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ABSTRACT With the development of the Internet, numerous new applications have emerged, the features of
which are constantly changing. It is necessary to perform application classification detection on the network
traffic to monitor the changes in the applications. Using RelSamp to sample traffic can provide the sampled
traffic with sufficient application features to support application classification. RelSamp separately assigns
counters for each flow to record the statistical features and introduces a collision chain into the hash flow
table to resolve hash conflicts in the table entries. However, in high-speed networks, owing to the number
of concurrent flows and heavy-tailed nature of the traffic, the storage allocation method of RelSamp results
in a significant waste of storage on the traffic sampling device. Moreover, the hash conflict resolution of
RelSamp causes the collision chains of several hash table entries to be excessively deep, thereby reducing
the search efficiency of the flow nodes. To overcome the shortcomings of RelSamp, this study presents a
sampling model known as MiniSamp. Based on the RelSamp sampling mechanism, MiniSamp introduces
shared counter trees to compress the storage space of the counters during the sampling process and integrates
an efficient search tree into the hash table. The search tree structure is adjusted according to the network
environment to improve the search efficiency of the flow nodes. The experimental results demonstrate that
MiniSamp can effectively aid network operators to classify traffic in the high-speed network.

INDEX TERMS Traffic sampling, application classification, shared counter tree, flow tracking, flow table
structure.

I. INTRODUCTION
Since the birth of ARPANET in the late 1960s, following
development over half a century, the Internet has achieved
great success. During this development, the scale of the
Internet has continued to increase. Using the Internet as fer-
tile soil, various practical and novel applications have been
produced continually, which has greatly enriched and facili-
tated people’s everyday lives. However, numerous problems
have arisen with the development of the Internet. For exam-
ple, hackers may attack servers and cause them to be para-
lyzed, intrudersmay steal sensitive information by implanting
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Trojans, and the amount of traffic increasing dramatically at
one point may place significant pressure on routers and gener-
ate network congestion. Some researchers have investigated
how to suppress and eliminate the negative effects result-
ing from the Internet, and they have proposed some solu-
tions [1]–[3]. Moreover, network operators must use traffic
measurement technology to monitor the network and handle
occurring problems in a timelymanner. In recent years, owing
to the continual emergence of new applications and con-
stant changes in application characteristics, the measurement
of traffic application characteristics has attracted increasing
attention from network operators. Based on the measurement
results obtained, network operators can detect new unde-
sirable behaviors within applications, such as P2P system
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vulnerabilities, and re-provision their networks to adapt to
major application trends. Performing application classifica-
tion on traffic is the key step in measuring the traffic applica-
tion characteristics.

To support traffic application classification, the sampled
traffic collected by the sampling algorithm should retain
sufficient application features. At present, RelSamp [30] has
achieved this target. RelSamp allocates the same counter
space for each flow during the sampling process; however,
owing to the heavy-tailed nature of the traffic, this allocation
method may result in a huge waste of storage space on the
traffic sampling equipment if RelSamp is deployed in a high-
speed network. Moreover, because many concurrent flows
exist in a high-speed network, multiple active flows will
inevitably hit the same hash table entry and cause conflicts
during the sampling process. RelSamp uses a conflict chain
to resolve conflicts within the hash table, but this can cause
the conflict chain in certain entries to be excessively deep,
thereby decreasing the algorithm searching speed of the sam-
pled flow nodes.

To solve the problems of RelSamp operating in a
high-speed network, this study proposes a high-performance
sampling model for application classification, known asMin-
iSamp. MiniSamp optimizes the flow table storage structure
of RelSamp to reduce the storage overheads during the sam-
pling process, as well as improves the hash conflict resolution
method of RelSamp, with the aim of controlling the depth of
the conflict chain in the hash table entry.

The remainder of this paper is organized as follows:
Section 2 introduces the related work on traffic applica-
tion classification and sampling technology. In Section 3,
the working principle of MiniSamp is explained in detail.
Section 4 presents the verification of the accuracy and fea-
sibility of the proposed model through experiments. Finally,
the research contents of this paper are summarized in the
concluding section.

II. RELATED WORK
At present, the main methods for classifying traffic are those
based on transport layer ports, deep packet inspection, and
machine learning methods based on the statistical features of
flows.

