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ABSTRACT This paper proposes a quick and accurate method based on an improved quantum-behaved
particle swarm optimization (QPSO) algorithm for route planning of fixed-wing unmanned aerial vehi-
cle (UAV). To overcome the deficiencies of local optima and slow global convergence speed, a novel
strategy of particle dimension search is proposed in the QPSO algorithm. It is implemented by transforming
original evaluation function into evaluation function of waypoint to more easily escape from local optima
and accelerate global convergence speed. In addition, an efficient pretreatment technology for the initial
trajectory is set to shorten the calculation time of route planning. Compared with other representative route
planners, the comparison results indicate that the proposed route planner is more effective and feasible,
which can take on faster convergence speed and better global search ability. The proposed route planner can
provide a valuable reference for the route planning of fixed-wing UAVs in different environments.

INDEX TERMS Unmanned aerial vehicle, route planning, QPSO, particle dimension search.

I. INTRODUCTION
UAV systems with the great advantages of low-cost and flex-
ibility have been applied widely in military and nonmilitary
tasks to implement searching, patrolling, target track-
ing, and surveillance in complex indoor/outdoor environ-
ments [1]–[4]. In order to enhance the automation level of
UAV systems, it is necessary to carry out various technolo-
gies, such as the environment detection, path planning, and
the design of flight control systems [5]. As a sub-module
of UAV control modules, path planner plays an important
role in UAV systems. The key task for route planning is to
find a flyable route from the starting point to destination
avoiding all the collisions and threats on the basis a series of
performancemeasure, e.g. path length, radars/missiles threats
and flight height [6], [7]. On the one hand, route planning
can be regarded as a multiple-objective optimization prob-
lem. On the other hand, the path planning problem is more
complex due to many constraints, e.g. complex environment
constraints and UAV physical constraints etc. Therefore, it is
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a complicated optimization problem with multi-objective and
multi-constraint in essence.

Offline planner mainly deals with the path planning prob-
lem when the global information is known in advance [8],
which has been more deeply and extensively studied in recent
years. At present, there are three classes of approaches to
solve offline path planning problem. The first type is based
on graph algorithms, such as Voronoi diagram [9] and Vis-
ibility Graph approach [10], [11]. However, the kinematic
and dynamic constraints of UAV are unable to be taken
into account based on graph algorithms. The second type is
based on heuristic search algorithms. A∗ algorithm is a typ-
ical heuristic representative, which generates the trajectory
with the guide of the least-cost from a given initial node
to a target node [12]. As a result, when the mission space
enlarges, the calculation amount of finding the optimal route
will increase explosively [13]. The last type is based on
evolutionary computation algorithms [6], [14], [15]. Mul-
tiple routes are randomly initialized and the correspond-
ing objective function values are calculated according to
given evaluation criteria. Each solution is updated at the
beginning of each loop. The general UAV planning system
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based on evolutionary computation algorithms is shown in
figure 1.

FIGURE 1. General planning system based on evolutionary computation
algorithms.

Due to the satisfactory performance of evolutionary com-
putation algorithms, they are more flexible and effective than
most of other existing approaches for UAV route planning.
However, it is found that the evolutionary computation algo-
rithms still have some drawbacks (e.g. local optima and slow
global convergence speed). In order to overcome these short-
comings in planning problem, Pehlivanoglu [16] proposed
multi-frequency vibrational genetic algorithm (MVGA) with
a new mutation application strategy and diversity variety to
shorten the computational time. Özalp and Sahingoz [17]
developed genetic algorithm and parallel approach to reduce
path planning calculations under 3D dimensional structure.
Mac et al. [18] proposed a multi-objective PSOwith an accel-
erated update methodology based on Pareto dominance prin-
ciple to enhance computational efficiency. Zhang et al. [19]
proposed a hybrid multi-objective bare-bones PSO with dif-
ferential evolution to improve the feasibility of an infeasible
path.

Particle swarm optimization (PSO) algorithm is a popu-
lar evolutionary computation algorithm, which has relatively
less adjustment parameters and better optimization effects.
It has been successfully introduced into many fields to solve
NP-hard optimization problems [20]–[22]. In PSO algorithm,
the motion state of each particle is described by position
and speed, and its position is updated in the process of
evolution [23]. Due to the constraint of the velocity of the
particle, the search of the feasible solution is difficult to cover
the entire mission space. QPSO algorithm is proposed to
improve the randomness and global search performance of
the particles [24]. The principle of QPSO algorithm is derived
from quantum mechanics and PSO model, which ensures
the global convergence of the algorithm. Similar to other
evolutionary algorithms, the slow convergence speed and the
local optimum entrapment still exist inevitably [25]. To solve
these problems, Fu et al. [26] combined the DE algorithm
with the QPSO algorithm in an attempt to further enhance the
performance of QPSO algorithm. Tokgo and Li [27] proposed
a sorted QPSO algorithm and the group with best fitness
is replaced by the group of the particles with worst fitness.
In order to enhance the convergence speed and optimiza-
tion precision, Xue et al. [28] proposed a hybrid improved

FIGURE 2. The environment representation.

