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ABSTRACT The condition monitoring of railway track line is one of the essential tasks to ensure the safety
of the railway transportation system. Railway track line is mainly composed of tracks, fasteners, sleepers,
and so on. Given the requirements for rapid and accurate inspection, innovative and intelligent methods for
multi-target defect identification of the railway track line using image processing and deep learning methods
are proposed in this paper. Firstly, the track and fastener positioning method based on variance projection
and wavelet transform is introduced. After that, a bag-of-visual-word (BOVW) model combined with spatial
pyramid decomposition is proposed for railway track line multi-target defect detection with a detection
accuracy of 96.26%. Secondly, an improved YOLOv3 model named TLMDDNet (Track Line Multi-target
Defect Detection Network), integrating scale reduction and feature concatenation, is proposed to enhance
detection accuracy and efficiency. Finally, to reduce model complexity and further improve the detection
speed, with the help of dense connection structure, a lightweight design strategy for the TLMDDNet model
named DC-TLMDDNet (Dense Connection Based TLMDDNet) is proposed, in which the DenseNet is
applied to optimize feature extraction layers in the backbone network of TLMDDNet. The effectiveness
of the proposed methods is demonstrated by the experimental results.

INDEX TERMS Railway track line defects, multi-target defect identification, image processing, deep
learning, YOLOv3.

I. INTRODUCTION
In recent years, the rapid development of rail transit puts more
stringent demands on transportation safety and maintenance
decisions. The health state of the railway track line is critical
to ensure the safe and stable operation of rail transit [1].
Railway track line is mainly composed of tracks, fasteners,
sleepers, etc. Due to the influence of contact friction and
vibration between the train wheels and track, coupled with
the effect of the operating environment on site, defects such
as rail corrugation or broken fasteners may occur on the
railway track line. With the occurrence and evolution of
railway track line defects, the safety of vehicle operation and
passenger comfort are reduced. The maintenance cost and the
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difficulty of maintenance decision-making are also increased.
In addition, the condition monitoring of the railway track line
is mainly carried out by manual inspection or using track
inspection car up till the present. Manual inspection is low
detection efficient and costly, while the track inspection car
has high manufacturing cost and occupies regular operating
track lines during the inspection process. Therefore, there is
an urgent demand to develop a railway track line detection
system that uses advanced technologies such as image pro-
cessing, computer vision, deep learning, and fast speed and
high-resolution cameras to improve the safety and stability
of the rail transit, inspect the railway track lines automati-
cally, shorten the detection time and reduce the maintenance
costs [2].

In the last decade, many researchers and institutions
have worked on the development of automated railway

VOLUME 8, 2020 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ 61973

https://orcid.org/0000-0003-0341-966X
https://orcid.org/0000-0002-0373-3598
https://orcid.org/0000-0003-2161-4637
https://orcid.org/0000-0002-9702-5524


X. Wei et al.: Multi-Target Defect Identification for Railway Track Line

inspection methods and systems based on advanced technolo-
gies. Among them, the method for detecting fastener defect
mainly include image processing-based method and deep
learning-based method. In general, the image processing-
based detection method has the following three key steps:
1) locating and segmenting the fastener region; 2) extracting
the image features of the fastener; 3) using classification
algorithms to recognize fastener defects. Existing researches
effort to improve detection performance from one or more
of these aspects. In [1], [3]–[5], considering the position
and other characteristics of the fastener, several improved
fastener positioning algorithms are proposed to improve the
positioning and segmentation results of fasteners, to increase
the detection accuracy of fastener defects. However, these
algorithms lack robustness to complex detection scenarios.
In [6]–[9], underlying features including histogram of ori-
ented gradient (HOG), local binary pattern (LBP), and Haar-
like features are used to extract the image features of fas-
teners. Then classification algorithms are adopted to identify
fastener defects. Nevertheless, most of these algorithms can
only detect the completely missing fasteners, and the recall
performance of these methods is not sufficient for practical
application. In [10], a novel multiple signal classification
(MUSIC) algorithm is presented for fastener defect detec-
tion, which can classify the signals produced by different
track components. In [11], by using line local binary pat-
tern (LLBP), an algorithm for high-speed railway fastener
detection is proposed to detect the failed fasteners in dif-
ferent environments. In [12], a novel vision-based fastener
inspection system (VFIS) inspired by few-shot learning is
presented. Nonetheless, the fastenersmentioned in these three
papers are quite different from the fasteners considered in
this paper. At present, deep learning-based fastener defect
detection methods are gradually becoming popular in the
industry. In [13] and [14], a multi-layer perception neural
classifier is used to detect missing fasteners, and an algorithm
for online fastener detection is implemented with the help of
GPU. In [15] and [16], an MTL (Multitask Learning) frame-
work combining multiple detectors is put forward for the
detection of railway tie and fastener. Although this approach
results in improved detection accuracy, the detection speed of
multitasking detectors is not discussed. In [17], the detection
and identification of fastener defects using image process-
ing technologies and deep learning networks are studied,
and higher recognition precision and recall are obtained.
Whereas, the detection speed of fastener defects detection
needs to be improved.

