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ABSTRACT The utilization of conventional modeling strategies in the identification and control of a
nonlinear dynamical system suffers from some weaknesses. These include absence of precise, conventional
knowledge about the system, a high degree of uncertainty, strongly nonlinear and time-varying behavior.
In this paper, a modified training algorithm for the identification and control of a nonlinear system using a
soft-computing approach is proposed. Specifically, a modified structure of the Elman neural network with
spike neural networks is proposed. This modified structure includes self-feedback, which provides a dynamic
trace of the training algorithm. This self-feedback has weights, which can be trained during the training
process. The simulation results show that the modified structure with the modified training algorithm is
capable of the identification and control of a dynamic system in a more robust manor than when solely
applying the other types of neural networks by 70% in terms of minimization of the percentage of error.

INDEX TERMS Identification, dynamic system, modified Elman spike neural network, spike neural

network.

I. INTRODUCTION

Neural networks (NNs) for identification and control have
been receiving increasing attention, because they can estab-
lish optimal identification and control signals due to the
online training process [1]. A survey reported in [1] led to the
proposal of an intelligent adaptive dynamic control system
based on a recurrent wavelet Elman NN for an induction
motor servo drive. The results showed that the proposed
structure increases the uncertainty identifier and speeds up
the convergence time, which means that both the convergence
precision and convergence time are enhanced better than
with the basic Elman NN. The most employed algorithm
for NNs is the Backpropagation Neural Network (BPNN).
It is popular, because of its power in studying difficult
multidimensional mapping on non-linear systems, usually
termed “‘beyond regression’’. Moreover, it has an easy struc-
ture design, so many researchers use this backpropagation
to solve their problems [2]. Suprapto and Kusumoputro [2]
proposed an algorithm based on an Elman recurrent NN
for controlling the heavy-life hexacopter. The results were
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compared with BPNN and showed that the proposed algo-
rithm has the capability of controlling the system with a
smaller mean square error (MSE) value. Current typical NNs
use a comparatively simple mathematical model of a neuron
that is computationally effective, but not accurate in terms
of biological settings and hence, more accurate biological
neuron models are being developed. These models, like real
neurons, use small portions of energy, called spikes, for com-
munication with others. Hence, they are called spiking neural
networks (SNNs) and from the taxonomy viewpoint, they
belong to the third generation of NNs [3]. SNNs are strong
computational modelling outfits that have attracted much
attention, because of the effective bio-inspired modelling of
synaptic interactions between neurons [4]. The basic Elman
NN, which was introduced by [5] as one kind of partial
recurrent NN model, is used for system identification and
control. A combination of the Elman NN and SNN can give
optimal results in these contexts. The use of artificial intel-
ligence in the field of identification and prediction control,
as in [6]-[9], has received increasing interest in recent years.
Shou-Ping and Xue-Fei [10] proposed an architecture of an
interval Elman NN used to model uncertain dynamic system,
the simulation results showed that the proposed architecture
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has better performance than the conventional interval feed
forward BPNN. Sadek et al. [11] proposed an adaptive Elman
to solve the mismatched uncertainty problem of under actu-
ated robotic systems of a nonlinear system, with simulation
results showing that the proposed control algorithm pro-
vides good performance. Deo and Chandra [12] undertook
an empirical study on the minimal timespan required for
robust prediction based on Elman recurrent NNs with two
different training methods. Lin and Boldbaatar [13] devel-
oped a control system with a recurrent wavelet Elman NN,
which enhanced the capabilities of a commercial aircraft
to land automatically, with simulation results showing that
the develop control system can achieve better performance
than other control schemes. Dahmani ef al. [14] proposed
an approach involving online adjustment of the connec-
tion weights of an Elman NN controller for a greenhouse.
A dynamic system, such as a stochastic jumping one is widely
implemented in practice, which can arise among a finite num-
ber of system modes governed by a stochastic process. As a
special class of stochastic jumping systems, semi-Markovian
jump systems (SMJSs) have become a hot research topic in
the past few years due to their general practical applications,
such as communications, transportation systems, networks
and dependability analysis [15]. Based on the above, a mod-
ified structure of an Elman NN with an SNN is introduced
in this work, which is named as the Modified Elman Spike
Neural Network (MESNN). The modified training algorithm
is implemented to train the MESNN, with the proposed model
being subsequently used for the identification and control of
a dynamic system. The dynamic action of a spiking neuron
is near to its biological equivalent. Signals from the adjacent
presynaptic neurons are created by the dendrites of the post-
synaptic neuron and are inherited to the soma. If the total
irritation caused by the input is sufficient, i.e. above a thresh-
old, an action potential, or spike, is emitted and propagated
along the axon and its branches to other neurons. The axon-
branches are placed at the end of the axon and connected to
the dendrites of the other neurons, with this being called a
synaptic connection. Each such connection is described by
a threshold value. When a spike attains this threshold level,
it causes a variation of membrane potential in the dendrites
of the drawing neuron, called a postsynaptic neuron. The
membrane potential is assigned as the postsynaptic potential,
which can excite the neuron by lifting the potential or prevent
the neuron by lowering it. The lifting of the postsynaptic
potential causes the firing of the neuron for a certain period
of time and if the synapse is fired, this is called excitation.
The lowering of the potential leads to it being harder to
fire the neuron and the synapse is called inhibitory. This
process is comparatively slow, so the effect is delayed, with
a specific ideal time for that synapse [16]. The strength of
an SNN is obtained from precise modeling of the synaptic
interactions between biological neurons, taking into account
the time of spike firing. The computational power of SNNs
outstrips that of classical neural networks that use thresh-
old or sigmoidal activation functions. Furthermore, SNNs

