512-dimensional
embeddings. The corresponding results are presented
in Table 5. We note that Table 5 contains the average accu-
racy rates computed over 5 runs for each model. While the
wider CNN seems to fit better on the training set, yielding
an accuracy of 95.92%, it does not surpass the CNN pro-
ducing 256-dimensional embeddings, on the validation set.

VOLUME 8, 2020

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

IEEE Access

TABLE 5. Train and validation accuracy rates of our 6-layer CNN
architecture with various embedding sizes, on the multi-class user
classification task. The best results are highlighted in bold.

Model Embedding size Accuracy
Training | Validation
128 93.28% 89.15%
6-layer CNN 256 94.17% 90.75%
512 95.92% 86.95%

TABLE 6. Train and validation accuracy rates of our 6-layer CNN
architecture versus the 6-layer ConvLSTM, on the multi-class user
classification task. Both models are trained with mini-batches

of 32 samples and produce 256-dimensional embeddings. The marker =
indicates that the CNN model is significantly better than the ConvLSTM
model, according to a paired McNemar's test performed at a significance
level of 0.01. The best results are highlighted in bold.

Model Accuracy
Training | Validation

6-layer ConvLSTM 87.92% 88.35%

6-layer CNN 94.17% * 90.75% *

The thinner CNN attains the lowest accuracy rates on both
training and validation sets. In conclusion, we decided to stick
with the CNN architecture that gives us 256-dimensional
feature vectors.

Our final aim is to use our best CNN model as a pre-trained
feature extractor for the user identification task. For a fair
comparison, we apply the ConvLSTM in a similar way, i.e.
as a pre-trained feature extractor. Therefore, the first step
is to train the ConvLSTM on the multi-class user classifi-
cation task. The corresponding accuracy rates are presented
in Table 6. It is important to note, once again, that the hyper-
parameters of the 6-layer ConvLSTM are similar to our best
6-layer CNN (see Section IV-D). Compared to our CNN,
it seems that the LSTM units are not able to properly capture
the particularities of the discrete temporal signals. The vali-
dation accuracy of the ConvLSTM (88.35%) is 2.4% below
the validation accuracy of our CNN (90.75%). As it currently
seems, our CNN is a model with higher learning capacity
than the ConvLSTM. Indeed, our model attains significantly
higher training and validation accuracy rates, according to
a paired McNemar’s test performed at a significance level
of 0.01.

F. USER IDENTIFICATION RESULTS

In Table 7, we present the comparative results on the few-shot
user identification task. The experiments are aimed at val-
idating our modeling choices regarding feature extraction
and classification. First of all, we compare our binary SVM
classifier based on CNN features with two baseline binary
SVM classifiers, one based on handcrafted features and one
based on ConvLSTM features. This comparison is aimed at
revealing the best feature extraction method. Second of all,
we compare the binary SVM models with one-class SVM
models, for all three kinds of features. This comparison is
aimed at showing that the idea of modeling user identification
as a binary classification problem is viable. For each binary
or one-class SVM model, we experiment with two kernel
functions, the linear kernel and the RBF kernel.

VOLUME 8, 2020

Regarding the kernel functions, we note that the RBF
kernel gives generally better results than the linear kernel,
the only exception being the model based on CNN fea-
tures. In the case of handcrafted features, the number of
features (72) is smaller than the number of training sam-
ples (120). Since the classification problem is likely not
linearly separable (because we have less features than data
samples), the SVM based on handcrafted features benefits
from the use of the RBF kernel, which is known to embed
the features in a higher-dimensional space, in which samples
can be linearly separated. As the feature vectors provided
by the CNN contain 256 features, the 120 training samples
are already linearly separable (because we have more fea-
tures than data samples). Further increasing the feature space
through the use of the RBF kernel, might lead to a typical
case of the Hughes phenomenon, i.e. the models start to
suffer from the curse of dimensionality [53]. This seems to
be the case for the CNN features, since the accuracy of the
binary SVM based on the RBF kernel (96.37%) is lower than
the accuracy of the binary SVM based on the linear kernel
(96.72%). Nevertheless, it seems that the RBF kernel brings
a large performance gain for the ConvLSTM features (from
83.16% to 96.18%). Overall, it seems that the RBF kernel is
a better choice than the linear kernel.