quantum-behaved PSO (LTQPSO) for trajectory planning of
autonomous mobile robot (AMR) in the environment with
random obstacles. Rehman et al. [29] proposed a novel fit-
ness selection methodology and a dynamic parameter update
strategy to avoid trapping into local optima. While QPSO
algorithm is adopted to solve multi-dimensional optimization
problem in a complex three-dimension environment, all the
waypoints of a route are regarded as an individual to partic-
ipate into the selection process of QPSO algorithm. In this
way, some presented high quality waypoints in previous iter-
ation may be discarded owing to the effect of other low
quality waypoints. As a result, it is difficult that the high-
quality waypoints enter into the further evolution process.
Therefore, a novel algorithm based on particle dimension
search, denoted as SDQPSO, is presented to improve the
search accuracy and convergence speed of QPSO for route
planning of fixed-wing UAVs.

The remainder of the paper is organized as follows.
Section II specifies the description of flight route and planned
space environment. Section III introduces the route evaluation
function in detail. Section IV presents the improved QPSO.
In Section V, the effectiveness of the proposed planner is
tested by comparing simulation results with other represen-
tative route planners in real terrain elevation maps. Finally,
the conclusions are provided in Section VI.

II. ENVIRONMENT AND FLIGHT ROUTE DESCRIPTION
For the planning problem of the flight route, some key ele-
ments should be considered in advance, e.g. environment
description of task space, flight trajectory etc. At first, the task
space is decomposed into a series of three-dimensional mesh,
and the corresponding 2D matrix representation of 3D envi-
ronment (figure 2) is shown in figure 3. In digital elevation
map, the danger zones from the radars or missiles are equiva-
lent to some standard cylinders in order to simplify themodels
of the threats [6]. So the threat zones can be described by a
separate matrix as follows:

Zthreat =


x1 y1 r1
x2 y2 r2
· · · · · · · · ·

xn yn rn

 (1)
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FIGURE 3. The corresponding matrix of the terrain in Figure 2.

where xi and yi are the coordinates of the bottom center point
of the i-th threat source, ri is the radius of the i-th cylinder.
The flight path for UAV is composed of many waypoints

in three-dimension space. In figure 4, suppose the flight
task is from the start point S to the target point T , and
W1,W2, · · · ,WNw are the waypoints of the flight route. Then
a flight path is denoted as P = {S,W1,W2, · · · ,WNw ,T }.

FIGURE 4. The flight path in 3D space.

The segment between the start point S and the first way-
point W1 is divided into Nd subsegments equally, which are
labeled with D11,D12, · · · ,D1Nd . Figure 4 shows a flight
path including multiple waypoints and division points in
three-dimension space.

Define Dik = (xik , yik , zik ) as the k-th dividing point in the
segment

−−−−→
Wi−1Wi between the (i−1)-th and the i-th waypoint,

the coordinates of the division point can be calculated as
follows: 

xik = xi−1 + k · (xi − xi−1)/Nd

yik = yi−1 + k · (yi − yi−1)/Nd

zik = zi−1 + k · (zi − zi−1)/Nd

(2)

where i = 1, 2, · · · ,Nw + 1, k = 1, 2, · · · ,Nd.

III. EVALUATION FUNCTION OF FLIGHT ROUTE
The performance of each candidate route is often asso-
ciated with the evaluation function Fevaluate. The general
representation of route evaluation function is defined as

follows:

Fevaluate(P) =
3∑

k=1

Jk (P)+
3∑

v=1

Cv(P) (3)

where the first part
3∑

k=1
Jk (P) is the objective function of the

flight route, the other
3∑

v=1
Cv(P) is the constraint of the route.

The evaluation function of the flight route is presented in the
following subsection in detail.

A. OBJECTIVE FUNCTION OF FLIGHT ROUTE
The objective function of flight route is defined as follows:

3∑
k=1

Jk (P) = Jlength(P)+ Jaltitude(P)+ Jthreat(P) (4)

where Jlength(·) is the path length cost, Jaltitude(·) is the flight
altitude cost and Jthreat(·) is the threat cost, which is mainly
used to penalize the routes through threat zones.

(1) Minimal Route Length
Route length is measured by path length ratio (PLR), hence

the term Jlength is defined as

Jlength(P) =
Ltraj
LST
=

Nw+1∑
i=1
||
−−−−→
Wi−1Wi||

LST
(5)

where LST denotes the length of the straight line connecting
the start point with the target, Ltraj denotes the actual trajec-
tory length of the UAV route, || · || is the Euclidean distance
of a vector, when i = 1,Wi−1 means the start point, when
i = Nw+1,Wi+1 means the target. In general, the path length
Ltraj is expected to be (1∼1.5)LST for a feasible route [20], as

Jlength ∈ [1, 1.5] (6)

(2) Minimal Flight Altitude
When the UAV flies at low altitude, UAV can avoid from

the danger being detected or attacked by the unknown radars
or surface-to-air missiles due to the protection of the terrain.
The term Jaltitude is calculated as

Jaltitude(P) =
Aroute(P)− Zmin

Zmax − Zmin
(7)

where Aroute is the average flight altitude of the actual route,
Zmin and Zmax represent the lower altitude limit and upper
altitude limit in planning space, respectively. Then

Jaltitude ∈ [0, 1] (8)

(3) Minimal Threat Risk
The threat function Jthreat is introduced to reduce the risk

of UAV flying into the scope of the hostile defending radar or
surface-to-air missile (SAM), hence the term Jthreat is defined
as

Jthreat(P) =

∑
Linside

NT∑
k=1

Dk

(9)
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where Linside is the total length of the subsections of the actual
flight route going through any threat zones,Dk is the diameter
of the k-th threat source, NT is the total number of threat
sources located in the mission space. Jthreat is required to be
in the range of [0, 1].