VOLUME 8, 2020

have the potential for quick adaptation [17]-[23]. Given these
advantages, as above mentioned, an SNN with an Elman NN
is considered in this paper for the identification and control
of dynamic plants.

The main contributions of this paper can be summarized as
follows:

1. A modified structure based on Elman NN and a spike
neural network, named the Modified Elman Spike Neural
Network (MESNN);

2. A modified training algorithm for MESNN based on
updating its weights, delay and the threshold values;

3. The modified structure with the modified training algo-
rithm is used for the identification and control of a dynamic
system.

The remainder of this paper is organized as follows.
Section II presents the proposed structure introduced in this
paper and section III presents the system identification, whilst
section IV explains the proposed controller. Section V intro-
duces the modified training algorithm, with the performance
of identification of the plant being explained in section VI and
that of the controller in section VII. Finally, in section VIII the
conclusion to the paper is provided.

Il. THE PROPOSED STRUCTURE
Fig. 1 shows the proposed structure. The developments that
have occurred in the science of artificial intelligence have
prompted the use of these technologies in various aspects of
life. Our focus is on the application of the proposed model in
the field of systems identification and control. The proposed
MESNN is a modified type of basic Elman NN, which was
introduced by [5] as one of kind of partial recurrent spike
NN model. The proposed structure consists of four layers:
an input layer, a context layer, an invisible layer and an
output layer. The modified structure has self-feedback with
variable gain in the context layer, whilst the feedback from the
invisible layer to the context layer has feedback weights, W<,
which are adaptive during the training process. The spike cri-
teria of the training algorithm speed up the training process,
such that just the active nodes that reach the threshold value
need to be updated. The broken line portion shown in Fig 2
(a, b) represents two neurons with a series of time delayed
synaptic link.

The dynamics of the MESNN are explained in the follow-
ing equations:

X (k) = f (W X (k), WU (k)) (D
Xtk) = a)X Gk — D+ WXk —1)  (2)
Y™k 4+ 1) = WYXX(k) 3)

where, Y™ (k) and U (k) represent the output and input of
MESNN, sequentially. X¢(k), and X(k) represent the nodes
state vector of the context layer and invisible layer, respec-
tively. W*, W and W>* are the weights vector between
the input and invisible layers, between the context and
invisible layers and between the invisible and output layers,
respectively. f(-) is a nonlinear function which represents
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FIGURE 1. The Proposed modified ELMAN Spike Neural Network.