Besides the defects detection of the fastener, the detection
of rail surface defects is also investigated by some researchers
in the last decades. Here, some representative investigations
are reviewed. Rail surface defects are roughly divided into
two categories: corrugations and discrete defects. Rail cor-
rugation is a periodic irregular wear phenomenon on the
rail surface, while discrete defects appear on the surface of
a rail head randomly. For the detection of rail corrugation,
there are methods based on spatial features and frequency

domain features. Spatial feature-based methods [18]–[20]
mainly use spatial feature extraction followed by classifi-
cation algorithms to identify rail corrugation, in which a
high recognition precision is obtained. But, the method is
sensitive to the setting of algorithm parameters. In [21] and
[22], rail corrugation identification methods based on rail
image features in the frequency domain are studied. The local
frequency features used in this method can reduce the detec-
tion time effectively. Nevertheless, the automation of the
detection process can be further improved. As for the rail
surface discrete defect, the main detection methods are as fol-
lows. In [23]–[25], intelligent visual inspection systems are
constructed for inspecting discrete defects in real-time. How-
ever, this detection method is susceptible to noise, and the
recall performance of the defect detection system needs to be
improved. In [26]–[28], image enhancement combined with
threshold binarization is adopted to detect discrete defects.
Some attempts have been made to improve detection perfor-
mance, but irregularities seriously influence such methods,
and threshold selection is not universal. In [29]–[31], back-
ground modeling-based detection methods offer a new way
to model rail surface images to detect discrete defects. This
type of method has ideal detection accuracy and can identify
defects at different scales. Whereas, they face the challenge
of high computational complexity. Nowadays, deep learning-
based methods have gradually become the main method for
detecting rail surface defects. In [32]–[36], various detection
networks based on convolutional neural network (CNN) are
designed to improve the detection accuracy and speed of rail
surface discrete defects and to increase the intelligence of
the detection process. Nonetheless, these approaches perform
well in their specified tasks, and the detection process can be
further simplified.

It can be concluded that both the rail surface and fas-
tener defect inspection techniques have made significant
progress. However, the researches mentioned above have
only investigated the defect detection problem on the rail sur-
face or fastener separately. In the railway track line, the track
and fasteners do not appear individually and can be captured
simultaneously by one camera. For practical application, it is
necessary to investigate the defect detection problem of track
and fasteners at the same time. It would be much more
convenient, economical, and essential to use only one detec-
tion algorithm and one real monitoring system. At present,
with the development of image processing and deep learning
technologies, as well as the continually improving computer
technology, it provides an opportunity for the detection of
railway track line multi-target defect. Nevertheless, there are
still some problems that need to be solved when develop-
ing a railway track line detection system that inspects track
and fasteners simultaneously. The positioning accuracy and
robustness are two issues need to be considered first. Further-
more, improved track and fastener defect feature extraction
needs to be developed so that higher classification accuracy
can be achieved. Finally, the detection time consuming for the
entire process, and each image should be shortened, while the
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complexity of the detection process should be reduced so that
the improved method can be applied to practical application.

To solve these problems, the method based on image pro-
cessing combined with traditional classification algorithm is
first investigated. Specifically, The positioning of track and
fasteners in the detected image is realized by using variance
projection and wavelet transform. After that, Dense-SIFT
[37] is used to extracting local image features of the track
and fastener. The accuracy of the classification of the track
and fastener status is improved by using Bag-of-Visual-Word
model [38] combined with spatial pyramid decomposition
technique [39]. Although this method can achieve a high
detection precision, the whole detection process is compli-
cated. In addition, the detection method based on traditional
image processing technologies is not highly automated, and
the feature extraction algorithm is not good enough in robust-
ness and sensitive to image changes. Moreover, this method
is only suitable for one type of scenario. Therefore, to sim-
plify the entire detection procedure and improve the detec-
tion performance, the latest proposed deep learning method
YOLOv3 [40] is considered in this paper to detect the railway
track line multi-target defect. In order to improve detection
accuracy and efficiency of the YOLOv3 network, and more
suitable for multi-target defect identification of railway track
line, an improved YOLOv3 model with scale reduction and
feature concatenation is proposed, namedTLMDDNet (Track
Line Multi-target Defect Detection Network). Furthermore,
to reduce the number of parameters of the TLMDDNet
model while maintaining a desirable detection performance,
DenseNet [41] is used to optimize feature extraction layers
in the backbone network, named DC-TLMDDNet (Dense
Connection Based TLMDDNet). Railway track line images
containing multi-target status, including several different
track defects and several different types of fasteners with
different defects, are collected and used as input data for
training the neural network models. Based on the experi-
mental results, the method of deep learning is more effi-
cient and robust than the traditional image recognition
algorithm.

To summarize, the main contribution of this paper includes
the following four aspects:

1) Based on advanced image processing technologies and
deep learning networks, the problem of multi-target
defect identification for the railway track line is studied
and solved for the first time, and the proposed methods
meet the demands for the inspection task of the railway
track line.

2) A track line multi-target defect detection net-
work (TLMDDNet) is proposed based on improved
YOLOv3 with scale reduction and feature concate-
nation, which has better detection accuracy and effi-
ciency than original YOLOv3 and traditional image
processing-based method. To our best knowledge, this
is the first research that introduces YOLOv3 to railway
track line multi-target defect detection for fastener and
track surface defects simultaneously.

FIGURE 1. The railway track line structure of Beijing Metro Line 6.

3) With the help of dense connection structure,
a lightweight TLMDDNet model is presented,
named DC-TLMDDNet (Dense Connection Based
TLMDDNet). DC-TLMDDNet effectively reduces the
number of model parameters of TLMDDNet while
maintaining a desirable detection performance.

4) The proposed detection networks can also be used to
comprehensively detect the defects of track and differ-
ent types of fasteners simultaneously.

The remainder of this paper is organized as follows.
In Section II, the problem considered in this paper is stated.
In Section III, the positioning issue of track and fastener in
the railway track line image is investigated. In Section IV,
the railway track line multi-target defect identification based
on Dense-SIFT and SVM is presented. In Section V, the pro-
posed railway track line multi-target defect detection model
TLMDDNet is presented in detail. After that, the method
of the lightweight design of TLMDDNet is investigated in
Section VI. Finally, some conclusions of this paper are given
in Section VII.