B. CONSTRAIN FUNCTION OF FLIGHT ROUTE
To ensure the feasibility of route, a series of constraints must
be satisfied firstly, e.g. the turning angle, the slope angle, and
the flight height. The constraint function C is defined as

3∑
v=1

Cv(P) = Ccollision(P)+ Cturning(P)+ Cslope(P) (10)

where Ccollision(·) is used to penalize the routes that collide
with the ground, Cturning(·) penalizes the routes requiring
larger turning angle than the maximum available turning
angle, and Cslope(·) penalizes the routes requiring slope angle
beyond the given slope angle. The constraint function of a
flight route is depicted in detail as follows:

(1) Terrain Height Constraint
The term Ccollision(P) associated with terrain collisions is

calculated by

Ccollision(P) =

{
0, Lunder = 0
Pen +

Lunder
Ltraj

, Lunder > 0
(11)

where Lunder is the sum of the length of the flight trajectory
below the altitude of the terrain, Ltraj is the total length of the
actual route and Pen is penalty constant in order to separate
non-feasible solutions from all the candidate routes. For the
evaluation function, the constant Pen should be more than the
fitness value of the worst feasible path. Therefore, it is set
to 3.5.

(2) Turning Angle Constraint
The turning angle constraint associated with the dynamic

characteristic of UAV is calculated as

Cturning(P) =


0, if

Nw∑
i=1

a1i = 0

Pen +

Nw∑
i=1

a1i

Nw
, if

Nw∑
i=1

a1i > 0

with a1i =

{
0, if θi < θmax

1, if θi > θmax
(12)

where θmax is the given maximum turning angle. The turning
angle θi is depicted as

θi = arccos(
(xi+1 − xi, yi+1 − yi) · (xi − xi−1, yi − yi−1)T

‖ (xi+1 − xi, yi+1 − yi) · (xi − xi−1, yi − yi−1)‖

)
(13)

(3) Slope Angle Constraint

The slope angle constraint is calculated as

Cslope(P) =


0, if

Nw+1∑
i=1

a2i = 0

Pen +

Nw+1∑
i=1

a2i

Nw+1
, if

Nw+1∑
i=1

a2i > 0

with a2i =

{
0, if ϕmin < ϕi < ϕmax

1, else
(14)

where ϕmin and ϕmax are the lower and upper bounds of the
slope angle, respectively. The slope angle ϕi is calculated as

ϕi = arctan
(

zi − zi−1
‖ (xi − xi−1, yi − yi−1)‖

)
(15)

The constraint function is used to ensure the feasibility of
the candidate route, and the objective function aims to find the
optimal flight route on the basis of satisfying the constraints.

IV. SDQPSO PLANNER
A. EVALUATION FUNCTION OF WAYPOINT
To take into account many desired characteristics, the eval-
uation function of flight route is used to find the optimal
path, whereas the quality of each waypoint is difficult to be
assessed according to the function. In view of the waypoints
are independent of each other in a route, the evaluation func-
tion of the whole path is divided into the fitness function of
the waypoint as the new criteria to evaluate the quality of the
candidate waypoints. Each dimension of the particle is chosen
according to the evaluation function of waypoint.

The evaluation function of the i-th waypoint is

SE(Wi) =
3∑

k=1

Sk (
−−−−→
Wi−1W i)+

3∑
v=1

SCv(
−−−−→
Wi−1Wi) (16)

where
3∑

k=1
Sk (
−−−−→
Wi−1W i) is the objective function of the

waypoint,
3∑

v=1
SCv(
−−−−→
Wi−1W i) is the constraint function of the

waypoint.
The objective function of waypoint is defined as

3∑
k=1

Sk (
−−−−→
Wi−1Wi) = Slength(

−−−−→
Wi−1Wi)+ Saltitude(

−−−−→
Wi−1Wi)

+ Sthreat(
−−−−→
Wi−1W i) (17)

where Slength(
−−−−→
Wi−1Wi),Saltitude(

−−−−→
Wi−1Wi) and Sthreat(

−−−−→
Wi−1Wi)

are the objective functions of the length, the altitude and the
threat risk for the i-th waypoint, respectively.

