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ABSTRACT Multiple-instance learning (MIL) can solve supervised learning tasks, where only a bag of
multiple instances is labeled, instead of a single instance. It is considerably important to develop effective
and efficient MIL algorithms, because real-world datasets usually contain large instances. Known for its
good generalization performance, MIL based on extreme learning machines (ELM–MIL) has proven to
be more efficient than several typical MIL classification methods. ELM–MIL selects the most qualified
instances from each bag through a single hidden layer feedforward network (SLFN) and trains modified
ELMmodels to update the output weights. This learning approach often performs susceptible to the number
of hidden nodes and can easily suffer from over-fitting problem. Using Bayesian inferences, this study
introduces a Bayesian ELM (BELM)-based MIL algorithm (BELM–MIL) to address MIL classification
problems. First, weight self-learning method based on a Bayesian network is applied to determine the
weights of instance features. The most qualified instances are then selected from each bag to represent
the bag. Second, BELM can improve the classification model via regularization of automatic estimations to
reduce possible over-fitting during the calibration process. Experiments and comparisons are conducted with
several competing algorithms on Musk datasets, images datasets, and inductive logic programming datasets.
Superior classification accuracy and performance are demonstrated by BELM–MIL.

INDEX TERMS Multiple-instance learning, Bayesian extreme learning machine, instance selection,
classification.

I. INTRODUCTION
Multiple-instance learning (MIL) was firstly proposed by
Dietterich et al. [1] as an approach to predict drug activities.
Afterwards, MIL enjoyed many successful applications, such
as improved drug activity prediction [2], text categoriza-
tion [3], image classification [4], object detection [5], and
stock prediction [6]. Different from other machine-learning
frameworks, MIL is novel, because it contains bags with
labels, instead of labeled instances. There are unfixed quan-
tities of instances in each bag, and the label of each bag is
observable, whereas the instances in each bag are not. By rule,
if there is at least one positive instance in the bag, the label is
positive. Otherwise, it is negative. This is important, because
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traditional single-instance learning (SIL) approaches no
longer solve MIL problems.

Over the past few decades, substantial MIL methods have
emerged to solve multi-instance problems. All can be gener-
alized into three types:
• Specialized algorithms combined with the character-
istics of MIL. This includes the axis-parallel rectan-
gle approach, which finds the most appropriate axis
parallel rectangle by taking the property values of the
instance [1]. In 1998, Maron and Lozano–Perez pre-
sented the diverse density (DD) method [7], which took
the instance having the largest diverse density from
each bag as the based instance, then calculated the
distance between this based instance and the instance
in test bag to predict the bag label. In 2002, Zhang and
Goldman [8] extended DD with an expectation
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maximized (EM) model by calculating the based
instance using the expectation function.

• MIL algorithms based on classification algorithms.
Researchers have added relevant MIL constraints in the
objective function of SIL, including citation K-nearest
neighbor (k-NN) [9], which extends k-NN, and Andrews
et al. [10] developed a support vector machine (SVM) by
adding MIL constraints to its object function. Zhou and
Zhang [11] added a bag constraint from the traditional
back-propagation (BP) neural network and created a
BP-mixed-integer programming algorithm by defining
a new error function.

• Algorithms based on the idea of problem transformation.
These include MIL via embedded instance selection
(MILES), proposed by Yixin et al. [12]. One embeds the
bag into the instance space, obtains the characteristics
of the bag, and then trains the instance using 1-SVM
classifier. Fu et al. [13] developed a novel method based
on adaptive instance selection called MIL with instance
selection (MILIS) by combining the instance selection
and the classifier learning steps, providing an alternate
optimization framework to ensure iterative convergence.
In MILIS, The initial instance selection on a negative
bag is based on a simple and efficient kernel density
estimate (KDE) method. In 2015, Wang et al. [14] first
developed an instance selection method based on the
extreme learning machine (ELM).

In real-world applications, MIL algorithms are usually
time-consuming and can hardly achieve high performance
when confrontingwith potentially large amounts of instances.
Therefore, it becomes essential to select the most infor-
mative and contributing instance from each bag by the
most efficient way. Selecting the most effective classifier
is crucial, too. Fig. 1 illustrates the main idea of instance
selection-based MIL.