the performance of the MESNN. The self-feedback «, in the
context layer is updated in the proposed model until it reaches
an accurate value. Fig. 2a represents the internal connection
between two neurons in MESNN structure, while, Fig. 2b
represents the single synaptic terminal between them. The
neuron  in the Fig. 2 is not allowed to spike anymore through
the remaining period of time interval T, when the threshold
has been exceeded at a particular instant ¢; and it will be reset
in the next, ; +d*. Every single connection among the layers
in MESNN is composed of a group with the same number
of synaptic terminals. Every sub-connection is related with
a different weight and delay as it is clear in Fig 2a. The
difference between the time of the postsynaptic potential and
the firing time of presynaptic neurons i is defined as the delay
of the synaptic terminals. The time of postsynaptic potential
begins to rise, as seen in Fig.2b,and there is a synapse
sequence in the connection.The weight of each synapse effect
on the spike-response function ¢ represents the activation
function of the neuron.

Ill. SYSTEM IDENTIFICATION

Fig.3 shows the proposed model used for system identifi-
cation. The input to MESNN is just the present one that is
applied to the plant and so, the proposed structure does not
need as much information to identify the unknown plant as
with a traditional NN. The output of the plant is compared
with the output of MESNN to obtain the error, which is used
to update its weights. In sum, the idea behind using an Elman
NN with an SNN is to enhance the power of the identification
process.
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IV. THE PROPOSED CONTROLLER

Fig.4 shows MESNN as a controller for the plant, the weights
of which are updated during the modified training algorithm,
as described latter. y,(k) is the output of the plant, r(k)
is the reference signal, whilst e(k) and e'(k) are the error
and difference in error, respectively, whilst D represents the
change of error. The parameters of the MESNN structure
as a controller learn based on these signals in a closed-loop
manner. The one layered MESNN has two input neurons, six
neurons in the context layer and invisible layer, with there
being one in the output layer. The inputs are the error and
the change of error, with seven synapses being used for each
connection. The initial values of the weights of MESNN
are generated randomly within the interval [—0.5, 0.5] and
the learning rate and the self-feedback are initiated at 0.01
and 0.5, respectively, with the training being carried out
for 100 epochs. During the synthesis of the input signals
of the MESNN control system, the error and the difference
of error are converted into spike times. The output signal of
MESNN is also spike characterized with a spike time, which
is converted into a real value applied as input to the plant. This
will be explained in section V.

V. MODIFIED TRAINING ALGORITHM

In this section, the training algorithm used to train MESNN
is explained for identifying and controlling the response of
dynamic plants. The proposed algorithm is based on the scope
of the negative gradient descent method for minimizing the
difference between the desired and actual response of the
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FIGURE 2. a) Internal connection of MESNN. b) Single synaptic terminal.

system to be identified. The parameters trained for this algo-
rithm are the: weights, sub-connection or synaptic delays and
threshold. Merging an Elman NN with an SNN is undertaken
in order to exploit the strengths that the latter can provide.
The presence of many invisible layers decreases the speed of
the training process and increases network complexity. The
number of sub-connections or synapses in the relationship
between the input and invisible layers is updated as well
as those between the invisible and output layers. Initially,
the weights are randomly chosen and then, after implement-
ing rounds of training, the weights values are tuned more
efficiently with a specific learning rate.

The response of the plant is firstly encoded into spike times
based on the following equation:

lf tmin(’f(t) - ’fmin)(tmax - tmin)
' = Imax — |_
(’fmax - 'fmin)

where, rf;qx and rf;,;;, represent the maximum and minimum
real response, whilst 7,4, and #,,;, are the maximum and min-
imum interval time, respectively. The |] is a round function.

The actual response decoding equation is described as
follows:

if () =

1. @

rfmin)

- t] - tmin)("fmax -
tmin)

There are two modes for the training algorithm. The first
is called the feed-forward mode, where each neuron spikes
at each time interval T only once at most and this happens
when the value of the threshold is exceeded by the membrane

(tmax

+ ’fmin- (5)

(tmax -
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FIGURE 3. The system identification based on MESNN.
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potential m. The feed-forward mode always begins from the
invisible layer and the neuron is continuously examined to
see whether it is spiked or not. The algorithm uses the next
neuron when the previous neuron has been spiked. The mem-
brane potential, m;(t), is calculated by the training algorithm
according to the following equation based on the input spikes
tj’f of the neuron at the input layer.