(1) Minimal Segment Length
For the i-th waypoint, Slength(

−−−−→
Wi−1Wi) is defined as

Slength(
−−−−→
Wi−1Wi)

=

∥∥∥−−−−→Wi−1Wi

∥∥∥+ ∥∥∥−−→WiT
∥∥∥∥∥∥−−−→Wi−1T

∥∥∥
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=
‖xi−xi−1, yi−yi−1, zi−zi−1‖+‖xT−xi, yT−yi, zT−zi‖

‖xT−xi−1, yT−yi−1, zT−zi−1‖
(18)

where T is the target point. Therefore

Slength(
−−−−→
Wi−1Wi) ∈ [1, 1.5] (19)

(2) Minimal Segment Flight Altitude
For the i-th waypoint, Saltitude(

−−−−→
Wi−1W i) is defined as

Saltitude(
−−−−→
Wi−1Wi) =

A(
−−−−→
Wi−1W i)− Zmin

Zmax − Zmin
(20)

where A(
−−−−→
Wi−1Wi) is the average flight of the path segment.

Therefore

Saltitude(
−−−−→
Wi−1W i) ∈ [0, 1] (21)

(3) Minimal Segment Threat Risk
For the i-th waypoint, Sthreat(

−−−−→
Wi−1W i) is defined as

Sthreat(
−−−−→
Wi−1Wi) =

Linside
n1∑
k=1

Dk

(22)

where Linside is the length of the segment that goes through
the threat zones, n1 is the number of the threat sources in the
segment

−−−−→
Wi−1Wi. Therefore

Sthreat(
−−−−→
Wi−1Wi) ∈ [0, 1] (23)

The constraint of waypoint is defined as

3∑
v=1

SCv(
−−−−→
Wi−1W i)= SCcollision(

−−−−→
Wi−1Wi)+SCturning(

−−−−→
Wi−1Wi)

+ SCslope(
−−−−→
Wi−1Wi) (24)

(1) Segment Terrain Height Constraint
For the i-th waypoint, SCaltitude(

−−−−→
Wi−1W i) is defined as

SCaltitude(
−−−−→
Wi−1W i) =

Nd∑
k=1

s1(
−−−−−→
Wi−1,kWi)

Nd

withs1(
−−−−−→
Wi−1,kWi) =

{
C, if zi−1,k ≤ MAP(xi−1,k , yi−1,k )
0, else

(25)

whereMAP(xi−1,k , yi−1,k ) is the altitude of the corresponding
point (xi-1,k , yi-1,k ) in the map, and C is the penalty constant.

(2) Segment Turning Angle Constraint
For the i-th waypoint, SCturning(

−−−−→
Wi−1W i) can be defined as

SCturning(
−−−−→
Wi−1W i) =

{
C, if θi > θmax
0, else

(26)

where constant C penalizes the segment
−−−−→
Wi−1Wi which

requires larger turning angle than the maximum turning
angle θmax.

(3) Segment Slope Constraint

For the i-th waypoint, SCslope(
−−−−→
Wi−1W i) can be defined as

SCslope(
−−−−→
Wi−1Wi) =

{
0, if ϕmin ≤ ϕi ≤ ϕmax

C, else
(27)

where constant C penalizes the segment
−−−−→
Wi−1Wi, which

requires slope angle beyond the given scope [ϕmin, ϕmax].

B. TRADITIONAL QPSO
In the PSO system, the convergence of particles is achieved
through the form of orbits. During the search process of the
algorithm, the motion area of each time will be limited due
to the maximum speed of the particles. QPSO algorithm is
a stochastic parallel probability search algorithm based on
the PSO framework. It is inspired by probability optimization
algorithm of quantum computing principle, which is believed
that particles have quantum behavior. The state of particle is
described by a wave function as

ϕ(Y ) =
1
√
L
e
−|Y |
L ,L =

1
β
=

h2

mr
(28)

where L is the probability that the particle appears at a relative
point, and Y is the state of particle.

For QPSO algorithm, it is assumed that the particle move
in a one-dimensional potential well centered on the attrac-
tion point q, the position of each particle is updated by
Monte Carlo method. The position equation of the particle
is obtained as

Xt+1 = q±
L
2
ln(

1
u
), u ∼ U (0, 1) (29)

where L is the characteristic length of delta potential well.
Set the global best particle position Pg = [pg1, pg2, · · · ,

pgn], the personal best position P i = [pi1, pi2, · · · , pin], the
attractor Qi = [qi1, qi2, · · · , qin]. qkij is the j-th dimension of
the i-th particle’s local attractor at the k-th iteration, which is
defined as

qkij = ζp
k
ij + (1− ζ )pkgj (30)

The wave function for each dimension of the particle is
defined as

ϕ[xij(t + 1)] =
1√
Lij(t)

exp

[
−

∣∣xij(t + 1)− qij(t)
∣∣

Lij(t)

]
(31)