II. PROBLEM STATEMENT
A railway track line image contains a track and two fasten-
ers is shown as in Fig. 1, in which the track fasteners fix
the track on the ballast bed. In light of the on-site survey
of the Beijing Metro Line 6 and the information provided
by the maintenance engineers. The defects of the railway
track lines mainly consist of three categories: broken fastener,
missing fastener, and rail corrugation, as shown in Fig. 2(a)
and Fig. 2(b), respectively. The broken fastener is defined
as the complete or partial breakage of the elastic bar of the
fastener. The missing fastener is defined as the main part
missing or the complete missing of the fastener. The rail cor-
rugation is a periodic irregular wear phenomenon on the rail
surface. The dataset used in this paper is mainly made up of
images that are taken from Beijing Metro Line 6. In addition,
other railway track line images with different fastener types
are collected and discussed to investigate the comprehensive
detection capability and feasibility of the defects of the track
and different types of fasteners.

The railway track line is mainly composed of a variety of
key components, such as tracks, fasteners, etc. In general,
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FIGURE 2. Defects of railway track line of Beijing Metro Line 6.
(a) missing fastener and broken fastener; (b) rail corrugation.

in the railway track line, the track and fasteners do not appear
separately and can be captured simultaneously by one cam-
era. For practical application, it is necessary to inspect the
status of multiple vital components at the same time. It would
be much more convenient and economical to construct a
comprehensive railway track line detection system using only
one detection algorithm. However, in the existing researches
reviewed above, they investigated the defect detection prob-
lem of rail surface or fastener, respectively. Therefore, it is
critically important to investigate the automatic and intelli-
gent multi-target identification of railway track line defects
for practical application. In the following, the identification of
railway track line multi-target defect is investigated based on
advanced image processing technologies and deep learning
networks, respectively.

A. RAILWAY TRACK LINE MULTI-TARGET DEFECT
IDENTIFICATION BASED ON IMAGE PROCESSING
First of all, to alleviate the influence of noise and asym-
metrical illumination, a filter-based image de-noising method
and histogram equalization-based image enhancement algo-
rithm are considered to improve the original image quality.
After that, through the horizontal and vertical projection
of the image, combined with the wavelet transform of the
image, the positioning of the track and fasteners are realized
to reduce unnecessary interferences. Finally, given the fea-
ture difference between the track and fastener, meanwhile,
the spatial relationship between fastener parts, a BOVW
model combined with spatial pyramid decomposition is pro-
posed to classify the track and fastener defects. For the sake
of convenience, this method is named as SPD_BOVW in the
following.

B. RAILWAY TRACK LINE MULTI-TARGET DEFECT
IDENTIFICATION BASED ON IMPROVED YOLOv3 MODELS
To simplify the process of railway track line multi-
target defect detection and speed up the detection time,
the advanced object detection model YOLOv3 is introduced

to the railway track line multi-target defect detection issue,
which can carry out both positioning and classification simul-
taneously. Additionally, to improve detection accuracy and
efficiency, and be more suitable for railway track line multi-
target defect identification, an improved YOLOv3 model
with scale reduction and feature concatenation is pro-
posed in this paper, referred to as TLMDDNet. Further-
more, to reduce the parameter number of TLMDDNet and
maintain a sound detection performance, the dense block
in DenseNet is considered to replace part of the residual
blocks in the TLMDDNet backbone network, referred to
as DC-TLMDDNet. The proposed DC-TLMDDNet based
method can reduce the complexity of TLMDDNet and further
improve the detection speed.

III. TRACK AND FASTENER POSITIONING BASED ON
IMAGE PROCESSING
A. IMAGE PREPROCESSING
The images used in this part are captured by a handhold
DSLR camera, in the meantime, the camera angle is per-
pendicular to the track line, and to some extent, the distance
between the camera and track line is the same. The original
images are RGB images with a resolution of 5472 × 3648
pixels, and the track is located in the middle of each image
with two fasteners. Before image processing, to reduce cal-
culations and speed up operations, the original images are
resized into 540× 360 pixels.

Owing to the complex environment of the metro railway
system, the railway track line images collected from the field
are susceptible to noise and asymmetrical illumination, which
would degrade the image quality and affect the subsequent
positioning process. To alleviate this problem and improve
the accuracy of the positioning result, the median filtering
[42] is firstly used to denoise the image, which can not only
reduce the interference caused by salt and pepper noise to
the image but also can protect the edge of the target object
from blurring during processing. After that, the histogram
equalization (HE) algorithm [43] is applied to enhance the
original images.

B. POSITIONING OF THE TRACK AND FASTENERS
The railway track line images collected from the field usually
contain irrelevant components such as sleepers and subgrade,
which would cause unnecessary interference and increase the
amount of calculation. Therefore, it is necessary to extract
the track and fasteners in the original images to decrease this
interference and reduce the computational cost. Taking the
characteristics of the railway track line image and the posi-
tional relationship between the objects into account, a two-
stage positioning strategy is proposed.

The first stage of track and fastener positioning is to posi-
tion the track and backing plate. Specifically, the binarized
image of the railway track line image is first obtained by using
the adaptive threshold algorithm mentioned in [44] to reduce
the amount of computation and simplify the positioning
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FIGURE 3. The process and results of track and fastener positioning. (a) the result of track positioning; (b) the result of backing plate
positioning; (c) positioning result of fastener vertical boundaries; (d) The positioning result of track and fastener.

process of target areas. After that, the obtained binary image
is processed by a vertical projection, and the difference
between the projection statistics is computed to determine
the starting and ending coordinates of the track, as shown
in Fig. 3(a). Finally, the obtained binary image is processed
by a horizontal projection, and the difference between the two
adjacent projection statistics is calculated to determine the
starting and ending coordinates of the backing plate, as shown
in Fig. 3(b).

After locating the edge of the track and backing plate,
the positioning of the fastener is performed in the second
stage. First of all, given the location characteristics of the
fastener, the railway track line image is processed by the
vertical component of the wavelet transform [45]. Secondly,
a line structural unit for morphological opening operation
is designed to reduce the vertical interference and noise
around the fastener profile. Finally, the vertical boundaries
of the fastener are determined using the improved template
matching algorithm proposed in [17]. The fastener boundary
positioning results are shown in Fig. 3(c).