Over the past few years, ELM [15] has been increasingly
applied to various machine-learning problems and has shown
outstanding generalization performance and extremely fast
learning speeds [16]–[20]. ELM proposes the parameters of
random initialization hidden layer, and the output weights
are determined by a least mean-squares method based on
applying theMoore—Penrose generalized inverse [21]. Thus,
the computational cost is much lower than those of other
classical algorithms (e.g., gradient descent, global search,
genetic algorithm, particle swarm). To address MIL classifi-
cation problems, a multi-kernel extension of ELM (MKELM)
provides an elegant way to circumvent calculation of the
hidden layer outputs and inherently encode it in a kernel
matrix [22]. However, the potential issue of MKELM is how
to find an optimal balance between different kernels for a
specific application since the kernel balance parameter is
typically data dependent. Wang et al. [14] modified the spe-
cific error function for the characteristics of multiple instance
problems and proposed ELM-MIL. Although ELM-MIL can
learn much faster, the effectiveness of ELM largely depends

FIGURE 1. Framework of instance selection-based MIL. There are N
training bags, and the red circles in each bag represent positive instances,
whereas the blue circles represent negative ones. We first select the most
representative instance from each bag using selection strategies. Then,
the winning instances can be used to train the classifier. Finally, MIL
problems can be converted to SIL.

on the number of hidden nodes selected (i.e., network
structure). Its classification accuracy is slightly worse and
more susceptible to hidden nodes than other benchmark
MIL algorithms. ELM-MIL can easily suffer from over-
fitting because of the calculation of output weights of the
single-hidden layer feed-forward neural network proposed
byMoore—Penrose, which generalizes the inverse minimum
mean method.

Based on the above observation, we introduce a Bayesian
ELM (BELM) [23] based MIL algorithm (BELM-MIL) to
further improve classification performance. Using Bayesian
inferences, BELM-MIL can alleviate over-fitting problems
with an appropriate prior and an automatic regularization,
showing good classification performance with many learning
tasks [24]. On the premise of instance selection, this method
uses the weight self-learning method based on Bayesian net-
work to learn the weight of each feature in the instance and
calculate the mathematical expectation of each instance in the
bag according to the weight. Then, a representative instance
is selected from each bag and we train the classifier using
BELM. Compared to existing problem transformation-based
MILmethods, BELM-MIL effectively enhances the accuracy
of classification by combining BELM with MIL. To the best
of our knowledge, this is the first work combining both
BELM and MIL in a unified work. The main contribution of
this paper can be summarized as follows:

• We propose BELM-MIL for classification.
• Weuse a weight self-learningmethod based on Bayesian
networks for instance-feature weight optimization.

• We improve instance selection strategies for optimizing
the representativeness of instances.
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• We conduct experiments on 13 real-world datasets, and
the experimental results reveal superior BELM-MIL
performance.

The rest of this paper is structured as follows.
In Section II, we review the methods related to our work.
Section III describes the details of our proposed method
(i.e., BELM-MIL). Section IV presents the experiments of
the method and discusses its comparison with other baseline
approaches. Finally, in Section V, the main idea of our
algorithm is concluded.

II. RELATED WORKS
A. ELM
ELM is a single hidden layer feed-forward network (SLFN)
first proposed by Huang [15]. Because the input-weights
(i.e., connections between the input layer and the hidden
layer) and the hidden biases are chosen arbitrarily, ELM
only needs to set the number of hidden-layer nodes for
algorithm execution. Thus, it can achieve extremely fast
learning speeds, better than BP, and it has better general-
ization performance. However, it has difficulty generating
local optimal solutions. The structure of ELM is illustrated
in Fig. 2.

FIGURE 2. ELM, which consists of an input layer, a single hidden layer,
and an output layer. The input and hidden layers are connected by input
weight ωi, and the hidden layer and output layer are connected by output
weight β. Each hidden neuron has a bias of bi .

Suppose that there is a training set, (x1, . . . , xN)T , with
label (yi, . . . , yN )T . The output of SLFNs having L nodes can
be simply formulated as o(x) = [o1(x), . . . , oL(x)], where x
is the input instance. The structure of SLFNs can be denoted
as follows:

oi =
L∑
j=1

βjg(ωj · xi + bj), i = 1, . . . ,N (1)

where g(x) is the sigmoid active function that can be denoted
as follows:

g(x) =
1

1+ exp(−(ω · x+ b))
(2)

where input weight ω is an L × N matrix, of which the ith
row vector can be presented as: ωi = [ωi1, ωi2, . . . , ωin], and
b is an L×1 hidden bias vector, where bi is the bias of the ith
hidden layer unit. Suppose that β is the output weight. The
structure of SLFNs can then be simply written as

O = Hβ (3)

where O is the output matrix: O = [o1, o2, . . . , oN ]T , andH
is called theN×L hidden-layer output matrix of the network,
whose elements are as follows:

H =

g(ω1 · x1 + b1), · · · g(ωL · x1 + bL)
...

. . .
...

g(ω1 · xN + b1), · · · g(ωL · xN + bL)


N×L

(4)

and β = [β1, . . . ,βL], where the ith row vector is βi =
[βi1, βi2, . . . , βin], which can be determined by using gener-
alized Moore–Penrose inverse as follows:

β̂ = H†Y (5)

H† is the Moore–Penrose generalized inverse of matrix H ,
and H†

= (H ·H)−1.