With respect to the features, we note that the binary SVM
based on handcrafted features attains accuracy rates between
83% and 88%. We believe that these accuracy rates are
not high enough for the system to be used in practice. The
binary SVM based on ConvLSTM features yields accuracy
rates between 83% and 96%, while our binary SVM model
based on CNN features surpasses both baselines, attaining
accuracy rates between 96% and 97%. We believe that the
performance gap between the ConvLSTM features and our
CNN features is caused by the fact that the ConvLSTM model
has a lower modeling capacity. Interestingly, our results con-
firm the recent trends from the deep learning community,
advocating in favor of using alternative approaches instead
of RNN and LSTM architectures in order to model temporal
data, e.g. by employing attention mechanisms [54]. Overall,
we conclude that our CNN features represent a better choice
than the handcrafted or the ConvLSTM features.

Regarding the classifier, we observe that the binary SVM
attains better results than the one-class SVM, with only one
exception: the linear kernel applied on ConvLSTM features.
Similar to the binary SVM, it seems that the one-class SVM
works better in combination with the RBF kernel rather than
the linear kernel. We believe that the high accuracy differ-
ences between the binary SVM and the one-class SVM are
due to the fact that the one-class SVM has to find an opti-
mal boundary relying only on positive training data samples.
We thus conclude that the idea of including negative training
samples is useful, even if the added samples do not belong to
the attackers from the test set.

We also performed McNemar’s statistical tests [27], at a
confidence level of 0.01, in order to determine if the dif-
ferences between the handcrafted and the deep features

61263

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

TABLE 7. Few-shot user identification results provided by our binary SVM based on CNN features versus two baselines, a binary SYM based on
handcrafted features and a binary SVM based on ConvLSTM features. Results obtained with one-class SVM instead of binary SVM are also included. All
results are reported for two kernel functions, linear and RBF. The reported accuracy, FAR and FRR values represent the average values determined on the
50 users involved in the few-shot user identification task. The best result on each column is highlighted in bold. The marker = indicates that the
corresponding model is significantly better than the binary SVM baseline based on handcrafted features, according to a paired McNemar’s test performed
at a significance level of 0.01. The marker - indicates that the binary SVM is significantly better than the corresponding one-class SVM, according to a

paired McNemar's test performed at a significance level of 0.01.

Model Kernel Accuracy FAR FRR
Handcrafted features + one-class SVM l}i{nl;el\:r ;8122 %31‘32 ?8222
Handcrafted features + binary SVM l}izrg:;r E;E?ZZQ }giggjo ggggjc
ConvLSTM features + one-class SVM lli{lg;r g;ggzﬁi 1761620020 : 176.'642(17?:
ConvLSTM features + binary SVM L)M L T L)
CNN features + one-class SVM 111{1;;? ggggg‘;: 199';2%;? : 199.6220‘;? :
CNN features + binary SVM l}i{nlg;r 3273?;2: :0 2;?)2: :0 :;‘;gl;z: :0

(ConvLSTM and CNN) are statistically significant. Without
exception, the accuracy rates reached by our binary SVM
model based on CNN features are significantly better than the
accuracy rates of the binary SVM based on handcrafted fea-
tures. We also note that the binary SVM based on ConvLSTM
features is significantly better than the binary SVM based
on handcrafted features. We perform another set of statistical
tests to verify if the accuracy differences between the binary
SVM models and the corresponding one-class SVM models
are significant. The McNemar’s statistical tests reveal that the
binary SVM models are in most cases significantly better than
the one-class SVM models.

The empirical results presented in Table 7 indicate that the
best approach is to employ a binary SVM based on the linear
kernel computed over CNN embeddings.