Application classification based on well-known port num-
bers registered in IANA is the traditional method. In cur-
rent networks, numerous applications do not use well-known
ports. For example, P2P applications usually listen on
dynamic ports [4], while several applications such as embed-
ded audio use well-known ports; for example, 80, for data
transmission. Thus, it is not possible to identify the sam-
pled traffic application types based on the port alone. Moore
and Papagiannaki [5] and Dainotti et al. [6] verified that
port-based classification methods cannot accurately classify
current traffic.

Most protocols include a protocol characteristic string
in the application layer payload to distinguish them from
other protocols, and these strings are usually public or easily

available. By extracting the payload characteristics from the
packet, the deep packet inspection (DPI) method [7] con-
structs a characteristic rule library. DPI matches the load
characteristics of the packets with the rules in the DPI
rule library to identify the type of traffic application. DPI
generally provides high application recognition accuracy.
Sen et al. [8] proposed a P2P traffic detection method based
on the application signature. This method divides the payload
characteristics into fixed and variable offset characteristics,
matching first the fixed and then the variable offset char-
acteristics. The experimental results demonstrated that the
false positive rate was less than 5% when using five types
of popular P2P traffic as input. However, DPI cannot iden-
tify encrypted traffic, and once the payload characteristics
of the application are changed, the DPI rule library must
be updated, the workload of which is enormous. Moreover,
the interpretation of payloads involves sensitive issues such
as privacy protection. Therefore, DPI is generally used as
the basis for judging the accuracy of other classification
approaches.

Machine learning approaches are mainly divided into
two categories: supervised and unsupervised. Supervised
approaches use the training traffic that is labeled with
the application types to train the classifier and input
the labeled traffic into the trained classifier for applica-
tion classification. Common supervised approaches include
support vector machines (SVMs) [9], k-nearest neighbors
(KNN) [10], naive Bayes [11], and decision trees [12].
Unsupervised machine learning approaches take advan-
tage of the similarities between samples to classify unla-
beled traffic. Well-known unsupervised approaches include
k-means [13], AutoClass [14], and DBSCAN [15]. Machine
learning approaches can classify encrypted traffic through the
statistical features of the traffic. Dong and Jain [16] improved
the Bayesian classifier model and proposed a new approach
to identify Skype [17] encrypted traffic, whereby the sampled
traffic was input into the classifier in NetFlow [18] flow
records. The experiments demonstrated that the accuracy of
this approach in recognizing Skype encrypted traffic could
reach 93.6%. Jun and Shunyi [19] were the first to extract
features from network traffic and to select relevant features
from the extracted features through genetic algorithms, using
Bayesian networks to identify P2P traffic. The experimental
results demonstrated that, compared to traditional traffic clas-
sification approaches, the classification speed and accuracy
of K2 [20], TAN [21], and BANwere significantly improved.
However, this approach is based on probability and relies
heavily on the sample space distribution.

Xu et al. [22] proposed a traffic classification approach
based on the SVM. This method effectively avoided the neg-
ative effects caused by unstable factors on the classification
accuracy by using two optimization strategies. A comparison
of this approach with NB, NBK, and NBK + FCBF [23]
revealed that its accuracy remained higher than that of NB
and slightly higher than that of NBK + FCBF without the
feature selection algorithm.
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Machine learning approaches can identify encrypted traffic
and provide high accuracy in traffic application classification.
Therefore, machine learning has become a research hotspot in
the field of traffic application classification.

At present, NetFlow is commonly used to sample traf-
fic, whereby incoming packets are sampled randomly.
Researchers have proposed solutions to several shortcomings
of the random packet sampling mechanism. Estan et al. [24]
proposed a method that can adaptively adjust the sam-
pling ratio according to changes in network environments,
which can effectively deal with harmful traffic such as DoS
attacks [25]. Kompella and Estan [26] proposed a sampling
method designed to adjust the memory and CPU utilization of
the sampling device in an improved manner. Sekar et al. [27]
designed a sampling method for monitoring traffic in the
local network, which can minimize the redundancy of routers
sampling data packets alone. Furthermore, several sampling
methods focus on providing network operators with the flex-
ibility to select sampled flows. For example, the sampling
method designed by Yuan et al. [28] provides a flow set
to sample the specified flows, and network operators can
add the flows they wish to collect to the flow set. However,
it is not clear how to establish the flow set to maintain
sufficient application characteristics of the sampled traffic.
Ramachandran et al. conducted similar work [29] and pre-
sented a sampling method that specifies the flows to be
sampled by constructing counter-based judgment logic on the
five-tuple information in the packet header.