NH del

mit) =Y Y whie(t —tf —db)
j=1 k=1
NH del
o Y Y whosifka -1 (©6)
i=1 k=1
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FIGURE 4. The structure of the MESNN based control system.

The term rfh’i.(t — 1) represents the previous output from the
invisible layer and the present input. The function ¢ (r — tf —
d*) is defined as follows:

—(t—1 —db

(e —t —d)=—ox apl——t——1 (D)

The synapse weights of the connection are updated when
the feed-forward mode has finished. Opposite to feed-
forward, back-propagation begins from the output layer and
returns back to the invisible layer. The synapses of the output
layer will be updated according to following equations:

whe(t + 1) = wi (1) — Awg, (1), (8)
where,
Awh (1) = n.8;. X" )

The error between the desired spike time of the output neuron
and its actual firing time is defined as:

E= T -1 (10)
J
The §; can be computed as:

8 = E 11
I del ax* (in
Z(l 1) Z(k 1) Wyx 3[

The synapses of the invisible layer will be updated accord-
ing to following equations:

wh @+ 1) = wk (1) — AWk (). (12)
where,
AW, (1) = n.8;.UF. (13)
8; 1s defined as:
(NI) del k39U
Z(/:n 8 Z(ke_l) xu 3
del duck :
k=1 "5
Likewise, the weights of the context layer are updated accord-
ing to the following equation:

§i= (14)

wk (t + 1) = wk (1) — AWk (). (15)
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TABLE 1. Parameters of the MESNN training algorithm.

Symbol Meaning

m; Membrane potential of neuron i

w’;I synapses weights of the output layer
w’;C synapses weights of the invisible layer
wk, synapses weights of the input layer

k Step time

n Learning rate

del Number of delayed-synapses per connection
T]d desired spike time of output neuron.

tf actual spike time of output neuron.

dk delay of the connection

NH Number of neurons in the invisible layer
NI Number of neurons in the input layer
max epoch | Maximum number of epochs

o Some constant between (0-1)

T Time interval

Pd Learning rate of the synaptic delay

Po Learning rate of the synaptic thresholds
t Time counter

0 The Threshold value

T The Time constant

[ The Delta function

All the symbols in the above equations are described in
table 1. The update of the synaptic delay and neuron thresh-
olds are explained in the following equations:

A (%)BE R0 6

del = p"(l o] DULD) ddel”

o — N £ 3] Ui 07
=X RO

MESNN is adaptive according to the data dynamics of the
input pattern that consists of one set for training and others for
testing.The training algorithm of MESNN is shown in Fig. 5.
and Fig.6,

VI. THE PERFORMANCE OF IDENTIFICATION

In this paper, the simulations are implemented by using real
data that consist of one set for training and another for testing
in a MATLAB simulator. The training of real data using the
modified training algorithm proposed is for identification of
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FIGURE 5. The proposed training algorithm.
the plant described by (18) as a case study.

y(k) = 0.72 % y(k — 1) 4 0.025 % y(k — 2) % u(k — 1)
+0.01 %’k —2) + 0.2 xu(k — 3).  (18)

The MESNN configuration for the identification system
of a plant model consists of an input layer with one neuron,
a context layer with seven, an invisible layer with seven and
an output layer with one. This number of neurons in the
context layer is equal to the number in the invisible layer [5].
In the training phase, a set of random inputs is applied to the
plant and the response is taken as a target for the training
of MESNN with the same input as that applied to the plant.
Then in the testing phase, the stimulus signal given in (19) is
applied to the system.

sin(k /25), k < 200
1.0, 201 <k < 400
u(k) = —l.Q, 401 <k < 600 (19)
0.4 sin(rk/25)
40.2 sin(rk/32)
+0.8 sin(rk/10), 601 < k < 800.