B. BELM
Bayesian inference provides a natural way to automatically
optimize model complexity [25], [26]. BELM optimizes the
output layer weights based on the Bayesian linear method,
which improves the over-fitting problem of ELM [23]. With
the wide application of Bayesian theory, we can conclude
that the establishment of most models based on Bayesian
theory can be divided into the following two steps. The first
step finds the posterior distribution of the model parameters.
Suppose ω is the set of parameters, and D is the dataset.
Because the prior distribution and likelihood function of the
model is proportional, the prior distribution can be simply
defined as:

P(ω|D) = P(ω) · P(D|ω) (6)

The second step is that the output, ynew, can be given by the
integral of the posterior distribution of ω for input instances
of xnew:

P(ynew|xnew,D) =
∫
P(ynew|xnew,ω) · P(ω|D)dω (7)

TheGaussian normalization of BELMdiffers fromELM in
that the regularization α is a natural consequence of the Gaus-
sian Process. In contrast, other approaches require a term for
the cost function being minimized. Therefore, BELM can
achieve better generalization than ELM.

ELM learns fast and has a good generalization capability
with a simple network structure. The network weights are cal-
culated using the Moore–Penrose generalized inverse matrix,
and the weights between the input and hidden layers and the
bias of the hidden neuron are assigned randomly, without
adjustment during the training process. Thus, we can get the
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FIGURE 3. A conceptual view of BELM-MIL. Given N training bags, each bag contains several
instances, and there are four main steps to classifier training: Bayesian weighted self-learning;
instance selection; BELM modeling; and prediction.

optimal solution by only setting the number of hidden nodes.
BELM covers these advantages of ELM, and it reduces the
computational cost while avoiding establishing confidence
intervals through the guidance method.

III. PROPOSED METHOD
Suppose that there are N bags in the training set, B =
{B1, . . . ,BN }, the number of instances in the ith bag, Bi, is ni.
The jth instance in Bi is xij, which belongs to a p-dimensional
space (i.e., [xij1, . . . , xijp]T ). Suppose that Y = {y1, . . . , yN }
is the label set where yi is the label of bag Bi, and yi = +1
denotes the label of ith bag (positive), whereas yi = −1
represents the label of the ith bag (negative). The purpose of
our work is to predict whether the label of the new input bag
is positive.

The conceptual view of BELM-MIL is shown in Fig. 3.
BELM–MIL is achieved through four primary steps:
Bayesian weight self-learning; instance selection; BELM
modeling; and prediction. Algorithm 1 reports the detailed
process of the proposed BELM–MIL.

A. WEIGHT SELF-LEARNING BASED ON
BAYESIAN NETWORK
Because it can obtain the feature weight through the study
of instances, the learning process is not affected by human
factors, and the weight determination is intelligent, Bayesian
networks are applied to iteratively determine weights
[27], [28]. Bayesian networks are usually defined by two
parts [29]. The first part is a directed acyclic graph, where
each node represents a random variable, and each arc repre-
sents a probability dependency. The second part is the condi-
tional probability table (CPT) for each attribute, which is the
conditional probability distribution of the attribute under its
parents.

Algorithm 1 BELM–MIL: Multiple Instance Learning via
Bayesian Extreme Learning Machine
Require:

The number of hidden nodes, L;
The set of training data, B;
The label of the training dataset, Y ;
The set of testing data, B̂;
A constant number, k;

Ensure:
The class label, Ŷ , of testing bags, B̂;
//Training phases:

1: Update feature weight ω by weight self-learning method
(Section III-A) using (9)-(10) :

2: Calculate mathematical expectation Yij of each instance,
xij, in bag Bi according to (11), and select instance xij
having max(Yij) to represent bag Bi.

3: Suppose y has an independent noise, ξi. Apply the prob-
ability model, P(y|H, β, σ 2), to the bag-level instance
(Section III-C). Then, define a prior distribution, p(β|α),
to punish excessive weight.

4: Initialize the shared prior, α, and the variance of y, and
update α and σ 2 iteratively according to (16)-(19) until
convergence.
//Testing phases:

5: Select instance x̂ij having max(Yij) to represent bag B̂i.
6: Predict p(ŷ|α, σ 2,h(x̂)) based on m in Step 4.
7: Apply the classifier on the testing dataset, B̂, to predict

the class label, Ŷ .
8: return Ŷ .

For the selection of the representative instance in each bag,
we suppose each instance has a label (i.e., positive or nega-
tive), and the goal of the Bayesian Network is to maximize
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FIGURE 4. Illustration of Bayesian network for weight self-learning
problem and CPT Binary structure for feature f5. Each node represents a
feature of instance (i.e., f1, f2, . . . , fp) which is denoted e in the
probability presentation of Bayesian network. The line represents the
causal relationship between the features of the upper-level and the next
level. The CPT of this Bayesian network is a binary structure which stores
the initial weight ω and its feature value p.

the total probability obtained from the training set. Thus,
we construct a Bayesian network for weight self-learning
optimization, as is shown in Fig. 4. The CPT here presents
not the conditional probability table of the features, but the
initial weight and feature value relative to its parents, i.e.,
a binary structure. The calculation of CPT items in Bayesian
networks is similar to the calculation probability involved in
naive Bayesian classification [30].