V. CONCLUSION

In this paper, we have presented an approach based on
pre-trained CNN features that can identify (authenticate)
users by analyzing data recorded by motion sensors incor-
porated in mobile devices, while the user performs a sin-
gle tap gesture on the screen. Our approach is based on
transforming the discrete signals from motion sensors into
a gray-scale image representation which is then provided
as input to a convolutional neural network (CNN) that is
pre-trained on a multi-class user classification task. After
pre-training, we used the CNN as feature extractor, gen-
erating an embedding associated to each single tap on the
screen. We compared our user identification system based on
CNN features with two baseline systems, one that employs
handcrafted features and another that employs ConvLSTM
features. All systems are based on the SVM classifier, for a
fair comparison. To pre-train the CNN and the ConvLSTM
models for multi-class user classification, we used a different
set of users than the set used for few-shot user identifi-
cation, ensuring a realistic scenario. The empirical results
demonstrate that (i) our system attains a top accuracy
of 96.72% with a FAR of 3.10% and a FRR of 3.45%, using
only 20 samples per user during training, and (ii) our system

61264

is significantly better than the considered baselines. We thus
conclude that our SVM model based on pre-trained CNN
features is suitable for practical usage, having a high accu-
racy rate while requiring only 20 taps from the user during
registration.

We note that our solution can be used as an implicit addi-
tional authentication factor during an explicit authentication,
e.g. based on face recognition. For example, our system can
be used in an iPhone banking application that uses FacelD.
When the user enters his credentials inside the application,
we can record the motion signals until the user taps on the
log in button. Then, the app will delegate authentication to
FacelD and, in the same time, it will analyze the motion sen-
sors to identify the user. The user is not required to perform
any additional steps during authentication, besides scanning
his face for FacelD. If FacelD decides to verify the user and
our system rejects the user, then perhaps an attacker might
have forced the user to login into his bank account (FacelD
would not be able to detect this situation). If the attacker is the
one handling the iPhone, our system will be able to prevent
the user from logging in.

In future work, we aim to combine the compared models
into an ensemble model that should be able to further improve
the identification performance of users based on motion
patterns. Here, we could explore various ensemble learning
approaches. We also aim to add an attention mechanism to our
CNN model, which could further improve its performance.
We also consider creating and improving authentication sys-
tems by implementing our system as a passive (implicit)
factor in a two-factor authentication scheme.

REFERENCES

[1] P. Andriotis, T. Tryfonas, G. Oikonomou, and C. Yildiz, “A pilot study on
the security of pattern screen-lock methods and soft side channel attacks,”
in Proc. 6th ACM Conf. Secur. Privacy Wireless Mobile Netw. (WiSec),
2013, pp. 1-6.

[2] A.J. Aviv, K. Gibson, E. Mossop, M. Blaze, and J. M. Smith, “Smudge
attacks on smartphone touch screens,” in Proc. WOOT, 2010, pp. 1-7.

[3] Y. Xu, J. Heinly, A. M. White, F. Monrose, and J.-M. Frahm, ‘““Seeing
double: Reconstructing obscured typed input from repeated compromising
reflections,” in Proc. CCS, 2013, pp. 1063-1074.

VOLUME 8, 2020

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

IEEE Access

[4]

[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Y. Zhang, P. Xia, J. Luo, Z. Ling, B. Liu, and X. Fu, “Fingerprint attack
against touch-enabled devices,” in Proc. 2nd ACM Workshop Secur. Pri-
vacy Smartphones Mobile Devices (SPSM), 2012, pp. 57-68.

L. Simon and R. Anderson, “PIN skimmer: Inferring PINs through the
camera and microphone,” in Proc. 3rd ACM Workshop Secur. Privacy
Smartphones Mobile Devices (SPSM), 2013, pp. 67-78.

D. Shukla, R. Kumar, A. Serwadda, and V. V. Phoha, “Beware, your hands
reveal your secrets!” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur. (CCS), 2014, pp. 904-917.

G. Ye, Z. Tang, D. Fang, X. Chen, K. I. Kim, B. Taylor, and Z. Wang,
“Cracking Android pattern lock in five attempts,” in Proc. Netw. Distrib.
Syst. Secur. Symp., 2017.