In summary, by combining the positioning results of the
track, the backing plate, and the fastener boundary, the final
positioning results of the track and fasteners are accurately
obtained, as shown in Fig. 3(d). More details about the

positioning of track and fastener can be found in our previous
work [17]. The positioning methods used in this paper is not
only applicable to subway tracks, but also high-speed rail
lines, and perform better than other methods.

IV. RAILWAY TRACK LINE MULTI-TARGET DEFECT
IDENTIFICATION BASED ON SPD_BOVW
In the previous section, the problem of track and fastener posi-
tioning is solved. As a result, the obtained image dataset only
contains the track and fastener without other components.
In the light of the results obtained before, a comprehensive
detection method for track and fastener defects based on
image local feature extraction and classification is proposed.

Up to now, the most widely used algorithm for local image
feature extraction is the Dense Scale Invariant Feature Trans-
form (Dense-SIFT) [37]. In this paper, the Bag-of-visual-
word model [38] is first reconstructed for the Dense-SIFT
feature extraction of track and fastener. Then the final feature
vectors of track and fastener images are fed into SVM for
multi-target classification.

A. DENSE-SIFT FEATURE
Nowadays, the widely-used method for image local feature
extraction is SIFT (Scale-Invariant Feature Transform) [46].
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FIGURE 4. The general diagram of BOVW (Bag-of-Visual-Word) model.

In comparison with the traditional SIFT, Dense-SIFT is not
necessary to construct Gaussian multi-scale space, which
reduces the computation complexity. The key to the Dense-
SIFT algorithm is to determine the description of the key
points, which helps obtain the description that is insensitive
to illumination changes. Themethod of extracting description
from key points is defined as follows [46]

m (x, y)

=

√
(L(x+1, y)−L(x−1, y))2+(L(x, y+1)−L(x, y−1))2

(1)

θ (x, y)

= tan−1
[
L (x, y+ 1)− L(x, y− 1)
L (x + 1, y)− L(x − 1, y)

]
(2)

where L(x, y) stands for one pixel of the input image. m(x, y)
and θ (x, y) are the gradient magnitude and the gradient direc-
tion of each bin, respectively.Moreover, the size of each patch
is 4 bins × 4 bins, the measure of each bin is 4 pixels ×
4 pixels, and the final Dense-SIFT feature of each image is a
128-dimensional vector. More details about Dense-SIFT can
be found in [37].

B. BAG-OF-VISUAL-WORD MODEL
The traditional BOVW (Bag-of-Visual-Word) model [38] is
developed from the BOW (Bag-of-Word) model [47] for
text categorization. BOVW is a general pipeline that builds
a global representation from local features. Specifically,
the visual vocabulary vector is first extracted from different
types of images using the Dense-SIFT algorithm. After that,
the K-Means algorithm is adopted to merge visual words
with similar meanings to construct a codebook containing
K words. Finally, by calculating the number of times each
visual word of the image appears in the codebook, the image
is represented as a K-dimensional value vector. The diagram
of the BOVW model is shown in Fig. 4.

C. SPATIAL PYRAMID DECOMPOSITION
Although BOVW can extract the local features of the image
well, it lacks the spatial position information of the image.
To overcome this inherent shortcoming of BOVW, spatial
pyramid decomposition [39] of the image is considered.

FIGURE 5. The diagram of visual characteristic word bag model based on
spatial pyramid decomposition.

This method can not only extract the global information of the
image but also integrates the spatial position information of
track and fastener visual feature words into the BOVWmodel
more comprehensively and effectively. In the spatial pyramid
decomposition, the image is divided into spatially sub-regions
that are gradually refined, and then local feature histograms
are calculated from each region, as shown in Fig. 5. More
details about spatial pyramid decomposition can be found
in [39].

D. EXPERIMENTS AND RESULTS
1) DATA PREPARATION
After image pre-processing and positioning of track and fas-
tener, a dataset consisting of two types of track images and
three types of fastener images is finally obtained. In this
dataset, there are 515 complete fasteners, 20 broken fasteners,
11missing fasteners, 706 normal rails, and 26 rail corrugation
images. Due to the small number of defective fasteners and
rail images, data argumentation methods are used to expand
the number of faulty samples and to ensure experimental reli-
ability. The data enhancement methods used herein include
rotation, flipping, mirroring, and noise addition. Specifically,
the salt noise and the Gaussian noise with a mean of 0.1 and
a variance of 0.01 are used in the noise addition. After data
augmentation, the data set contains 515 complete fasteners,
210 broken fasteners, 110missing fasteners, 706 normal rails,
and 203 rail corrugation images. Since unbalanced samples
could affect the classification results, subsampling is used for
samples in these five categories. As a result, the data used for
the experiment contains 110 samples for each type.Moreover,
70% of each type of image are used for training, and the
remaining 30% are used for validation. The dataset of track
and fastener is shown in Table 1.

2) EXPERIMENT PROCESS AND RESULT
Railway track line multi-target defect identification based on
image feature extraction mainly consists of four steps. In the
first step, the fastener images used for training and testing
are adjusted to 128 × 256 pixels while the track images are
adjusted to 48 × 480 pixels. Moreover, the patch size is set

61978 VOLUME 8, 2020



X. Wei et al.: Multi-Target Defect Identification for Railway Track Line

TABLE 1. The number of different types of track and fastener in the
dataset.

TABLE 2. The comparative classification results under different dictionary
size and different kernel of SVM.

to 4 bins × 4 bins, the bin size is 4 pixels × 4 pixels, and
the sampling step size is set to 8 pixels. Secondly, the bag
of visual words with a dictionary for extracted Dense-SIFT
features is constructed. After that, each image of the dataset
is decomposed by a 3-layer spatial pyramid decomposition
model. Finally, the visual features are fed into SVM for
training and testing.

