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ABSTRACT A novel laser self-mixing interferometry vibration measurement algorithm based on the local
maximum detection technique is proposed, that can reconstruct micro vibrations rapidly and easily. In this
article, the principles of the local maximum detection algorithm are analyzed in detail, and the process of
solving the window function is emphasized. Themajor advantage of the method is that it does not involve any
complicated calculations and removes the need for optical/electromechanical components. The validity of
the presented method is confirmed by means of simulated signals and demonstrated via several experiments
for harmonic and aleatory motion.

INDEX TERMS Vibration measurement, local maximum detection, self-mixing interferometry.

I. INTRODUCTION
Laser self-mixing interferometry (SMI), which is also called
the laser optical feedback interference effect, is an emerging
and promising nondestructive optical measurement technique
[1], [2]. This method reduces the complexity of the optical
system configuration compared with that under traditional
double-beam interferometry [3]–[6]. SMI occurs when a por-
tion of a laser diode (LD) output beam is reflected or diffused
by a moving target and returned to the laser cavity. The
reinjected laser beam carries the moving target information
and mixes with the internal light, causing variations in the
wavelength of the laser and the optical output power. The out-
put SMI power is detected by a built-in monitor photodiode
(PD). The SMI technique is used in several fields of research
in applications such as measuring absolute distance [7], [8];
displacement [9]; vibration [10], [11]; and velocity [12], [13];
and imaging [14]; and laser parameter measurement [15],
[16] due to its compactness, self-alignment, and low cost.

An SMI signal has a λ/2 fringe resolution, and the accu-
racy depends on the wavelength changes [1]. To increase
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the measurement accuracy beyond a half- wavelength,
Jiang et al. proposed an improved transition detection algo-
rithm that can differentiate between different SMI feedback
levels [9]. However, false transitions could lead to measure-
ment error. Arriaga et al. proposed a fringe detection method
that is based on the Hilbert transform, and the algorithm
shows immunity to speckle signal interference in reconstruct-
ing displacement [17]; however, the phase unwrapping pro-
cess is slightly complicated. Bes et al. proposed a phase
unwrapping method (PUM) that can estimate the optical
feedback level factor C and line-width enhancement factor
α, and this method can achieve a resolution of λ/16 [18].
However, PUM can adapt to the moderate feedback regime
only. Huang et al. proposed a dominant harmonic order
determination method to reconstruct external target vibra-
tion [19]; however, it can measure sinusoidal vibration only.
Wang et al. proposed an integral reconstruction method for
displacement measurements, and the relative error was less
than 3.2% [20]. However, this method can be used under the
very weak feedback regime only. Zhang et al. proposed a
new demodulation algorithm based on multiple Hilbert trans-
forms (MHT) for SMI [11]. However, this method has a large
relative error.
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FIGURE 1. Schematic diagram of two Fabry–Pérot cavities, depicting
self-mixing interference.

An effective micro vibration measurement algorithm based
on local maximum detection (LMD) for self-mixing signals
is therefore proposed in this work. First, the local maximum
points (LMPs) of the SMI signal are obtained to determine the
unwrapped laser external phase φF (t). However, the obtained
LMPs do not contain directivity. Second, a window function
that is based on adopting the median of the derivative of the
SMI signal is proposed to determine the correct direction
of the LMPs. Third, we use the cubic spline interpolation
method to fit the micro vibration curve. While maintain-
ing the inherent simplicity, compactness and low cost of
the measurement system, the target vibration can be easily
reconstructed.

The rest of this study is organized as follows. First, the the-
ory of SMI phenomenon is derived by two Fabry–Pérot cav-
ities. Second, the proposed LMD algorithm is analyzed in
detail, and the process of the window function is emphasized.
Finally, the algorithm is validated through numerical simula-
tions and experiments.

II. LASER SELF-MIXING INTERFERENCE EFFECT
Laser self-mixing interference theory was first presented by
Lang and Kobayashi in 1980 [21]; the well-known equation
is also named after them. Many researchers have studied
Lang–Kobayashi theory [1], [2], [22]. The vibration of the
external target induces the modulation of the length of the
external cavity, which leads to SMI. The basic theories of
the self-mixing interference effect can be explained by two
Fabry–Pérot cavities, as shown in Fig. 1 [22], in which r1 and
r2 denote the amplitude reflectivity of LD facets, r3 is the
amplitude reflectivity of the external target, l is the length of
the laser cavity and L represents the length of the external
cavity. The output power signal is detected by a PD.