C.Bo, L. Zhang, T. Jung, J. Han, X.-Y. Li, and Y. Wang, “Continuous user
identification via touch and movement behavioral biometrics,” in Proc.
IEEE 33rd Int. Perform. Comput. Commun. Conf. (IPCCC), Dec. 2014,
pp. 1-8.

A. Buriro, B. Crispo, F. Del Frari, J. Klardie, and K. Wrona, “ITSME:
Multi-modal and unobtrusive behavioural user authentication for smart-
phones,” in Proc. PASSWORDS, 2015, pp. 45-61.

A. Buriro, B. Crispo, and Y. Zhauniarovich, “Please hold on: Unobtrusive
user authentication using smartphone’s built-in sensors,” in Proc. I[EEE Int.
Conf. Identity, Secur. Behav. Anal. (ISBA), Feb. 2017, pp. 1-8.

A. Buriro, B. Crispo, F. Delfrari, and K. Wrona, “Hold and sign: A novel
behavioral biometrics for smartphone user authentication,” in Proc. IEEE
Secur. Privacy Workshops (SPW), May 2016, pp. 276-285.

A. Buriro, B. Crispo, S. Gupta, and F. Del Frari, “DIALERAUTH:
A motion-assisted touch-based smartphone user authentication scheme,”
in Proc. CODASPY, 2018, pp. 267-276.

G. Canfora, P. di Notte, F. Mercaldo, and C. A. Visaggio, “A methodology
for silent and continuous authentication in mobile environment,” in Proc.
ICETE, M. S. Obaidat, Ed. 2017, pp. 241-265.

M. Ehatisham-Ul-Haq, M. Awais Azam, U. Naeem, Y. Amin, and J. Loo,
“Continuous authentication of smartphone users based on activity pat-
tern recognition using passive mobile sensing,” J. Netw. Comput. Appl.,
vol. 109, pp. 24-35, May 2018.

Y. Ku, L. H. Park, S. Shin, and T. Kwon, “Draw it as shown: Behav-
ioral pattern lock for mobile user authentication,” IEEE Access, vol. 7,
pp. 69363-69378, 2019.

H.Li, J. Yu, and Q. Cao, “Intelligent walk authentication: Implicit authen-
tication when you walk with smartphone,” in Proc. IEEE Int. Conf. Bioinf.
Biomed. (BIBM), Dec. 2018, pp. 1113-1116.

N. Neverova, C. Wolf, G. Lacey, L. Fridman, D. Chandra, B. Barbello, and
G. Taylor, “Learning human identity from motion patterns,” IEEE Access,
vol. 4, pp. 1810-1820, 2016.

C. Shen, T. Yu, S. Yuan, Y. Li, and X. Guan, “Performance analysis of
motion-sensor behavior for user authentication on smartphones,” Sensors,
vol. 16, no. 3, p. 345, 2016.

W. Shi, J. Yang, Y. Jiang, F. Yang, and Y. Xiong, “SenGuard: Passive user
identification on smartphones using multiple sensors,” in Proc. IEEE 7th
Int. Conf. Wireless Mobile Comput., Netw. Commun. (WiMob), Oct. 2011,
pp. 141-148.

Z. Sitova, J. Sedenka, Q. Yang, G. Peng, G. Zhou, P. Gasti, and
K. S. Balagani, “HMOG: New behavioral biometric features for contin-
uous authentication of smartphone users,” IEEE Trans. Inf. Forensics
Security, vol. 11, no. 5, pp. 877-892, May 2016.

L. Sun, Y. Wang, B. Cao, S. Y. Philip, W. Srisa-An, and A. D. Leow,
“Sequential keystroke behavioral biometrics for mobile user identification
via multi-view deep learning,” in Proc. ECML-PKDD, 2017, pp. 228-240.
R. Wang and D. Tao, “Context-aware implicit authentication of smart-
phone users based on multi-sensor behavior,” IEEE Access, vol. 7,
pp. 119654-119667, 2019.

Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ““Gradient-based learn-
ing applied to document recognition,” Proc. IEEE, vol. 86, no. 11,
pp. 2278-2324, 1998.