Here, the Bayesian Network is trained by using a gradient-
descent algorithm [31], the purpose of which is to learn the
value of CPT. Suppose S is the set of training instances
X1,X2, . . . ,Xs, and ω = [ω1, ω2, . . . , ωp]T is the initial
weight of the feature. The prior probability of node e at Xd
is p(e|Xd ), i.e., the feature value in binary structure of CPT.
The goal of learning is to maximize Pω(S) =

∏S
d=1 Pω(Xd ),

where Pω(S) is the total probability of training instances
S, and Pω(Xd ) is the total probability of instance Xd . With
lnPω(S) gradient calculation, it makes the problem easier:

lnPω(S) = ln
S∏

d=1

Pω(Xd )

= ln(
ω

p(e|X1)
· . . . ·

ω

p(e|Xd )
)

= ln
ω

p(e|X1)
+ . . .+ ln

ω

p(e|Xd )
(8)

We initialize ω randomly and update it by using a gradient-
descent algorithm [31]. The iterative process can be thus
derived.

(a) Calculate the gradient for each attribute in the network
according to (8):

∂ lnPω(S)
∂ω

=
p(e|X1)
ω

+
p(e|X2)
ω

+ . . .+
p(e|Xd )
ω

=

S∑
d=1

p(e|Xd )
ω

(9)

(b) Move a small step along the gradient to update
weight ω:

ω← ω + (l)
∂lnPω(S)
∂ω

(10)

where l is step learning rate, a very small value.
(c) Then, ω can be normalized to (0, 1).
(d) When ∂lnPω(S)

∂ω
< k , the training of ω will end,

otherwise, go to (a).

B. INSTANCE SELECTION
For each instance, xij, in bag Bi, the mathematical expectation
can be calculated as follows:

Yij =
p∑

k=1

xijk ∗ ωk (11)

Then, we select instance xij, which has max(Yij) to repre-
sent bag Bi. Thus, the MIL problem can be converted to SIL.

C. BELM MODELING
For the selected instances, (x1, x2, . . . , xN ), suppose each
label y has an independent noise, ξ , that follows a Gaussian
distribution, N (0; σ 2). Then, y can be written as

y = Hβ + ξ (12)

where H ∈ R(N×L) is the output weight of the hidden layer.
The probability model and likelihood function can then be
derived as follows:

P(y|H, β, σ 2) =
N∏
i=1

p(yi|H ,β, σ 2)

=

N∏
i=1

1
√
2πσ 2

exp(−
(yi − h(xi)β)2

2σ 2 ) (13)

To punish excessive weight, the natural priori distribution is
defined as follows:

p(β|α) = N (0;α−1I) = (
α

2π
)
L
2 exp(−

α

2
βTβ) (14)

where I is the identity matrix, and α is the shared prior, which
is a natural consequence of the Guassian approach. Because
the prior distribution and likelihood function follow a
Gaussian distribution, the posterior can be derived as
follows:

p(β|α, σ 2, y) =
p(y|β, σ 2)p(β|α)

p(y|α, σ 2)
(15)

which also follows a Gaussian distribution with a mean value
of m and a variance of v, as follows:

m = σ−2 · v ·HTY (16)

v = (αI + σ−2 ·HT
·H)−1 (17)

Thus, we can get the optimal value of hyper-parameter
via the evidence procedure of [32], and optimal con-
ditions can be calculated by following the fixed-point
formula:

α ←
L − α · trace[v]

mTm
(18)

σ 2
←

∑N
i=1(yi − h(xi)m)2

N − L + α · trace[v]
(19)

where N is the number of patterns. By initializing α and σ 2,
m and v are updated iteratively according to (16)-(19) until
convergence. Finally, m can be applied to predict the new
output, ynew, based on input xnew.
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D. PREDICTION
For the testing dataset, B̂, the representative instances can be
selected the same way as the training data. Then the label of
each bag can be predicted:

p(ŷ|α, σ 2,h(x̂)) = N (h(x̂)m; σ̂ 2)

=

∫
p(ŷ|β, σ 2,h(x̂))p(β|α, σ 2, y)dβ (20)

where h(x̂) = [h1(x̂), . . . , hL(x̂)], and σ 2(x̂) = σ 2
+ h(x̂)T ·

v · h(x̂)T . Equation (20) also follows a Gaussian distribution
with the mean value and variance, as follows:

m̂ = h(x̂) · m (21)

σ̂ 2 = σ 2
+ h(x̂) · v · h(x̂)T (22)

Finally, the class label, ŷ, is mapped to (0, 1) using the
Sigmoid function [33]. If ŷ > 0.5, the label of this bag is
positive. Otherwise, it is negative.