The position of each particle is updated as follows:

xk+1ij = qkij ± (Lkij/2) ln(1/u) u ∼ U (0, 1) (32)

where Lkij is computed as

Lkij = 2b
∣∣∣mbestkj − xkij∣∣∣ , with mbestkj =

m∑
i=1

pkij/m (33)

where b is the contraction-expansion coefficient, b < 1.782,
and mbestkj is the mean best position of m particles. Substi-
tute (30) and (33) into (32), the updated function is given by

xk+1ij = ζpkij + (1− ζ )pkgj ± b

∣∣∣∣∣
m∑
i=1

pkij/m− x
k
ij

∣∣∣∣∣ ln(1/u) (34)
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C. THE IDEA OF SDQPSO
For QPSO, each dimension of the particles is often initial-
ized randomly. Therefore, it is difficult to ensure that most
dimensions in the initial solutions are optimal according to
the evaluate function. After the initialization process, each
particle with multiple dimensions is regarded as an integrated
individual, which will be brought into the fitness function
and conduct the selection operation. With the increase of
iterations, there are several considerations for an ideal path
planner including: firstly, the quality of each dimension in
the particles can hardly be evaluated during the optimization
operation by the evaluation function of flight route. The par-
ticle is chosen associated with the performance of the whole
path. Moreover, a particle with many superior dimensions
may be discarded due to the impact of some bad dimensions.
Thus the search efficiency of the algorithm will be greatly
reduced. In order to solve the above these problems, each
dimension of the particle is regarded as an individual, which
replace the particle as a whole in QPSO, a dimension by
a dimension, to pick out an entire particle from the m − 1
particles.

Suppose the position of each particle is xti =

[x ti1, x
t
i2, · · · , x

t
in], each particle is an individual with n dimen-

sions, which is shown in figure 5. At the first stage of the
search, if the best fitness is achieved by x tm−1,1 according to
the evaluation function of waypoint, x tm−1,1 will be chosen as
the first dimension solution x tm1 of the m-th particle. It means
that x tm−1,1 is most valuable dimension amongm−1 particles.
Then on the basis of this dimension x tm1, we continue to search
for the next dimension of the m-th particle. From figure 5,
it is seen that x t32 is chosen as the second dimension solution
x tm2 of the m-th particle. Through the strategy of dimension
search, an optimal solution including all the dimensions
is generated from m-1 particles associated with the new
evaluation criteria. The particle forms incrementally a new
solution x tm of the problem at time t (t = 1, 2, · · · , tmax)
when all the dimensions are obtained.

The strategy of particle dimension search is introduced
into QPSO algorithm to solve the complex problem, which
not only optimizes the composition of particles, but also
improves the search efficiency of the algorithm in solution
space.

The procedure of SDQPSO is described as follows:
Step 1: Set appropriate parameters of QPSO, including

the population size of particles, the dimension of particle,
the maximum iteration Tmax and contraction-expansion coef-
ficient b. m−1 particles are initialized in problem space, and
the m-th particle is generated by dimension search approach.

Step 2: The position of each particle is evaluated by the
fitness function.

Step 3: Comparison to personal best. If the fitness value of
the new personal optimal solution is better than the old one,
replace the old personal best solution.

Step 4: Comparison to global best. If the current global best
position is better than the global best position searched so far,
the old global optimal location will be replaced.

FIGURE 5. The dimension search process of the particles.

Step 5: Calculate the local attractor of each particle and the
mean best position of the population, then update the position
of m-1 particles according to Eq.(34). The m-th solution is
generated by dimension search approach.

Step 6: If the end condition is met, i.e., when there
is t > Tmax, then output the best solution. Otherwise, go to
Step 2.

D. TIME COMPLEXITY ANALYSIS
According to the procedure of QPSO algorithm, there are
four main steps to be considered for the time complexity of
QPSO framework. The time complexity of QPSO algorithm
is analyzed as follows:

In the initialization step of QPSO algorithm, it is assumed
that the time of generating a random number with uniform
distribution is set to c1n. The execution time of calculating the
fitness of the evaluation function is denoted as a function f (n)
with number n of variables. The time complexity is described
as

O(m(c1n+ f (n))) = O(n+ f (n)) (35)

where m is the number of the particles.
In the step of updating personal best solution, the time of

comparing a new personal best solution with an old one and
replacing an old solution are c2 and c3n, respectively. Thus
the time complexity is represented as

O(m(c2 + c3n)) = O(n) (36)

In the step of updating global best solution, the time of
comparing a solution with the best solution is c4, the time
of replacing an optimal solution is c5n, the time complexity
of the best solution is described as

O(m(c4 + c5n)) = O(n) (37)

In the step of updating of particles’ position, the execution
time of generating a new solution using Eq.(34) is denoted
as c6n. The time complexity is described as

O(m(c6n)) = O(n) (38)

For each generation, the time complexity is written as

TE(n) = O(n+ f (n))+ 3O(n) = O(n+ f (n)) (39)
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If the maximum iteration is used as the termination condi-
tions, the total time complexity of QPSO is calculated as

T (n) = O(I (n+ f (n))) = O(n+ f (n)) (40)

where I is maximum number of iterations.
For the initialization process of the proposed algorithm

(SDQPSO), the time of calculating evaluation fitness of way-
point is denoted as (m − 1)c7, the time of dimension search
is denoted as (m− 1)c8n, so the time complexity of step 1 is
denoted as

O((m− 1)c1n+mf (n)+(m− 1)(c7+c8n))=O(n+ f (n))

(41)

For step 2 and step 3, the time complexity is similar to
QPSO,

O(m(c2 + c3n+ c4 + c5n)) = O(n) (42)

For step 4, the time complexity is described as

O((m− 1) · (c6n+ c8n+ c7)) = O(n) (43)

For each generation, the time complexity is written as

TE(n) = O((n+ f (n))+ 2O(n) = O(n+ f (n)) (44)

The total time complexity of SDQPSO is described as

T (n) = O(I (n+ f (n))) = O(n+ f (n)) (45)

Therefore, the time complexity of SDQPSO is consistent
with QPSO.