A session of modern applications usually consists of mul-
tiple flows. The source IP of each flow in the session must be
the same, while the destination IP may be different. If more
flows are sampled within an application session, the sampled
traffic will retain more application characteristics, thereby
helping the classifiers to identify the application of the sam-
pled traffic accurately. Lee et al. [30] proposed RelSamp,
which samples the flows with a source IP within a certain
range. Under the condition whereby the effective sampling
ratio is constant, RelSamp can capture more flows within
application sessions to retain additional application charac-
teristics by improving the flow sampling probability and
decreasing the packet sampling probability.

However, for any statistical features of the flow, such as the
flow size, RelSamp must allocate a counter for each flow to
record its size. The space allocated for each counter must be
the same, and the count range of the counter must cover the
maximum flow size. Traffic exhibits a heavy-tailed nature;
that is, a small proportion of large flows occupies a large
proportion of the traffic. Related studies [31] have demon-
strated that, by sorting flows according to size, the top 15%
of the flows account for 95% of the total traffic. Allocating the
same counter for each flow to store the flow size inevitably
causes a huge waste of storage on the traffic sampling device.
Moreover, allocating the same counter for each flow to store
other statistical features (for example, the number of FIN,
SYN, and ACK packets) also wastes storage space, partic-
ularly when RelSamp is deployed in a high-speed network

FIGURE 1. Overall framework of MiniSamp.

environment, which places significant pressure on the sam-
pling device.

To date, apart from RelSamp, few sampling algorithms
have been developed that can retain sufficient application
characteristics within the sampled traffic. However, RelSamp
does not take into account the huge storage waste caused by
the space overheads for redundant counters in the high-speed
network environment.

III. HIGH-PERFORMANCE SAMPLING MODEL FOR
APPLICATION CLASSIFICATION DETECTION
As RelSamp allocates the same-sized counter space for each
flow, causing a huge waste of storage space and relatively
low searching efficiency for flow nodes during the sampling
process, based on the RelSamp sampling mechanism, this
study proposes a high-performance samplingmodel for appli-
cation classification detection, known as MiniSamp. Min-
iSamp introduces shared counter trees [32] to compress the
counter space storing the statistical features of the flows and
incorporates an efficient search tree into the hash flow table
entries, thereby adjusting the search tree structure according
to the network environment in a timely manner. The goal of
MiniSamp is less storage space being required and the flow
nodes being located at a faster speed during the sampling
process, as well as retaining the sampled traffic with suffi-
cient application characteristics to support traffic application
classification.

A. OVERALL FRAMEWORK OF MiniSamp
MiniSamp operates in the LAN of an enterprise or campus,
with the aim of helping network operators to perform applica-
tion classification detection of traffic in the LAN. MiniSamp
samples the mirrored traffic through the LAN gateway and
inputs the sampled flow feature records into the application
classification model to generate classification result reports.
The overall framework ofMiniSamp is illustrated in Figure 1.
The overall working process is as follows:

(1) Decide whether to sample incoming packets based on
the sampling mechanism.

(2) If it is decided to sample the incoming packet, search
the flow node to which the packet belongs in the hash
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flow tracking table. Following searching, make optimization
adjustments for the search tree structure according to the
network environment. If the flow node to which the sampled
data packet belongs does not exist, create a new flow node in
the flow tracking table for the packet.

(3) The flow feature storage structure is composed of flow
feature storage units. The flow feature storage unit consists
of a sampling flow node and counters that store the statistical
features of the sampled flow in the shared counter tree set.
After locating the flow node to which the sampled packet
belongs in the flow tracking table, extract the relevant features
of the sampled packet, and update the flow features in the flow
node as well as the shared counter tree set.

(4)When the sampling for a flow is terminated, recover the
features stored in the flow node and the shared counter tree
set, and import these into the ordered flow feature records
buffer. When the buffer is full, write the sampled flow feature
records into a file.

(5) Input the sampled flow feature record file into the pre-
trained classifier and generate the classification results in
terms of the flows.

B. MIRRORED TRAFFIC SAMPLING
During the sampling process, MiniSamp performs three
stages of judgment on each incoming packet and decides
whether to sample the packet based on the judgment results.
The three phases are the source IP selection phase, flow
selection phase, and packet selection phase. Three sampling
probabilities exist, namely ph, pf , and pp, where ph can
control the scale of the sampled source IP set in the source IP
selection phase, pf can control the amount of sampled flows
in the flow selection phase, and pp can control the amount of
packets sampled in the sampled flow.