IV. EXPERIMENTS
A. EXPERIMENTAL SETTING
In this section, two groups of experiments are conducted
to analyze the performance of our proposed method. The
first experiment reports the three types of MIL algorithms
mentioned in Section I and demonstrates the feasibility of
studying a MIL algorithm based on the idea of problem
transformation. The second experiment analyzes the perfor-
mance between BELM–MIL and baselines. Our experiments
involves two parameters. The number of hidden nodes, L,
is set to 50, and the regular parameter, C, in ELM–MIL is
set to 0.25 [14]. All experiments are executed on a computer
using an Intel(R) Core(TM) i5-2450M 2.50-GHz central
processing unit with 8-GB RAM, Matlab R2012a. In our
experiments, we use 10-fold cross validation to compare the
results. The dataset is divided into 10 parts, among which,
nine are taken as training data and one is taken as test data for
the experiment. The corresponding correct rate is obtained
for each experiment. The average value of 10 results is used
to estimate the accuracy of the algorithm. The procedure is
repeated 10 times and the averaged accuracy is then com-
puted.

B. BASELINE APPROACHES
For this paper, we choose four baseline approaches for com-
parison and evaluation, all based on the idea of problem
transformation.
• ELM–MIL: This algorithm first modifies the specific
error function in ELM for the characteristics of MIL
problems, then it selects the most qualified instance in
each bag using SLFNs. It finally uses selected instances
to update the output weight of ELM [14].

• MILES: The main idea of MILES is transforming
the MIL problem into a supervised learning problem.
By defining the similarity measure of the instance in
the bag, the training bags can be mapped to the feature

TABLE 1. Details of experimental datasets, including drug activities,
content-based image retrieval and inductive logic programming datasets.

space, and the representative features can be selected by
the 1-norm SVM to enhance the bag classification [12].

• MILIS: This method applies KDE to select an instance
for each bag, and then maps each bag to a bag-level
feature. It optimizes the classifier formation in an itera-
tive manner that guarantees convergence compared with
MILES [13].

• Bayesian-kNN: Each bag is considered as an instance of
the traditional classification concept. According to the
label of the kth nearest neighbors of the bag, the voting
method is applied to determine the class of the bag [9].

C. EXPERIMENTAL DATASETS
Three fields of learning tasks across 13 datasets are used
to validate BELM–MIL in our experiment. Similar exper-
iments based on those datasets can be found in previous
works [34], [35]. The original datasets for drug activity perdi-
tion and content-based image retrieval are available online at
http://www.miproblems.org. The datasets for the train-bound
challenge, and the Surami judgment task can be found at
http://www.cs.waikato.ac.nz/~eibe/multi_instance/. Table 1
shows the details of each dataset, and the number of instances
and dimensional features are also listed. Moreover, those
datasets are introduced briefly as follows:
• Drug-activity prediction data: The purpose of drug-
activity prediction is to predict the potency of drug
molecules. Each drug molecule (i.e., bag) has sev-
eral low-energy shapes (i.e., instances). Musk1 and
Musk2 are the classic datasets in MIL, first proposed by
Dietterich et al. [1] in their study of drug-active molec-
ular prediction. During the learning procedure, if any of
the conformations in the molecule has a musky smell,
we define this molecule as a musk. Musk1 consists
of 47 positive bags and 45 negative bags with a total
of 476 instances. Musk2 has 102 bags, of which 39 are
positive and 63 are negative, with 6,598 instances in all.
The instances in both datasets are represented using a
166-dimensional feature vector.

• Content-based image retrieval data: In content-based
image retrieval, the learning task is to determine whether
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an image contains the object of interest, such as an
elephant or a fox. This kind of retrieval is commonly
used for MIL evaluation [36], [37]. Each image rep-
resents a bag, and the region of interest in the image
is an instance if at least one region (instance) contains
the object of interest. Then it is labeled as positive.
We use five datasets: Elephant, Fox, Tiger, Cars, and
People, corresponding to different types of image recog-
nition. Each of the first three datasets (Elephant, Fox,
Tiger) contains 200 bags, consisting of 100 positive
bags and 100 negative bags with a total of 1,391,
1,320, and 1,220 instances, respectively. Each instance
in those datasets is described with a 230-dimensional
feature vector. Cars contains 5,600 instances grouped
into 800 bags, of which 420 bags are positive and 380 are
negative. People has 691 bags with 4,837 instances in
total and consists of 311 positive bags and 380 negative
bags. Each instance in Cars and People is represented by
a 90-dimensional feature vector.