E. ROUTE PLANNING METHOD OF SDQPSO
This section discusses the application of SDQPSO to the
route planning in details, mainly including the optimization
for the initialization process and the waypoint search based
on dimension information.

(1) Initialization Process Optimization
In most planners, the waypoint of the route is often denoted

as a 3-D coordinate in Cartesian coordinate system. To sim-
plify the representation of the waypoint, a new coordinate
system will be established by Cartesian coordinate system.
Firstly, we project the start point S{xs, ys, zs} and target point
T {xt , yt , zt } in the Cartesian coordinate system (x, y, z) to
O-XY plane. The projection of S is taken as the origin O′

of the new coordinate system (x’, y’, z′). The projections
of S and T are connected with a straight line, which is
defined as the new X’-axis. The new X’-axis is divided into
n + 1 equal parts and the dividing points compose the set
D = {D1,D2,D3, · · · ,Di, · · · ,Dn}. Make the lines L =
{L1,L2,L3, · · · ,Li, · · · ,Ln} perpendicular to X’-axis at each
waypoint, as shown in figure 6. Z’-axis of new coordinate
system is the same direction as Z-axis, and Y’-axis is orthog-
onal to X’-axis and Z’-axis. The new coordinate system
O’-X’Y’Z’ is transformed by a rotation of the Cartesian
coordinate system O-XYZ.

FIGURE 6. Coordinate system of UAV route.

The coordinate transformation between the new coordi-
nate system O’-X’Y’Z’ and the Cartesian coordinate system
O-XYZ is defined as x

y
z

 =
 cos θ − sin θ 0
− sin θ cos θ 0

0 0 1

 x ′

y′

z′

+
 xs
ys
zs

 (46)

where (x, y, z) and (x ′, y′, z′) are coordinates of Cartesian
coordinate system O-XYZ and the new coordinate system
O’-X’Y’Z’ frame, respectively.

Because the map information is known before planning,
the altitude data of the map can be fully adopted to optimize
the initial path during the initialization process. z-coordinate
is initialized as follows:

Zmax ≥ Z ti ≥ (Zterrain + Dsafe) (47)

where Zterrain is the altitude in the map, Dsafe is a safety
reference, Zmax is the upper limit.

In general, the length of the path is considered at the first
step. The shorter the length of the path, the higher the quality
of the path is. Taking into account the term of path length,
y-coordinate of the first particle for the initial particles is
expressed by

y = kx + b

with

{
k = yt−ys

xt−xs
b = ys

(48)

(2) Waypoint Search Based on Particle Dimension
The general flow chart of SDQPSO algorithm is described

in figure 7, and the improvement parts are outlined in blue.
The particles are initialized according to the start point,
the target and the height data of the terrain. The procedure
of path planner based on SDQPSO algorithm is described as
follows:

Step 1: Choose appropriate parameters of SDQPSO,
including the population of particles, the dimension of par-
ticle, the maximum iteration Tmax and contraction-expansion
coefficient b.
Step 2: Input the environmental information, such as the

upper bound and the lower bound of planning space, and the
threat terrain.
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FIGURE 7. Flow chart of SDQPSO algorithm.

Step 3: Initialize m − 1 routes in the mission space. The
x-coordinate is initialized by the principle of equal division.
The z-coordinate of each particle is set according to Eq.(47).

The y-coordinate of the first particle is given by Eq.(48),
and the y-coordinates of the other particles are initialized
randomly.

Step 4: The dimension index increases from j = 1 to
j = n, the m-th initial route is generated by dimension search
approach.

Step 5: Calculate the fitness of each route, and obtain the
personal best position of each particle and the global best
position.

Step 6: Calculate the local attractor of each particle and
the mean best position of the population, then update the
position of m-1particles according to Eq.(34). The m-th route
is generated by dimension search approach.

Step 7: If the stopping condition is met, i.e. when there is
t > Tmax, then output the best fitness and the corresponding
route. Otherwise, go to Step 5.

V. SIMULATION EXPERIMENT AND ANALYSIS
To test the performance of SDQPSO with the constrained
problem of UAV route planning, a series of simulation exper-
iments were implemented in MATLAB R2014a on a PC with
2.4 GHz running Windows 10. The mission space was from
the real terrain elevation maps [30]. To avoid the random-
ness of test results, each group of experiments was executed
30 runs independently.

A. COMPARION OF DIFFERENT Nw

To test the impact of the number of waypoints, the simulation
comparisons with different Nw, e.g. Nw= 6, Nw = 9,
Nw = 12,Nw = 15, Nw = 18, and Nw = 21, were executed
in two cases by 30 runs. The parameters of SDQPSO are
set as follows: the population size m is 100, the maximum
iteration Itmax is 200, the contraction-expansion coefficient
b is decreased linearly from 0.7 to 0.3, and the number of
the division point Nd is 5. The scope of the mission space
is limited within the space [0, 9000] × [0, 9000] × [0, 800].
The start location of mission is set to (900, 8100, 350), and
the destination location is set to (7650, 1800, 500). The same
terrain is used in case I and case II. But the numbers of the
obstacles in two cases are different (i.e. case I with 8 obsta-
cles, case II with 28 obstacles), as shown in figure 8 and
figure 9.