It is clear from (19) that after every 200 units of time the
stimulus signal is changed with different types of the shape
signals (e.g. sinewave, step, complex sinewave), thus show-
ing the efficiency of the proposed structure in identifying the
plant.
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Fig. 7 shows the minimization of error during the train-
ing process as comparisons between the proposed structure
and other structures proposed in [4] and [14]. It shows that
MESNN can reach a lower error as compared with the Elman
Neural Network and SNN. The error goal is set to (1075), so
the MESNN reaches to the error goal faster than ENN and
SNN. From the results obtained from the Fig. 7 and based on
the general formula for calculation of the percentage of error
improvement de in [24], it emerges that MESNN improves by
70% more than ENN in terms of minimizing the error.

_ Epnv —E

Se * 100%. (20)

ENN
where, Egyy and E represent the error rate of the training
with ENN and MESNN, respectively.

The previous studies that we have compared with the
present one relied in their proposals on different structures
of neural networks. For example, in [4] the researchers
adopted SNN with its training algorithm, while in the [14]
the researchers used ENN with self feedback.

It can be seen in Fig. 7 that the performance of the proposed
structure is better than that for the other structures, due to the
combination of the advantages of SNN and ENN. Moreover,
it can also be observed that ENN is faster in training at the
beginning than SNN, but the latter reaches the error goal in
less time than the former. The reason for this is that SNN
is approaching the behavior of the human mind, as it relies
on coding the data set and converting it into time, instead
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FIGURE 7. The minimization of error during training.

of using them as a real data. The self-feedback in MESNN
gives the power to it to speed up the training process, thus
helping the network to identify and control of dynamic sys-
tems more efficiently. In the identification process, enough
information about the system needs to be identified and the
dynamic behavior of the ENN helps in providing this. In this
paper, the proposed structure comprises a combination of
the accuracy of SNN and the speed of ENN in the training
process.
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FIGURE 8. The response of the system identification based on MESNN.

Fig. 8 shows the response of the plant after applying the
stimulus signal,as shown in Fig. 8, with the output of MESNN
being very close to that desired, which means that the accu-
racy of the proposed structure is very high. Fig. 9 shows the
response of the plant when ENN is applied as the identifier of
a plant as compared with the response when SNN is applied
to this end. It is clear from the figure that the performance
of SNN is better than that of ENN, which is because of the
ability of the former to train the system more efficiently than
the latter.
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FIGURE 10. The response of the control system for different set points
when MESNN is used.

VII. THE PERFORMANCE OF THE CONTROLLER

The performance of the proposed structure to the control of
dynamic plant is discussed in this section.The input of the
control system for different set points r(k) is described as
follows:

5, k <40
10, 41 <k <80
r(k) = =€= @1)
5, 81 <k < 120
10, 121 <k < 160.

The response of the control system is shown in Fig.10.
As it is shown in Fig. 10, the MESNN is having the potential
of reaching out the given set of data points quickly. Fig.11
shows the comparison of the response of the control system
for different set points when ENN and SNN are used as
the controller. It is clear from the figure that both of the
controllers cannot track the set points, but the performance
of SNN is better than that of ENN. This is because the ENN
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FIGURE 11. The comparison of the response of the control system for
different set points when ENN and SNN are used.

is not efficient enough as a controller and its training is not
powerful as that of SNN.

VIil. CONCLUSION

In this paper, the identification and control of a dynamic plant
based on a modified Elman spike neural network MESNN
has been proposed. The proposed structure is operationalized
by a modified training algorithm. Comparisons between the
proposed model and other structures have been made. The
performance of the proposed model in the field of system
identification is better than for ENN and SNN. This is because
MESNN combines the advantages of accuracy in SNN and
the structure of ENN in the training phase. The performance
of the proposed model is better than that of ENN by 70%,
which is evidenced in the simulation results.

In the field of using MESNN as a controller, it is clear that
it is better than ENN and SNN, for it can track the set points
more accurately than these others. That is, the proposed
structure can automatically adapt their parameters and this
makes the controller based on MESNN more efficient.
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