A. Krizhevsky, 1. Sutskever, and G. E. Hinton, “ImageNet classifica-
tion with deep convolutional neural networks,” in Proc. NIPS, 2012,
pp. 1097-1105.

A. Ralston, “De Bruijn sequences—A model example of the interaction of
discrete mathematics and computer science,” Math. Mag., vol. 55, no. 3,
pp. 131-143, 1982.

C. Cortes and V. Vapnik, “Support-vector networks,” Mach. Learn.,
vol. 20, no. 3, pp. 273-297, 1995.

VOLUME 8, 2020

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(37]

(38]

(39]

(40]

(41]

(42]

(43]

(44]

(45]

[46]

[47]
(48]
(49]

[50]

[51]

T. G. Dietterich, “Approximate statistical tests for comparing super-
vised classification learning algorithms,” Neural Comput., vol. 10, no. 7,
pp. 1895-1923, Oct. 1998.

N. L. Clarke and S. M. Furnell, “Advanced user authentication for mobile
devices,” Comput. Secur., vol. 26, no. 2, pp. 109-119, Mar. 2007.

P. Campisi, E. Maiorana, M. Lo Bosco, and A. Neri, ‘“User authentication
using keystroke dynamics for cellular phones,” IET Signal Process., vol. 3,
no. 4, pp. 333-341, 2009.

E. Maiorana, P. Campisi, N. Gonzélez-Carballo, and A. Neri, “Keystroke
dynamics authentication for mobile phones,” in Proc. ACM Symp. Appl.
Comput. (SAC), 2011, pp. 21-26.

E. Vildjiounaite, S.-M. Mikeld, M. Lindholm, R. Riihimiki, V. Kyll6nen,
J. Mintyjarvi, and H. Ailisto, “Unobtrusive multimodal biometrics for
ensuring privacy and information security with personal devices,” in Proc.
Pervas., 2006, pp. 187-201.

C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going deeper with convolutions,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2015,
pp. 1-9.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770-778.

K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” in Proc. ICLR, 2014, pp. 1-14.

M.-I. Georgescu, R. T. Ionescu, and M. Popescu, “Local learning with deep
and handcrafted features for facial expression recognition,” IEEE Access,
vol. 7, pp. 64827-64836, 2019.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster R-CNN: Towards real-
time object detection with region proposal networks,” in Proc. NIPS, 2015,
pp- 91-99.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, *“You only look once:
Unified, real-time object detection,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jun. 2016, pp. 779-788.

R. T. Ionescu, B. Alexe, M. Leordeanu, M. Popescu, D. P. Papadopoulos,
and V. Ferrari, “How hard can it be? Estimating the difficulty of visual
search in an image,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 2157-2166.

R. K. Samala, H.-P. Chan, L. Hadjiiski, M. A. Helvie, J. Wei, and K. Cha,
“Mass detection in digital breast tomosynthesis: Deep convolutional neural
network with transfer learning from mammography,” Med. Phys., vol. 43,
no. 12, pp. 6654-6666, Nov. 2016.

N. Wahab, A. Khan, and Y. S. Lee, “Transfer learning based deep CNN for
segmentation and detection of mitoses in breast cancer histopathological
images,” Microscopy, vol. 68, no. 3, pp. 216-233, Jun. 2019.

Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521,
no. 7553, pp. 436444, May 2015.

I. Goodfellow, A. Courville, and Y. Bengio,
Cambridge, MA, USA: MIT Press, 2016. [Online].
http://www.deeplearningbook.org

J. Yosinski, J. Clune, Y. Bengio, and H. Lipson, “How transferable are
features in deep neural networks?”” in Proc. NIPS, 2014, pp. 3320-3328.
O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, “Ima-
geNet large scale visual recognition challenge,” Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211-252, Dec. 2015.

V. Nair and G. E. Hinton, “Rectified linear units improve restricted Boltz-
mann machines,” in Proc. ICML, 2010, pp. 807-814.

N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdi-
nov, “Dropout: A simple way to prevent neural networks from overfitting,”
J. Mach. Learn. Res., vol. 15, pp. 1929-1958, Jan. 2014.