According to Lang–Kobayashi theory, the relationship
between the external phase φF (t) and the laser output power
PF of the self-mixing interference is expressed as

PF (t) = P0 [1+ m cos (φF (t))] , (1)

where P0 refers to the laser output power under free beam
running conditions. m represents the modulation index of
SMI and is affected by the reflection coefficient of the tar-
get surface [23]. In (1), the external phase φF (t) can be

derived as

cos (φF (t)) = (PF/P0 − 1)/m. (2)

When the laser self-mixing effect occurs, the external
round trip phase should satisfy

φ0 (t) = φF (t)+ C sin [φF (t)+ arc tan (α)] , (3)

where φ0 (t) represents the external phase without optical
feedback, α refers to the line-width enhancement factor, and
C denotes the feedback level parameter. According to [24],
0 < C ≤ 1 is a weak feedback regime, 1 < C ≤ 4.6 is a
moderate feedback regime and C > 4.6 is a strong feedback
regime. For C > 4.6, the SMI fringes become sawtooth-like
and exhibit hysteresis. For the moderate feedback regime,
the piecewise transition detection algorithm was proposed on
the basis of SMI signal differentials [9], [18], [25]. However,
identifying the direction of the target directly from the SMI
signal in the weak feedback regime is difficult because the
signals are nearly sinusoidal. Therefore, in this study, only
weak optical feedback levels are discussed.

The laser external phase without and with optical feedback
can be expressed as

φ0 (t) = 2π × 2L (t) /λ0, (4)

φF (t) = 2π × 2L (t) /λF , (5)

where λ0 represents the initial wavelength of the laser and λF
represents the wavelength with optical feedback. Moreover,
given the weak feedback regime [9] φ0 (t) ≈ φF (t), and
according to (3), the external target vibration expression can
be written as

L (t) =
λ0

2× 2π
φF (t) . (6)

III. ALGORITHM DESCRIPTION
A. PRINCIPLE OF LMD
This study presents a new algorithm that is based on the
LMD technique to unwrap the correct external phase φF (t)
and reconstruct micro vibrations. Figure 2 shows the sim-
ulation of a self-mixing interference signal; the simulation
program comes from reference [26]. The self-mixing inter-
ference signal generated in Fig. 2(a) comes from equation (1)
and represents the output power of the laser. In Fig. 2(a),
the numerical simulation is operated under C = 0.1, and
the line-width enhancement factor α = 4.6. The simulated
wavelength of the LD is 650 nm, and the original external
cavity length between the LD and the target is L0 = 0.1 m.
The harmonic vibration is driven at a frequency of 100 Hz
and an amplitude of 1.8 µm. The sampling frequency is
200 kHz, and 4000 sampling points exist. The local maxi-
mum points (LMPs) of the SMI signal are shown in Fig. 2(b).

The LMPs of the SMI are acquired. However, the detection
of LMPs does not contain directivity [22]. We propose the
window function method based on the inverse point to obtain
the right direction for the LMPs.

The correct window function is based on adopting the
median of the derivative of the SMI signal [20], [22]. Fig. 3(a)
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FIGURE 2. Local maximum points of the self-mixing signal. (a) SMI
simulation with C = 0.1. (b) The local maximum points.

FIGURE 3. Window function of the self-mixing signal. (a) SMI with C =

0.1. (b) Derivative of the SMI signal (black solid curve), its lower and
upper envelopes (green and magenta dashed curves, respectively) and
the median of the derivative signal (blue solid curve) compared with its
magnified (five times) version (blue dashed curve) and the window
function of the SMI (red solid curve).

shows the simulated SMI signal for C = 0.1. As presented
in Fig. 3(b), the black solid curve represents the derivative sig-
nal of SMI, with its lower and upper envelopes represented by
green and magenta dashed lines, respectively. The upper and
lower envelopes are expressed as envmax (t) and envmin (t),
respectively. Moreover, the median of the derivative signal
can be derived by

med (t) = envmax (t)− [envmax (t)− envmin (t)]/2, (7)

which is shown in Fig. 3(b) by the blue solid curve, from
which we can see that the signs of med (t) indicate the
correct directivity for the moving target. The median curve is
magnified five times, as presented by the blue dashed curve,