The relationships between iteration number
(0 ≤ It ≤ 200) and average best fitness in 30 runs are
displayed in figure 8(a) and figure 9(a) with given different
numbers of the waypoints. It is noted that the average best
fitness value is described as the reciprocal of the mean best
cost value in figure 8(a) and figure 9(a). The statistical
results about the minimum cost, the mean cost, the standard
deviation of cost value, FR, G̃c andGc are listed in table 1, and
where the best results are highlighted in boldface. Specially,
FR represents the percentage of feasible paths in all the
routes. G̃c is the average iteration number when all the
constraints are met, which describes the convergence speed of
evolution. Gc is the best result of the iteration number among
30 runs. It is noted that only the successful runs which can
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TABLE 1. The statistical results for the different Nw in two cases.

find feasible routes are used for the statistics of G̃c and Gc
in 30 runs experiments. In the two cases, it is obvious that
with the increase of the waypoint number Nw, the standard
deviation, the mean fitness value and the average iteration
G̃c become larger, and FR goes down gradually. In case I,
Nw= 6 is superior to Nw= 9, Nw= 12, Nw= 15, Nw= 18
and Nw= 21 in mean cost, and standard deviation. Besides,
the smallest value of G̃c is obtained when Nw=6 and Nw= 9.

In case II, due to the increase of the threat sources, nearly
all the indicators get worse than those of case I. Because
the route of Nw= 6 has a risk of trapping into the dangerous
zones, Nw= 9 has a better convergence speed and safety than
other Nw value. Nw= 9 is the most appropriate choice in
case II. Under the impact of the increasing threat source in
mission space, the routes with different Nw can converge to
a rather good position to avoid the risk of the radars and
missiles in case II. Because there are more threat sources of
the radars, missiles and anti-aircraft guns, it is obvious that the
successful rate FR is significantly lower than that of case I.
If Nw is too large, the problem of route planning will become
very complicated and the possibility of finding an optimal
path is decreased. Besides, the larger Nw is, the slower the
convergence speed is. However, if Nw is too small, the route
can hardly to be described accurately, and it is unable to
successfully avoid all obstacles and threat sources. Therefore,
Nw should be large enough to not only protect the danger from
being detected and attacked, but also guarantee the searching
accuracy.

B. COMPARISON OF DIFFERENT Nd
Nd is another non-QPSO-related parameter, which represents
the number of division points in each segment of a flight
route. The number of division points Nd should be enough
to detect whether the route violates the threats of missiles,
radars, anti-aircraft guns and mountains in the mission space.
It is necessary that the number of division points between two
adjacent segments is smaller than the scope ofmissiles, radars
or mountains. According to [8], the relationship between Nw

FIGURE 8. The cost and route in case I.

and Nd is described as:

PL
(Nw + 1) · Nd

< D (49)

where PL represents the route length, and D is the minimal
diameter of all themissiles and radars in space,Nw is the num-
ber of the waypoints (not including start point and endpoint).
In general, the range of mountains and missiles is usually
larger than 0.5, therefore, D is set to 0.5.
Because the path length ratio is required to be less than 1.5,

there is Nd > 4 with the smallest Nw = 6 according to
Eq.(49).

To further analyze the influence of Nd on the evalua-
tion accuracy and computational efficiency, different Nd is
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FIGURE 9. The cost and route in case II.

selected, e.g. Nd = 5,Nd = 10, Nd = 15, Nd = 20 and Nd =

25 to test the effect during 30 runs. The average convergence
curves and the statistic data in case II with different Nd under
different Nw are shown in the figure 10 and table 2.
The statistic results are listed in table 2. It is seen that

the impact of different Nd is closely related to Nw. In each
column, we can analyze the performance of the planner asso-
ciated with the change in value of Nw. FR of Nd = 25 is the
best when Nw is less than or equal to 15.
It is evident that, when Nd is enough large (e.g. Nd = 25)

and Nw is less than 15, the most indicators of the average
mean cost, FR and the standard deviation are better than those
when Nd is set to be a small value (e.g. Nd = 5). Hence

FIGURE 10. The average cost of different Nd value in case II.

TABLE 2. Performance comparison of different. Nd in case II.

Nd = 25 is recommended with Nw ≤ 15. But when Nw is
larger than 15, the performance of SDQPSO with too large
Nd is worse than the situation that Nd is equal to a medium
value (e.g. Nd = 15). So the number of the waypoints Nw
has a significant effect on the performance of Nd. Generally,
the route can obtain superior convergence speed and accuracy
by choosing an appropriate Nd on the basis that the number
of waypoints Nw has been determined

C. COMPARISON OF DIFFERENT METHODS
To verify the superiority of the proposed algorithm, QPSO
algorithm [31] and other representative optimization algo-
rithms, i.e., CPSO [32], DE [33], PSOPC [34] and SPSO [6],
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FIGURE 11. The comparison results by various methods in case III.

were compared for the search effectiveness in three cases of
UAV route planning. The parameter values are set in table 3,
and the statistical results during 30 runs are listed in table 4.
In case III and case IV, the number of waypoints is the same
for all the comparison methods, and the waypoints number
Nw is set to nine for the six methods in case V.