• Inductive Logic Programming (ILP) data: We select
six sets of multi-instance concept-related datasets from
the ILP: Eastwest, Westeast, Mutagenesis_atoms, Muta-
genesis_bonds, Mutagenesis_chains, and Surami. Each
bag in the Eastwest and Westeast datasets signifies
a train (bags) contains a variable number of cars
(instances), because the direction of a train is either
west or east. This learning task is under theMIL assump-
tion, and those two datasets are used for MIL per-
formance evaluation [38]–[40]. Each bag in Eastwest
and Westeast datasets consists of 10 positive bags and
10 negative bags, and each instance in bags is described
by a 20-dimensional feature vector. The positive bags
represent eastbound trains in Eastwest dataset, while the
positive bags in Westeast dataset denote the opposite
direction.
The Mutagenesis_atoms, Mutagenesis_bonds, and
Mutagenesis_chains datasets are applied to predict gene
mutations [41], and MIL frameworks have been suc-
cessfully used to tackle this problem [34]. These three
datasets have been converted to MIL problems by using
a proper toolbox [42]. A bag represents a compound
molecule, atom, and bond in the mutagenesis MIL
dataset that contains all 1,618 atoms, all 3,995 atoms,
and all 5,349 atomic bond tuples as their instances,
respectively. Each bag consists of 125 positive bags and
63 negative bags. The Surami dataset also belongs to
the field of medicine, and each drug molecule can be
regarded as a bag in the MIL problem [43]. The purpose
of our prediction is to judge whether the drug molecule
has an anticancer effect. There are 11 drug molecules
in total that contain seven positive bags and four
negative bags.

D. EVALUATION CRITERION
Classification accuracy (ACC), root mean-squared error
(RMES), area-under-the-receiver operating characteristic

curve (AUC), andmodel building time are applied to compare
algorithm performance, which are widely used for perfor-
mance evaluation on domain specific problems [44]–[48].
Finally, we count the number of wins, ties, and losses to
evaluate all competitive algorithms.
• ACC:As its name suggests, classification accuracy indi-
cates the correct rate: Accuracy = n/N , where n is the
number of bags whose predicted label is consistent with
the original label, and N is the size of the testing bags.

• AUC: AUC is the area-under-the-receiver operating
characteristic curve, which can be defined as: AUC =
(
∑

ri − M (M + 1)/2)/(MN ), where ri is the rank
of the ith negative instance in the ranked list, and M,
N is the number of negative and positive instances,
respectively.

• RMES: RMES (i.e., the standard error), is very sensitive
to very large or very small data in a set of classification
results. Thus, it is very suitable for measuring the pre-
cision of the algorithm, and it is calculated according to
the following formula: RMES =

√∑
e2/N , where e is

the error between the predicted value and the true value
of bags, and N is the size of testing bags. Therefore,
the smaller the RMES, the higher the precision of the
algorithm and the better the performance.

• Win/tie/lose: Win/tie/lose has proven to be an effec-
tive measure to help us intuitively understand the
victory or defeat of the two competitive algorithms,
A and B [49]. Specifically, for a performance measure
M, a win/tie/lose record for A and B indicates the num-
ber of datasets where A wins, ties, or loses against B on
M respectively.

E. RESULTS AND ANALYSIS
1) COMPARISON OF THREE TYPES OF MIL METHODS
Table 2 shows the results of the first group experiments,
and we can conclude that the best performing algorithms
in these three types of MIL algorithms are MIDD (average
classification accuracy is 72.20%),MILR (average classifica-
tion accuracy is 70.71%), and MILIS (average classification
accuracy is 64.30%). The above experimental results show
that the development of the first two types of MIL algorithms
is quite mature [50], [51], whereas there is still enormous
developing space in the research of the third-class MIL algo-
rithm (i.e., the idea of problem transformation-based MIL).
Moreover, if the third-class MIL algorithm transforms MIL
problem into a SIL problem, the problem is simplified, and
the classification efficiency is improved apparently. There-
fore, based on the third-class learning algorithm, to learn a
method with sufficient classification efficiency and achieve
considerable classification accuracy is a feasible research
direction [52], [53].

2) ACCURACY COMPARISON BETWEEN BELM–MIL
AND BASELINES
Table 3 reports the experimental results in terms of classifi-
cation accuracy. Moreover, Table 7 illustrates the win/tie/lose
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TABLE 2. Comparison of three types of MIL methods.

TABLE 3. Classification accuracy (ACC)(%) of different base algorithms.
Best results for each dataset are highlighted in bold.

records of competitive algorithms on classification accu-
racy. Each win/tie/lose record represents that the number of
row-method wins, ties, or losses to the column method on
13 experimental datasets. In summary, we can conclude the
results as follows:
• BELM–ELMoutperforms ELM–MIL in terms of classi-
fication accuracy. To be specifically, BELM–MIL wins
9 datasets and lose 4 datasets compared with ELM–MIL.

• Compared to MILES, MILIS and Bayesian-kNN,
BELM–MIL also shows good performance. BELM–
MIL wins 10 datasets, ties 1 dataset and loses 2 datasets
compared to MILES, and it wins 10 datasets, ties
2 dataset and loses 1 datasets compared to MILIS, while
BELM–MIL wins 9 datasets, ties 2 dataset and loses
2 datasets compared to Bayesian-kNN.