FIGURE 4. Block diagram of the LMD algorithm.

to facilitate comparison of this curve with the other curves
in a single graph. The window function is thus obtained in
accordance with the inverse point (between + and −).
A block diagram of the proposed algorithm is shown

in Fig. 4. First, the SMI signal is filtered and normalized.
Then, the LMPs of the SMI signal are obtained. Moreover,
we can obtain the window function by adopting the median
of the derivative of the SMI. Next, we can obtain the modified
LMPs that contain the correct directivity by using the LMPs
to multiply the window function. After the LMPs of the
SMI signal are correctly detected, the micro-vibration can be
reconstructed by the fringe counting method providing λ/2
resolution, and other reconstruction methods. In this study,
the cubic spline interpolation method [27] is used to recon-
struct the micro vibrations, as shown in the block diagram.

B. NUMERICAL SIMULATION
The vibration reconstruction based on the proposed method
is tested with MATLAB software.

The values of the parameters and variables in the numerical
simulation are listed in Table 1.

The sampling frequency is 200 kHz, and 8000 sampling
points exist. The red curve in Fig. 5(a) presents the simulated
SMI signal. The blue points in Fig. 5(b) are the LMPs with
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TABLE 1. Values of the variables in simulation.

FIGURE 5. Simulation of harmonic vibration with C = 0.1. (a) SMI signal.
(b) Local maximum points (blue) and window function (red).
(c) Reference and reconstruction vibration (red solid and blue dashed
lines, respectively). (d) Absolute error.

the correct direction, and the red curve is the window function
of the SMI signal. In Fig. 5(c), the harmonic vibration is
driven at a frequency of 100 Hz and amplitude of 1.8 µm
as a reference (in red), and the blue dashed line presents the
reconstruction vibration. Figure 5(d) illustrates the absolute
error between the reference and vibration reconstruction,
from which the maximum absolute error is −13.2 nm.
The vibration reconstruction is performed using a simu-

lated aleatory movement to confirm the generality of the pro-
posed LMD algorithm. The aleatory movement is organized
using a sinusoidal wave of 100 Hz modulated by a 50 Hz
sinusoidal wave with a modulation depth of 50%. A total
of 8000 sampling points exist. The SMI signal of the aleatory
motion is shown in Fig. 6(a), which indicates that the number
of SMI fringes varies with the amount of displacement on
both sides of the inverse points. As illustrated in Fig. 6(b),
the black solid curve represents the derivative signal of the
SMI, and its lower and upper envelopes are represented by the
green and magenta dashed lines, respectively. The median of
the derivative signal is presented by the blue dashed curve,

FIGURE 6. Simulation of aleatory vibration with C = 0.1. (a) SMI signal.
(b) Derivative of the SMI signal (black), its lower and upper envelopes
(green and magenta dashed curves, respectively), the median of the
derivative signal magnified five times (blue dashed curve) and the
window function (red). (c) Local maximum points (blue) and window
function (red). (d) Reference and reconstruction vibration (red solid and
blue dashed curves, respectively). (e) Absolute error.

FIGURE 7. Simulation of target vibration with different C values under a
weak optical feedback regime.

which is magnified five times for clarity. The blue points
in Fig. 6(c) are the correct LMPs, and the red curve is the
window function. In Fig. 6(d), the aleatory vibration is driven
with a peak-to-peak amplitude of 3.5 µm as the reference (in
red), and the blue dashed curve presents the reconstruction
vibration. Figure 6(e) represents the absolute error between
the reference and vibration reconstruction, from which the
maximum absolute error is 13.34 nm.

Furthermore, the influence of the optical feedback level
on the vibration measurement is considered. The simulation
results with different C values under the weak feedback
regime are shown in Fig. 7. The remaining parameters in
the simulation series are consistent with those in Fig. 5.
Figure 7 indicates that the minimum relative error is 0.55%
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FIGURE 8. Experimental system (a) Schematic diagram. (b) Experimental setup.

when C = 0.01, with a peak-to-peak error of 19.98 nm and
a peak-to-peak vibration amplitude of 3.6 µm. The maxi-
mum relative error is 0.75% when C = 1.0, with an abso-
lute peak-to-peak error is 26.99 nm. The simulation results
in Fig. 7 show that the proposed LMD algorithm has high
precision, with all the relative errors being less than 1% under
the weak feedback regime. The findings also verify that the
algorithm is only slightly influenced by the optical feedback
level under the weak feedback regime.