To demonstrate the effect of dictionary size and kernel to
the classification result, some comparative experiments are
carried out under different dictionary sizes and kernels, and
the results are shown in Table 2. As can be seen from Table 2,
the dictionary size is set from 200 to 600, and the larger the
dictionary size is, the higher the classification accuracy will
be. Nevertheless, when the size of the dictionary is greater
than 500, the classification accuracy decreased. Therefore,
the optimal dictionary size for the BOVW model is chosen
as 500. In addition, when the size of the dictionary is set
to 500, the SVM with the RBF kernel has higher classifica-
tion accuracy than the SVM with the histogram intersection
kernel.

To assess the proposed method quantitatively, indicators
such as precision (P), recall (R), and F1 score are used, which
are widely used in many scientific research fields [48]. These
indicators are calculated as follows

P =
TP

TP+ FP
(3)

R =
TP

TP+ FN
(4)

F1 =
2 ∗ P ∗ R
P+ R

(5)

where TP represents the number of images that are correctly
detected. FN indicates the number of images for missed
inspection. FP is the number of images that are falsely
reported. TN stands for the number of images that are cor-
rectly excluded.

Table 3 shows the classification results for these three indi-
cators. It can be concluded that the identification method pro-
posed in this paper achieves a sound performance, in which
the precision and recall in the missing fastener recognition
reach 100%.

TABLE 3. Detection results of track and fastener status based on pyramid
decomposition.

TABLE 4. Classification accuracy of different method.

In addition, to prove the effectiveness of the identification
method presented in this paper, a comparative experiment
with other feature extraction methods (e.g., HOG feature and
LBP feature) is carried out. The result is shown in Table 4.

Based on the result of the above comparison experiment,
one can see that the method adopted in this study is superior
to other feature extraction methods. The reason that HOG
feature extraction and LBP feature extraction lead to classi-
fication errors is that these feature extraction methods ignore
the spatial positional relationship of the extracted track and
fastener features. Moreover, in this paper, the BOVW model
and the spatial pyramid decomposition method are applied to
the multi-classification problem of track and fastener for the
first time, with an accuracy of 96.36%.

Although the final classification result reaches a sound
detection accuracy, the entire detection process is compli-
cated, and the result is mostly dependent on the setting and
adjustment of many parameters. In addition, the detection
method based on image processing is not good enough in
robustness, and the feature extraction algorithm is cumber-
some and sensitive to image changes. For these reasons, this
method may not be competent for practical applications with
complex detection scenarios. Therefore, in the following,
deep learning-based methods are proposed to solve this prob-
lem.

V. RAILWAY TRACK LINE MULTI-TARGET DEFECT
IDENTIFICATION BASED ON IMPROVED YOLOv3 MODEL
A. YOLOv3
The YOLOv3 network, evolved fromYOLO (You Only Look
Once) [49], has recently received extensive attention. It is
a typical one-stage object detection network in light of the
regression method. The idea of regression is used to return
the target border and target category of each position directly
at multiple scales of the image for a given input image.
Specifically, the YOLOv3 network has made some applica-
tion improvements based on YOLOv2 [50]. It not only pro-
poses a more powerful Darknet53 network based on ResNet
(Residual Network) [51] as a feature extractor but also uses
multi-scale prediction for final target detection, which has
excellent detection performance. The classic structure of the
YOLOv3 network is shown in Fig. 6, it consists of a backbone
network and detection module.
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FIGURE 6. The network structure of YOLOv3.

FIGURE 7. An illustration of predicted bounding boxes on 13 × 13 grids of
YOLOv3.

In general, the YOLOv3 network scales the input image
to a size of 416 × 416. Using a scaled pyramid structure
similar to FPN (Feature Pyramid Network), the dataset image
is divided into s× s grids according to the scale of the feature
map. The final detection is performed on three scales of
13× 13, 26× 26, 52× 52 feature map sizes, and the feature
map is propagated on two adjacent scales by using the 2×
upsampling. As shown in Fig. 7, each divided cell predicts
3 bounding boxes with 3 anchor boxes. More details about
the YOLOv3 network can be found in [40].

B. TRACK LINE MULTI-TARGET DEFECT DETECTION
NETWORK (TLMDDNet)
Although YOLOv3 network has excellent detection perfor-
mance and has been successfully applied in many fields,
the available YOLOv3 network can be further improved for
the railway track line multi-target defect detection, directly,
which is based on the following two investigations:

1) Within the railway track line image datasets, as shown
in Fig. 1, the targets to be detected (e.g., rail surface
and fasteners) occupy a large and consistent scale in the

FIGURE 8. Visualization of some sample feature maps learned from
shallow layer.

image. Furthermore, the relative position of fasteners
and the track is fixed. Therefore, for the specific detec-
tion targets of this paper, the original YOLOv3 network
detection process based on a multi-scale fusion method
can be simplified.

2) Different detection targets in our datasets have signifi-
cantly distinct low-level image features such as textures
and edges. Moreover, as shown in Fig. 8, the shallow
layers of the network have powerful low-level image
features learning ability, and the effective use of the
lower-layer feature map can improve the target detec-
tion accuracy, while the original YOLOv3 network fails
to take full advantage of the low-level image features of
the targets learned from the shallow layer.

Therefore, to improve detection accuracy and efficiency,
and be more suitable for railway track line multi-target defect
identification, an improved YOLOv3model with scale reduc-
tion and feature concatenation is proposed in this paper, called
TLMDDNet (Track Line Multi-target Defect Detection Net-
work) in brief, which mainly reconstructing the backbone of
the YOLOv3 network.