Figure 11, figure 12 and figure 13 show the UAV routes
for cases III, IV and V generated by the above six algorithms
during 30 independent runs. Parts (b) of the figures show
the 3D views of UAV routes obtained by the comparison
algorithms in the digital maps, and the cylinders represent the
threat areas of radars, missiles and anti-aircraft guns. Parts (c)
of the figures display the 2D views of parts (b).

Under the conditions of the same parameters, all the plan-
ners are able to find an optimal route and satisfy the con-
straints in case III, but the routes are different with various

FIGURE 12. The comparison results by various methods in case IV.

TABLE 3. The parameter values of six methods.

methods. The FR of SDQPSO can achieve 96.67%, while
those of CPSO, DE, PSOPC, QPSO and SPSO are 53.33%,
60%, 50%, 56.67% and 53.33%, respectively, as shown in
table 4. The standard deviation of SDQPSO is about 0.58.
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FIGURE 13. The comparison results by various methods in case V.

It is obvious that SDQPSO is smaller than other five plan-
ners, which reflects SDQPSO to be more stable than other
methods. It is seen that G̃c of SDQPSO is the smallest in
the six methods, which demonstrates that SDQPSO has faster
convergence speed than other methods. Moreover, SDQPSO
obtains more excellent results of the minimum cost, mean
cost andGc among all the planners. The robustness and effec-
tiveness of SDQPSO are superior to other five methods. Due
to the adoption of the initial optimization strategy, it is easy to
find that the initial fitness value of the proposed algorithm is
superior to the other five methods, as shown in figure 11(a).
For the feasible results, figure 11(b) and figure 11(c) show
the planned routes of CPSO, DE, PSOPC, QPSO, SPSO and
SDQPSO in case III, all the six planners can find a safe and

TABLE 4. The comparison of different algorithms in three cases.

collision-free route. At the same time, the route obtained by
SDQPSO has the best average cost value and the minimum
number of iterations to satisfy the constraints.

Figure 12(a) displays the corresponding convergence
curves of statistical result in case IV. The path quality gener-
ated by SDQPSO is better than those generated by the other
five algorithms. Compared to other methods, the feasible rate
FR of SDQPSO is 93.33%, which is still much higher than
those of the other five algorithms. Besides that, the minimum
cost, mean cost and standard deviation obtained by SDQPSO
are still smaller than those by the other five algorithms. The
FR of PSOPC is close to CPSO and SPSO in case III, but the
FR of PSOPC is much lower than CPSO and SPSO in case
IV. It is seen that PSOPC fails to find a safe path since the
route passes through a threat in case IV. SDQPSO is originally
designed to make full use of the information of the given
environment.

To further demonstrate the robustness and effectiveness
of SDQPSO, the number of waypoints is increased in the
comparison experiment (case V). The convergence curves of
the average cost values over 30 runs are shown in figure 13(a).
It is seen that the initial fitness cost value of SDQPSO is
better than other algorithms. For the simulation results, the FR
still remains about 90%. It is obvious that SDQPSO achieves
a higher possibility to obtain a feasible route. In table 4,
G̃c represents that SDQPSO planner has a faster convergence
speed when the number of waypoints increases. However,
the convergence of SDQPSO in case V is a little slower than
the other two cases.

VI. CONCLUSION
In this paper, an improved QPSO algorithm, namely
SDQPSO, has been proposed by employing a novel search
strategy of particle dimension. It is applied to solve effec-
tively the route planning problem considering the dynamic
properties of fixed-wing UAV and the complexity of real
3D environment. Meanwhile, the evaluation function for
waypoint is presented to raise the search efficiency of the
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new path planner. The initialize optimization process is
used to improve the quality of the initial routes. Based on
the experimental discussion, the two important parameters,
i.e. Nw and Nd, were discussed about the impact on the
statistical performance of the route planning. The idea of
particle dimension search depends on the independence of
the evaluation function of waypoint. The evaluation criteria
of waypoints can be employed independently. Therefore,
the proposed search strategy may be extended to other path
planners based on intelligent optimization. The comparison
experimental results in the three typical cases demonstrated
that the planner based on SDQPSO can produce superior
trajectories than other five representative planners under the
same 3D circumstances. SDQPSO can be applied to solve
route planning problem of fixed-wing UAVs under various
constraints at a faster convergence speed, more steady robust-
ness and higher accuracy.

It is noted that as the number of the particle dimensions
increases, the probability of SDQPSO to obtain a feasible
solution would be decreased. If the number of the waypoints
is too large, it will be difficult for current SDQPSO algorithm
to find an optimal solution. Therefore, for large-scale path
planning problem, we may consider cooperative coevolution
framework to solve by decomposing the large-scale optimiza-
tion problem into some sub-problems in future work. In addi-
tion, the convergence speed of SDQPSO and the probability
of finding a satisfactory route should be further investigated
in large scale problem.
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