IV. EXPERIMENTAL VALIDATIONS
Experiments are performed to verify the effectiveness of the
proposed LMD algorithm. Figure 8 shows the experimental
photos. A low-cost commercial InGaAIP laser diode (LD,
QL65D5SA, QSI) is used as a light source to generate the
SMI effect.When the LD is driven by a constant current driver
(LDC200C, Thorlabs) of 24mA, it generates a single longitu-
dinal mode beam with a wavelength of 650 nm, and the typi-
cal light output power is 5mW.According to the specification
of the laser diode constant current driver LDC200C, the typ-
ical value of the output current drift is less than 1 µA under
continuous operation for 24 hours. The constant current driver
performs well against temperature drift. A variable attenuator
(VA) is used to adjust the amount of optical feedback into
the inner laser cavity. A mirror is fixed on a piezoelectric
transducer (PZT, P753.1CD, PI) as a standard vibrating target
with a traveling distance of 12 µm. The resolution of 0.05 nm
under closed loop control makes PZT a high-precision ref-
erence in vibration measurement experiments. The current
variation of the laser diode is monitored by a photodiode (PD)
packaged in the LD. The current is then converted into voltage
and sent through by a trans-conductance amplifier. Subse-
quently, the voltage signal is digitized with a data acqui-
sition module (USB-4431, NI) and finally processed on a
computer.

Temperature is an important parameter in self-mixing
interference tests. In the experiments, a temperature con-
troller (TED200C, Thorlabs) is used to maintain a constant
temperature for the laser diode, and to avoid the influence of

FIGURE 9. Harmonic vibration reconstruction experiments with C = 0.1.
(a) Experimental SMI signal. (b) Filtered and normalized signal. (c) Local
maximum points. (d) Reference and reconstruction vibration (red solid
and blue dashed curves, respectively). (e) Absolute error.

temperature changes on the experimental results. Moreover,
the experimental equipment is placed on a precision optical
table (T1225QK, Thorlabs) for the experiments to avoid the
effects of mechanical vibration. All these measures can guar-
antee the stability of the system over time.

The experiments are conducted in the weak feedback
regime, as shown in Fig. 9. The harmonic vibration of the
PZT is controlled at a frequency of 5 Hz and a peak-to-peak
amplitude of 5 µm. The sampling frequency is 50 kHz, and
30000 sampling points are used. In the experiment, a 300 Hz
low-pass filter is used to filter the PD output acquisition
signal, and the filtering signal is normalized. The curve
in Fig. 9(a) shows the experimental SMI signal for C = 0.1.
The filtered and normalized signal is shown in Fig. 9(b).
Figure 9(c) presents the LMPs of the SMI with the
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correct direction. The blue dashed curve in Fig. 9(d) presents
the reconstruction measurement through the LMD recon-
struction algorithm, and the red solid curve provides a refer-
ence for the PZT vibration. Figure 9(e) shows the absolute
error between the reference and the reconstruction, with a
maximum absolute error of 67.9 nm and a peak-to-peak
relative error of 2.6%.

To further illustrate the reliability of the proposed method,
we perform several experiments with C = 0.1. The PZT
vibrates at a frequency of 5 Hz and peak-to-peak amplitudes
from 2.0 µm to 10.0 µm, with a step size of 1.0 µm. Each
experiment is repeated 10 times, and the sampling frequency
is 50 kHz. The analysis results are shown in Fig. 10, in which
the red circles represent the mean relative error and the black
error bars correspond to the standard error of the reconstruc-
tion vibration under weak feedback.

FIGURE 10. Relative error of different amplitude vibrations.

Figure 10 indicates that the relative errors of all the vibra-
tion reconstruction experiments are less than 5%. Moreover,
the relative error of reconstruction tends to decrease gradually
with increasing vibration amplitude.