More specifically, based on the former investigation,
the network scale reduction that performs the final detection
only on the scale of 13 × 13 feature map size is first imple-
mented. Secondly, to take full use of the features learned from
each block in the backbone network, a cross-block feature
concatenation strategy is proposed, that is, the feature maps
learned from each block are concatenated to all subsequent
blocks as input through pooling, except for the last block.
Furthermore, the feature maps of all block outputs in the
backbone network are concatenated together as input to the
detection module. Thus, through effective feature reuse and
propagation, the input feature maps of each block can have
enriched representation power and additional information for
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FIGURE 9. (a) the backbone structure of the original YOLOv3; (b) the backbone structure of the TLMDDNet; (c) 1 × 1
convolution module; (d) 3 × 3/2 convolution module. Note that the numbers in parentheses in the figure indicate the
number of blocks.

characteristic learning of railway track line targets, which can
be defined as follows

IBlocki=Conc[MaxP(OBlock1,OBlock2,. . . ,OBlocki−1)],

i = 3, 4, 5 (6)

IDBlock =Conc[MaxP(OBlock1,OBlock2,. . . ,OBlock5)]

(7)

where IBlocki andOBlocki represent the input and output fea-
ture maps of the i-th block in the backbone network, respec-
tively. MaxP stands for the max-pooling operation. Conc is
the concatenation operation. IDBlock denotes the input of the
detection module. A brief diagram of the improved backbone
structure is shown as in Fig. 9 (b).

Noted that after concatenating feature maps, the convolu-
tion module consisting of a 1×1 convolution layer followed
by a batch normalization layer and leaky ReLU is necessary,
which is used for dimension reduction and accelerate conver-
gence. In addition, inspired by the idea on [40], the bound-
ing box priors are redesigned by using K-means clustering,
in which the Intersection over Union (IOU) of the rectangular
box (represented by RIOU ) is used as the similarity, and the
distance function of the cluster is defined as follows

d(B,C) = 1− RIOU (B,C) (8)

where B and C stand for the size and center of the rectangular
box, respectively. RIOU (B,C) represents the IOU between
two rectangular boxes. Taking the network training perfor-
mance and efficiency into account, 3 clusters are chosen
as the bounding box priors, which are (61, 415), (78, 205),
(112, 117). The specific network framework and parameters
of TLMDDNet are shown in Fig. 10.

C. EXPERIMENTS AND RESULTS
1) INTRODUCTION TO EXPERIMENT DATASETS
To evaluate the performance of TLMDDNet for railway track
line multi-target defect detection, two datasets are used in the
experiment as follows:

Dataset 1 consists of images that are taken from Beijing
Metro Line 6. We have collected 322 available images, and
each image is an RGB image with a resolution of 3456 ×
5472 pixels. In view of the defect features in the railway
track line field, this dataset mainly consists of 5 classes:
complete fastener, broken fastener, missing fastener, normal
rail, and rail corrugation. These images are manually labeled
by using the LabelImg [52] after image augmentation. The
image data augmentation methods such as rotation, mirror,
noise addition, color perturbation and etc. are applied. More
specifically, the salt and pepper noise and the Gaussian noise
with a mean of 0 and a variance of 0.05 are used in the noise
addition. In addition, color perturbationmainly uses a random
factor to comprehensively adjust the brightness, saturation,
contrast, and sharpness of the image.

We end up with 1058 railway track line images containing
1679 complete fasteners, 320 broken fasteners, 100 missing
fasteners, 680 normal rails, and 406 rail corrugation. 70% of
the images are divided into a training set, and the rest 30% of
the images are used as the test set. The data set for training
and test is shown in Table 5.
Dataset 2 consists of 9 classes: complete GJ fastener, bro-

ken GJ fastener, missing GJ fastener, complete CK-1 fastener,
missing CK-1 fastener, broken CK-2 fastener, normal rail, rail
corrugation and rail spalling, which are shown as in Fig. 11.
Noted that each image in this dataset is collected in the same
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TABLE 5. Details of Dataset 1 used for experiments after data augmentation.

TABLE 6. Details of Dataset 2 used for experiments after data augmentation.

TABLE 7. Initialization parameters of TLMDDNet.

FIGURE 10. The network structure and parameters of TLMDDNet.
(Different from original YOLOv3, the green solid shortcuts are used for
cross-block feature map transmission.)

way as Dataset 1. Dataset 2 is an extension of Dataset 1.
There are more fastener types in Dataset 2. It also consists
of more track defects than the one in Dataset 1. Dataset 2 is
applied to evaluate the performance of TLMDDNet for the
comprehensive detection of railway track line multi-target
defects, including more defects types. In addition, Dataset
2 is also constructed to investigate the robustness of the new
proposed detection model in the face of multiple targets with
diversity.

After the same image augmentation as above, there are a
total of 3333 images used for experiments. 70% of the images

FIGURE 11. Defects sample image in Dataset 2. (a) complete GJ fastener;
(b) broken GJ fastener; (c) missing GJ fastener; (d) complete
CK-1 fastener; (e) missing CK-1 fastener; (f) broken CK-2 fastener;
(g) normal rail; (h) rail corrugation; (i) rail spalling.

are divided into a training set, and the rest 30% of the images
are used as the test set. The data set for training and test is
shown in Table 6.

2) PERFORMANCE EVALUATION FOR TRACK LINE DEFECTS
IDENTIFICATION
This subsection evaluates the performance of the proposed
model for railway track line multi-target defect detection.
The TLMDDNet is implemented in the GOOGLE Tensor-
flow framework with Keras. The detection models are trained
and tested on an NVIDIA Titan X [53] server. The network
initialization parameters are shown in Table 7.

To adapt the input required for the model, the input
images are adjusted to 416 × 416 pixels. Given the mem-
ory constraints of the server, the batch size is set to 8 in
this experiment. 400 and 600 training epochs are used for
training Dataset 1 and Dataset 2, respectively. The adaptive
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moment estimation (Adam) [54] is adopted to update the
weights of the networks. Parameters such as initial learn-
ing rate, momentum, weight decay regularization, and other
parameters referred to the original parameters in the orig-
inal YOLOv3. The idea of transfer learning [55] is used
that the weights trained based on different datasets are used
for the weight values initialization. The pre-trained weights
are trained by using ImageNet [56], and only the weights
of block1 and block2 in the original YOLOv3 network are
loaded into our model. The model is trained after defining the
training parameters and loading the pre-trained weights. Dur-
ing the training process, the weights of block1 and block2 in
TLMDDNet are fixed.