3) AUC COMPARISON BETWEEN BELM–MIL AND BASELINES
Experimental results in terms of AUC of BELM–MIL and
other baseline algorithms are shown in Table 4, and Table 8
illustrates the win/tie/lose records of competitive algorithms
on classification accuracy. In details, the results in Table 4
and Table 8 indicate that:
• BELM–ELM significantly outperforms ELM–MIL in
terms of AUC. To be exactly, BELM–MIL wins

TABLE 4. AUC of different base algorithms. Best results for each dataset
are highlighted in bold.

11 datasets and loses 2 datasets compared with
ELM–MIL.

• Compared to MILES, MILIS and Bayesian-kNN,
BELM–MIL also shows good performance. BELM–
MIL wins 11 datasets, and loses 2 datasets com-
pared to MILES, and it wins 12 datasets, and loses
1 datasets compared to MILIS, while BELM–MIL
wins 12 datasets, and loses 1 datasets compared to
Bayesian-kNN.

4) RMES COMPARISON BETWEEN BELM–MIL
AND BASELINES
Table 5 and Table 9 illustrate the result details of BELM
and other rival algorithms with respect to RMES. Moreover,
Fig 7 illustrates the comparison of BELM–ELM and other
rival algorithms. Overall, the experimental results can be
summarized as follows:

• BELM–ELM significantly outperforms ELM–MIL in
terms of RMES. To be precisely, BELM–MIL wins
11 datasets and loses 2 datasets compared with
ELM–MIL.

• BELM–MIL shows good precision when compared to
MILES, MILIS and Bayesian-kNN. It wins 9 datasets,
ties 1 dataset and loses 3 datasets compared to MILES,
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FIGURE 5. Comparison between BELM–MIL and rival algorithms (ELM–MIL, MILES, MILIS and Bayesian-kNN) on 13 datasets. Each data point in a
figure represents the classification accuracy (ACC) on one dataset.

FIGURE 6. Comparison between BELM–MIL and rival algorithms (ELM–MIL, MILES, MILIS and Bayesian-kNN) on 13 datasets. Each data point in a
figure represents the AUC on one dataset.

TABLE 5. RMES of different base algorithms. Best results for each dataset
are highlighted in bold.

TABLE 6. Modeling time (min) of different base algorithms.

wins 11 datasets, and loses 2 datasets compared to
MILIS, and wins 13 datasets, and loses 0 datasets com-
pared to Bayesian-kNN.

TABLE 7. Win/tie/lose records of each competing algorithm on
classification accuracy (ACC).

TABLE 8. Win/tie/lose records of each competing algorithm on AUC.

TABLE 9. Win/tie/lose records of each competing algorithm on RMES.

5) ANALYSIS AND DISCUSSION
Figure 5, 6, and 7 illustrate the ACC, AUC, and RMES
comparisons of BELM–ELM and other rival algorithms. For
ACC and AUC comparison, if the data point falls below the
diagonal line, y = x, it means that BELM–ELM has higher
performance than the Y-axis algorithm. However, for RMES
comparison, if the data points falls above the diagonal line,
it signifies higher performance. As those pictures show, most
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FIGURE 7. Comparison between BELM–MIL and rival algorithms (ELM–MIL, MILES, MILIS and Bayesian-kNN) on 13 datasets. Each data point in a
figure represents the RMES on one dataset.

data points fall in the desired region, illustrating the superior
performance of BELM–MIL.

Among all those instance-selection-based MIL methods,
BELM–MIL often outperforms MILES, which is a bag-
mapping instance selection approach. For instance, as shown
in Tables 3 and 4, BELM–MIL achieves a 89.26% ACC and
a 0.92 AUC on Musk1, which is much higher than MILES’s
77.87% ACC and 0.87 AUC, and with similar observations
for the other dataset, like Elephant, Fox, and Mutagene-
sis_bonds. Although MILES makes full use of the instances
for bag mapping, not all of them contribute to the final
classification performance. Thus, BELM—MIL is superior.
By contrast, BELM–ELM can select the most valuable one
(i.e., instance pruning) and reduce the influence of unfavor-
able instances.

FIGURE 8. The predict accuracy of ELM–MIL and BELM–MIL on
MUSK1 and MUSK2 with different number of hidden layer nodes.

Because the performance of ELM usually depends on the
selection of the number of hidden nodes to some extent [54],
we compare the classification accuracy of BELM–MIL and
ELM–MIL on Musk1 and Musk2 of a varying number of
hidden-layer nodes. As is shown in Fig. 8, ELM–MIL easily
obtains a small or large value when using a different num-
ber of L. Meanwhile, by exploiting probabilistic inferences,
BELM–MIL can achieve more stable classification accu-
racy and control the model complexity successfully with an
increase of L. As a result, our proposed BELM–MIL method
achieves more robust accuracy than ELM–MIL and further
improves MIL classification tasks.