The accuracy of MHT [11] and the proposed method are
compared to show the performance of the LMD algorithm.
The reconstruction peak-to-peak absolute error of the two
methods at different amplitudes is shown in Table 2. The
harmonic vibration is controlled at a frequency of 5 Hz,
peak-to-peak amplitudes from 2 µm to 7 µm and a constant
sampling frequency of 50 kHz. Both of the optical feedback
levels of the reconstructed SMI signal are estimated at 0.1.
The table shows that all the reconstruction errors of the micro
vibration except that at 3 µm are better than those of MHT.

Next, the target is driven to move in a triangular wave-
form with a frequency of 5 Hz and peak-to-peak amplitude
of 4.6 µm. The number of sampling points is 30000, and the
sampling frequency is 50 kHz. The reconstruction process is
shown in Fig. 11. The power signal of the SMI is presented
in Fig. 11(a). Figure 11(b) shows the processed SMI signal,

TABLE 2. Comparison of errors between MHT and LMD.

FIGURE 11. Triangular waveform vibration reconstruction experiments
with C = 0.1. (a) Experimental SMI signal. (b) Filtered and normalized
signal. (c) Local maximum points. (d) Reconstruction vibration.

whereas Fig. 11(c) illustrates the local maximum points of the
SMI with the correct direction. The corresponding peak-to-
peak amplitude of the reconstructed waveform is 4.539 µm
for a maximum vibration amplitude of 4.6 µm, which is
shown in Fig. 11(d).

Furthermore, we conduct a group of aleatory vibration
reconstruction experiments to verify the generality of the
proposed algorithm, as shown in Fig. 12. The target vibration
is a sine wave of 10 Hz modulated by a 5 Hz sine wave with
a modulation depth of 50%, as shown in Fig. 12(d) by the red
solid curve. The blue dashed curve presents the reconstruc-
tion vibration through the LMD reconstruction algorithm.
The number of sampling points is 30000, and the other param-
eters are the same as those in Fig. 9. The curve in Fig. 12(a)
shows the experimental SMI signal under weak feedback for
C = 0.1, and the filtered and normalized signal is shown
in Fig. 12(b). Figure 12(c) presents the local maximum points
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TABLE 3. Comparison of computing times of the PUM, integral, MHT and LMD methods at different sampling rates.

FIGURE 12. Aleatory vibration reconstruction experiments with C = 0.1.
(a) Experimental SMI signal. (b) Filtered and normalized SMI signal.
(c) Local maximum points. (d) Reference and reconstruction vibration
(red solid and blue dashed curves, respectively). (e) Absolute error.

of the SMI. The corresponding peak-to-peak amplitude of the
reconstructed waveform is 3.977 µm for a maximum vibra-
tion amplitude of 2.0 µm. Figure 12(e) shows the absolute
error between the reference and reconstruction, with a peak-
to-peak relative error of 4.85%.

Finally, several groups of experiments are conducted at
different sampling rates (from 20 kHz to 100 kHz) with an
interval of 20 kHz to compare the computing times of the
proposed LMD method, the MHT method [11], the integral
reconstruction method [20] and the PUM method [18]. For
comparison, the harmonic vibration experimental parameters
are set as follows: 2 µm peak-to-peak amplitude and 5 Hz
frequency. The SMI signal of one period is reconstructed.
The computing times of the four reconstruction methods,
which are listed in Table 3, are calculated using MATLAB.
The computing times of all the methods increase gradually
as the sampling frequency increases, but the LMD method
has a shorter computing time than the other three methods.
This finding is expected, given that the proposed LMD algo-
rithm does not require any integrals, Hilbert transformations
or phase unwrapping operations. Therefore, it has a faster
calculation speed than the compared methods.

It should also be noted that the measurement results are
also correlated with the light intensity disturbance [28]. Auto-
matic gain control can be used to stabilize the signal to mini-
mize the impact on the measurement; however, the influence
of the light intensity disturbance remains difficult to eliminate
thoroughly [29]. Therefore, we will minimize the influence
of the intensity distribution on the measurement results in the
near future.

V. CONCLUSION
In this study, a simple and effective reconstruction method for
vibration is proposed. With a combination of local maximum
detection and the window function technique, micro vibra-
tions can be reconstructed under the weak feedback regime
in self-mixing interference. The repeated experimental results
show that the relative error is less than 5%. The optical path
is simple and does not involve any complicated calculations;
thus, this method can be applied in semiconductor laser
self-mixing vibration measurements. Therefore, the proposed
method provides a beneficial exploration of micro vibration
measurements.
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