In this experiment, the proposed model TLMDDNet is
compared with SPD_BOVW, YOLOv3, and YOLOv3 with
scale reduction (YOLOv3_SR). The relevant indicators for
evaluating the effectiveness of these models are as follows
a. Loss Function
The loss function in YOLO is defined as follows

loss =
S2∑
i=0

coord_Error + iou_Error + class_Error (9)

The coordinate prediction error coord_Error is defined as
follows

coord_Error

= λcoord

S2∑
i=0

B∑
j=0

Iobjij [(xi − x̂i)2 − (yi − ŷi)2]

+ λcoord

S2∑
i=0

B∑
j=0

Iobjij [(wi − ŵi)2 − (hi − ĥi)2] (10)

where the parameter λcoord is the weight of the coordinate
error. S2, B are the number of grids in the input image
and the number of bounding boxes generated by each grid,
respectively. According to [40], λcoord = 5, S = 13, and
B = 3 are selected in this paper. Iobjij indicates whether
the object falls into the j-th bounding box in grid i or not.
(x̂i, ŷi) represents the value of the center coordinate. (ŵi, ĥi)
stands for the height and width of the predicted bounding box,
respectively. (xi, yi) and (wi, hi) are the corresponding ground
truth.

The IoU error iou_Error is defined as follows

iou_Error =
S2∑
i=0

B∑
j=0

Iobjij [(Ci − Ĉi)2]

+ λnoobj

S2∑
i=0

B∑
j=0

Iobjij [(Ci − Ĉi)2] (11)

where λnoobj represents the weight of the IoU error, which is
set to 0.5 in this study. Ĉi is the predicted confidence, and Ci
is the corresponding true confidence.

The classification error class_Error is defined as follows

class_Error =
S2∑
i=0

B∑
j=0

Iobjij

∑
c∈classes

[pi(c)− p̂i(c)]2 (12)

where c represents the class to which the detected target
belongs. p̂i(c) denotes the predicted probability value that
the object belonging to class c in the grid i. pi(c) is the
corresponding true probability value. In addition, note that
the class_Error for grid i is the sum of classification errors
of all the objects in the grid.
b. AP, mAP
The average-precision (AP) of each class and mean

Average-Precision (mAP) are two significant indicators for
quantitatively evaluating the detection performance of the
model. The value of AP is the area enclosed by the preci-
sion/recall curve, and the mAP is the average of APs, that is,
the mAP is defined as follows

mAP =
1
n

n∑
i=1

APi (13)

where n represents the number of object classes in the dataset.
APi is the average-precision of class i.
c. Detection Rate, Parameters, FLOPs
The average detection rate for several detection models is

compared and expressed in fps (frames per second). In addi-
tion to the average detection rate of the model, time complex-
ity and spatial complexity are also two important indicators
for evaluating and analyzing the model. In this experiment,
the time complexity is represented by FLOPs (floating point
operations), and the spatial complexity is represented by the
number of parameters of the model. For a certain convolu-
tional layer, the number of FLOPs is defined as follows

FLOPsi = num_paramsi ∗ (Hi ∗Wi) (14)

where num_paramsi denotes the number of parameters of the
i-th convolutional layer. Hi and Wi are the height and width
of the output feature maps of the i-th convolutional layer,
respectively. In this paper, for convenience, BFLOPs (billion
floating point operations) is used, where 1 BFLOPs =
109 FLOPs.

For Dataset 1, the loss value of YOLOv3, YOLOv3_SR,
and TLMDDNet during training is shown as in Fig. 12. The
AP of each class, mAP, average detection rate, parameters,
and FLOPs of the models are shown in Table 8.

Based on the above results, it can be seen that TLMDDNet
has a faster convergence speed and better convergence results
thanYOLOv3 andYOLOv3_SR. This indicates that the train-
ing performance of the proposed detection model is slightly
improved. In terms of the detection performance, the mAP of
TLMDDNet is 0.9920, which is higher than the other three
models. This shows that the cross-block feature concatena-
tion strategy used in TLMDDNet can improve the accuracy of
railway track line multi-target defect detection. The average
detection rate of TLMDDNet is 34.25fps, which is faster than
SPD_BOVW and YOLOv3 and is basically the same as the
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TABLE 8. The performance of the four methods tested on Dataset 1.

FIGURE 12. Loss curves of the three YOLO models.

YOLOv3_SR, indicating that it can provide rapid detection
of railway track line multi-target defect in high-resolution
images. Most importantly, as shown in Table 8, in com-
parison with the image processing-based detection method
SPD_BOVW, the detection speed of TLMDDNet is increased
by nearly 34 times, and the detection accuracy is improved
by about 10.3%. These results show that deep learning-based
method has much better detection performance in practice
than image processing-basedmethod. In addition, the number
of parameters and time complexity of TLMDDNet are about
56.3M and 28.4 BFLOPs, respectively, which are less than
YOLOv3 and slightly larger than YOLOv3_SR, indicating
the validity of the TLMDDNet structure.

For Dataset 2, the loss value of YOLOv3, YOLOv3_SR,
and TLMDDNet during training is shown as in Fig. 13.
The AP of each class, mAP, average detection rate, param-
eters, and FLOPs of the models are shown in Table 9. The
experiment results show that the proposed TLMDDNet has
the best training performance and detection performance in
these models. Specifically, for Dataset 2, the mAP and the
average detection rate of TLMDDNet are 0.9947 and 33.0fps,
respectively. Therefore, it is a better alternative for practical
application.

VI. LIGHTWEIGHT DESIGN OF TLMDDNet
The TLMDDNet proposed in Section V achieves sound per-
formance and is suitable for the railway track line multi-target
defect detection. However, like the original YOLOv3 net-
work, several residual blocks are used in the backbone of

FIGURE 13. Partial loss curves for the three detection models.