D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015, pp. 1-15.

J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
Cambridge, U.K.: Cambridge Univ. Press, 2004.

S. Hochreiter and J. J. Schmidhuber, ““Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 80-1735, 1997.

S. Jastrzebski, Z. Kenton, D. Arpit, N. Ballas, A. Fischer, Y. Bengio, and
A. Storkey, “Width of minima reached by stochastic gradient descent is
influenced by learning rate to batch size ratio,” in Proc. ICANN, vol. 11141,
2018, pp. 392-402.

M. Abadi et al., “TensorFlow: A system for large-scale machine learning,”
in Proc. OSDI, 2016, pp. 265-283.

Deep Learning.
Available:

61265

IEEE Access

C. Benegui, R. T. lonescu: CNNs for User Identification Based on Motion Sensors Represented as Images

[52] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,
M. Blondel, P. Prettenhofer, R. Weiss, and V. Dubourg, “Scikit-
learn: Machine learning in Python,” J. Mach. Learn. Res., vol. 12,
pp- 2825-2830, Oct. 2011.

[53] G. V. Trunk, “A problem of dimensionality: A simple example,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. PAMI-1, no. 3, pp. 306-307,
Jul. 1979.

[54] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez,
L. Kaiser, and I. Polosukhin, “Attention is all you need,” in Proc. NIPS,
2017, pp. 5998-6008.

CEZARA BENEGUI received the degree and
M.Sc. Diploma degree from the Faculty of Math-
ematics and Computer Science, University of
Bucharest, Romania, in 2016 and 2018, respec-
tively, where she is currently pursuing the Ph.D.
degree. She is a Teaching Assistant with the Uni-
versity of Bucharest. Her research interests include
machine learning, security, user behavior, artificial
intelligence, and deep learning.

61266

RADU TUDOR IONESCU (Member, IEEE)
received the Ph.D. degree from the University
of Bucharest, Romania, in 2013. He is currently
a Professor with the University of Bucharest.
He has published over 70 articles at international
peer-reviewed venues (e.g., CVPR, ICCV, ACL,
EMNLP, NAACL, and WACYV), and a research
monograph with Springer. His research interests
include machine learning, computer vision, image
processing, text mining, and computational biol-
ogy. He received the 2014 Award for Outstanding Doctoral Research in
the field of computer science from the Romanian Ad Astra Association.
He received the Caianiello Best Young Paper Award at ICIAP 2013 for the
article Kernels for Visual Words Histograms. He also received the Young
Researchers in Science and Engineering Prize organized by Prof. R. Mihal-
cea for young Romanian researchers in all scientific fields. He participated
at several international competitions obtaining top ranks: fourth place in
the Facial Expression Recognition Challenge of the WREPL Workshop of
ICML 2013, third place in the Native Language Identification Shared Task
of the BEA-8 Workshop of NAACL 2013, second place in the Arabic Dialect
Identification Shared Task of the VarDial Workshop of COLING 2016,
first place in the Arabic Dialect Identification Shared Task of the VarDial
Workshop of EACL 2017, first place in the Native Language Identification
Shared Task of the BEA-12 Workshop of EMNLP 2017, and first place in
the Arabic Dialect Identification Shared Task of the VarDial Workshop of
COLING 2018.

VOLUME 8, 2020

	INTRODUCTION
	RELATED WORK
	METHOD
	IMAGE REPRESENTATION
	CNN-BASED FEATURE EXTRACTION
	FEW-SHOT USER IDENTIFICATION

	EXPERIMENTS
	DATA SET
	EVALUATION METRICS
	BASELINES
	BASELINE BASED ON HANDCRAFTED FEATURES
	BASELINE BASED ON CONVLSTM FEATURES

	PARAMETER AND IMPLEMENTATION CHOICES
	MULTI-CLASS USER CLASSIFICATION RESULTS
	USER IDENTIFICATION RESULTS

	CONCLUSION
	REFERENCES
	Biographies
	CEZARA BENEGUI
	RADU TUDOR IONESCU