It is worth noting that the ACC and AUC of BELM–MIL
in content-based image retrieval are apparently superior,

demonstrating that the BELM–MIL can select the most
proper instance for model training. Specifically, BELM–MIL
gains 96.94% ACC, 0.92 AUC on Elephant, 98.10% ACC,
0.81 AUC on Fox 96.82% AUC, 0.88 AUC on Tiger, 70.25%
ACC, 0.67 AUC on Cars, and 78.58% ACC, 0.66 AUC
on People. BELM–MIL is effective on content-based image
retrieval, which suggests that BELM–MIL can apply those
selected instances to optimize image retrieval accurately.

We also conduct experiments to compare time con-
sumptions. Generally, when compared with MILES and
ELM–MIL, as Table 6 reports, ELM–MIL and MILIS can
run a bit faster than our proposed method, because of the lack
of a weight-updating process. Specifically, we analyse the
time complexity. For ELM–MIL, the training process mainly
includes the following two parts: selecting the representative
instance from each bag via SLFNs, and training the network
of ELMs. The time complexity of ELM–MIL can easily be
calculated:

O(Nb · Ni · n · L + Nb · L) ≤ O(Nb · Ni · n · L) (23)

where Nb is the number of bags, Ni is the number of instances
of each bag, L is the number of hidden-layer nodes, and
n is the number of attributes in the dataset. According to
Fig. 3, BELM–MIL mainly includes four steps, and the time
complexity of BELM–MIL can be calculated as

O(Nb · Ni · n · Np + Nb · L · Nq)

≤ O(Nb · (Ni · n · Np + Ni + L · Nq))

≤ O(Nb · N 2
i · n · L · Np · Nq) (24)

where Np is the number of iterations of weight self-learning,
and Nq is the number of iterations of BELM classifier train-
ing. By contrast, MILES and Bayesian-kNN are inferior to
our algorithm. The ACC and AUC of BELM–MIL on those
benchmark datasets aremuch higher than ELM–MIL,MILIS,
MILES, and Bayesian-kNN, and the RMES of BELM–MIL
usually has a smaller value. In other words, BELM–MIL
is a better algorithm overall and needs a little more run-
ning time, which is attributed to the combination of weight
update method and Bayesian classifier training used in
BELM–MIL.
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V. CONCLUSION
In this paper, a BELM–MIL is proposed. To select the
most representative instance in each bag, the Bayesian self-
learning method is applied to update the weight of features.
Based on new feature weight, the instance is selected from
each bag as the input of BELM to train the classifiers. The
experiments in Section IV demonstrate that our algorithm
performs comparably with baselines on the Musk and other
benchmark datasets. Because Bayesian inference provides
a natural way to automatically optimize model complexity,
by using Bayesian inference, BELM–MIL achieves stable
performance with an increase of hidden nodes.

However, as shown in Fig. 8, the accuracy of BELM–MIL
is more likely to achieve unstable performance, especially
with small values of L. Sparse Bayesian learning has
proven to be effective for redundant information reduction
by exploiting an automatic relevance determination prior
[54]–[56]. Full Bayesian method of ELM also has more
advantages than BELM, for example, the variational approx-
imation inference is employed in the Bayesian model to
compute the posterior distribution and the independent vari-
ational hyperparameters approximately, which can be used
to select the hidden nodes automatically, and it can finally
achieve more stable performance with more compact archi-
tectures [57]. The MIL classification performance of ELM
and sparse Bayesian learning and MIL classification based
on Full Bayesian method of ELM are worthy of further
study. On the other hand, BELM–MIL didn’t run enough
fast as ELM–MIL and MILIS does (see Table 6), which is
attributed to the combination of weight update method and
Bayesian classifier training used in BELM–MIL. Over the
past few years, deep learning has become a leading trend for
feature selection [58], [59]. Extension of the BELM structure
into a deeper architecture provides a potentially promising
approach to learn more effective features for higher MIL
classification accuracy.

To address the aforementioned limitations, we consider
that the following three aspects are worthy of our future
studies: First, the performance of ELM with sparse Bayesian
learning and Full Bayesian method of ELM onmulti-instance
classification deserve further study [54], [60], [61]. Second,
deep learning methods could be combined to reduce the
dimension of instance, thus, achieve a better speed while
keeping high classification accuracy. Finally, we will extend
our work to different real-world problems.

To sum up, we propose a BELM-based algorithm for MIL
classification. Under the probabilistic framework, BELM
combines the advantages of both ELMandBayesian learning.
The BELM-based method is thus able to improve the classifi-
cation model through regularization of automatic estimation
for reducing possible over-fitting in the calibration process.
The effectiveness of BELM for MIL classification is vali-
dated on three different fields datasets in comparison with
several other rivals. Superior classification accuracy verifies
that the proposed BELM–MIL is a promising candidate for
performance improvement of MIL classification.
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