TLMDDNet, which achieves high detection accuracy and
brings a large number of parameters to the entire network.
Excessive parameters can lead to extended time training,
increase the demand for data, and slow down the detection
speed. Therefore, the structure of TLMDDNet can be further
optimized.

A. DENSE CONNECTION IN THE TLMDDNet
DenseNet consisting of Dense Block is proposed by
Huang et al. in 2017 [41]. It has higher computational
efficiency and storage efficiency. In general, for the same
prediction accuracy, DenseNet needs only half of the param-
eters of ResNet. This allows DenseNet to effectively alleviate
gradient vanishing, strengthen feature propagation, facilitate
feature reuse, and substantially reduce the number of param-
eters. More details about DenseNet can be found in [41].

In this paper, to decrease the complexity of the model and
further speed up the detection of railway track line multi-
target defect, inspired by DenseNet, a lightweight model
for the TLMDDNet is proposed, named DC-TLMDDNet
(Dense Connection Based TLMDDNet). In detail, as shown
in Fig. 14 (a), the dense connection structure of convolu-
tional layers, named DC block (Dense Connection block),
is used to replace the residual blocks in block3, block4,
and block5 located in the TLMDDNet backbone network.
Each convolutional layer of the DC block in DC-TLMDDNet
outputs k feature maps, that is, the growth rate is k; the l-th
layer of the DC block has k0 + k × (l − 1) concatenated
feature maps as input, where the number of the input feature
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TABLE 9. The performance of the three methods tested on Dataset 2.

FIGURE 14. (a) The main differences between the backbone network of DC-TLMDDNet and the one of TLMDDNet;
(b) the structure of DC block; (c) the structure of each dense unit; (d) the improved transition block.

maps of the first layer is k0. As shown in Fig. 14 (b) and (c),
the DC block in DC-TLMDDNet has eight densely connected
units, and each unit consists of a 1 × 1 convolutional layer
and a 3 × 3 convolutional layer, where each type of the
convolutional layer followed by a batch normalization layer
and leaky ReLU, and the growth rate k is set to 32. Therefore,
the nonlinear mapping function of each dense unit can be
represented as Conv(1 × 1)-BN-leaky ReLU-Conv(3 × 3)-
BN-leaky ReLU. Furthermore, an improved transition block
is used before each DC block, which performs the maximum
pooling and convolution with a step size of 2 on the output
feature maps of the previous block, respectively. It concate-
nates the two outputs as the input of the next block. As shown
in Fig. 14 (d), the overall parameters of the new proposed
network are further reduced by enhancing feature reuse.

B. EXPERIMENTS AND RESULTS
In this experiment, the proposed model is compared with
YOLOv3_SR and TLMDDNet to illustrate the validity and
feasibility of DC-TLMDDNet. The experimental datasets,

environment, and relevant evaluation indicators are the same
as discussed in the previous section. The loss value of
YOLOv3_SR, TLMDDNet, and DC-TLMDDNet during
training is shown in Fig. 15. The AP of each class, mAP,
average detection rate, parameters, and FLOPs of the models
are shown in Table 10.
The experimental results show that DC-TLMDDNet con-

verges quickly and gets a desirable convergence result,
which is almost the same as TLMDDNet. This indicates
that the training performance of DC-TLMDDNet can meet
the requirements. As for detection performance, compared
with TLMDDNet, the detection speed of DC-TLMDDNet is
increased by 7.32fps, and the detection accuracy is improved
by about 0.14%. In addition, the number of DC-TLMDDNet
parameters and the model complexity of DC-TLMDDNet is
25.5M and 13.0 BFLOPs, respectively, both of which are less
than half of those of TLMDDNet. All these results demon-
strate the effectiveness of DC-TLMDDNet, which reduces
the number of parameters of the TLMDDNet while maintain-
ing an ideal detection performance.

VOLUME 8, 2020 61985



X. Wei et al.: Multi-Target Defect Identification for Railway Track Line

TABLE 10. The performance of the three methods tested on Dataset 2.

FIGURE 15. Partial loss curves for the three detection models.

VII. CONCLUSION
In this paper, the railway track line multi-target (mainly
focused on the track and different types of fasteners) defect
identification issues are concerned the first time. First of
all, methods based on image pre-processing, feature extrac-
tion, and classifier are investigated. A sound positioning
method for track and fastener is proposed. Based on the
positioning results, a BOVW model combined with spatial
pyramid decomposition is applied to the classification. Sec-
ondly, to simplify the detection procedure and improve the
detection accuracy, the TLMDDNet based on YOLOv3 is
proposed for the considered issues. This model simultane-
ously enables the positioning and classification of track and
fasteners. In TLMDDNet, the final detection is performed
only on the scale of 13 × 13 feature map size, and a cross-
block feature concatenation strategy is utilized for learning
object features comprehensively. The quantitative experi-
ments on Dataset 1 and Dataset 2 show that TLMDDNet
achieves markedly better performance than the other meth-
ods. Finally, the TLMDDNet is improved by incorporating
the DenseNet method for reducing the parameter number of
TLMDDNet. The DC-TLMDDNet proposed in this paper
uses dense blocks and improved transition blocks to optimize
the backbone network by enhancing feature propagation and
improving network performance. The experimental results
demonstrate that the DC-TLMDDNet based method can
reduce the complexity of TLMDDNet and further improve
the detection speed of the railway track line multi-target

defect, which has a better performance compared to the
methods available in the literature. In addition, based on the
experimental results, it can be concluded that the TLMDDNet
and DC-TLMDDNet can also be used to detect the defects
of track and different types of fasteners simultaneously and
comprehensively.

In the future, the defect detection of other components of
the railway track line (e.g., sleeper and ballast) will be care-
fully investigated and integrated to develop a comprehensive
railway track line detection system. The methods proposed in
this paper will be further validated in a field test.
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