Prior to formal sampling, the sampling probabilities ph,
pf , and pp must be determined. Network operators usually
configure the effective sampling ratios pe and ph (ph ≥ pe) in
advance and specify ptf according to the sampling purpose.
In the process of determining the sampling probabilities,
RelSamp uses an iterative algorithm to perform a binary
search on the values of pf and pp continuously, making
pf approximately ptf continuously, under the condition that
the effective sampling ratio is pe and the value of pp is
obtained when the iterative process ends. After determin-
ing the sampling probabilities ph, pf , and pp, all of the
sampled flow feature records generated previously are dis-
carded and the formal sampling process is started. The pseu-
docode for determining the sampling probability is presented
in Algorithm 1.

The packet capture thread captures the packets on the
traffic sampling device constantly and places the captured
TCP or UDP packets into the packet buffer queue. A status
flag exists inMiniSamp, which is set to 1 during the sampling
process.

The sampling mechanism can be explained as follows:
Firstly, MiniSamp fetches the packet from the packet buffer

Algorithm 1 Set_Parameter(pe, pf, ptf)

Input: pe Preconfigured effective sampling ratio
pf Preconfigured IP sampling probability
ptf Preset flow sampling probability

Output: packet sampling probability pp

1 function Set_Parameter(pe, pf, ptf)
2 pf ← pe/ph; //initialize flow sampling

probability
3 pp ← pe/ph; //initialize packet sampling

probability
4 t←10−5;
5 pf← 0.5 ∗ (pf + ptf); //make pf approximately ptf
6 px ← current_sampling_ratio(); //get the current

sampling ratio
7 while pf! ≈ ptf do
8 while px! ≈ pe do
9 if px > pe then //if the current sampling

ratio is greater than the preconfigured effective
sampling ratio

10 pp ← 0.5 ∗
(
pp + t

)
;//halve packet sampling

probability
11 else //if the current sampling ratio is

less than the preconfigured effective sampling
ratio

12 pp ← 0.5 ∗
(
pp + 1

)
; //slightly increase

packet sampling probability
13 end if
14 end while
15 pf ← 0.5 ∗ (pf + ptf); //make pf approximately

ptf
16 end while
17 return pp;
18 end function

queue and assigns two random numbers in the range of 0 to 1
to the packet, which are denoted by rf and rp. In the source
IP selection stage, the source IP of the packet is hashed
using the hash function for this stage, and the hash value
is multiplied by ph to obtain the target value. If the target
value falls within the preconfigured range, the flow selection
stage is entered; otherwise, the packet is discarded. In the
flow selection stage, the five-tuple of the packet (source IP,
source port, destination IP, destination port, and transport
layer protocol) is hashed using the hash function for locating
the hash entry, and the packet flow node is located in the hash
flow table based on the hash value. If the flow node is not
searched and rf ≤ pf , the packet is sampled, and a flow node
is created in the flow table for the packet; if the flow node is
not searched and rf > pf , the packet is discarded; otherwise,
the packet selection phase is entered. In the packet selection
phase, if rp ≤ pp, the packet is sampled, and the packet
flow storage unit is updated; otherwise, the packet is dis-
carded. The process of the MiniSamp sampling is illustrated
in Figure 2.
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FIGURE 2. Process of MiniSamp sampling.

C. FLOW TRACKING TABLE
In the high-speed network environment, the length of the hash
flow tracking table is substantially smaller than the number of
active concurrent flows; therefore, multiple active flows will
hit the same hash table entry and cause conflicts. To control
the depth of the conflict chain in the main hash table entry,
an efficient search tree is introduced into the main hash table.
This tree is a non-strictly splay tree. MiniSamp does not splay
the hit flow node to the root of the search tree every time but
uses a certain mechanism to ensure active flow nodes near
the root of the search tree. To prevent continuous access to
the long branches of the search tree, the flow node is splayed
to the root using a double-splay method. The structure of the
MiniSamp flow table is presented in Figure 3.

FIGURE 3. MiniSamp flow tracking table structure.

FIGURE 4. Main hash table entry structure.

In the main hash table entry, a conflict counter is used to
record the number of conflicted sampled flows. A threshold t
exists, which is far less than the number of concurrent flows
in the network. If the number of conflicts recorded by the
conflict counter does not exceed t, the conflict flow nodes are
organized by the conflict chain; otherwise, the conflict flow
nodes are organized in the search tree. The main hash table
entry structure is presented in Figure 4.

The work process of searching the flow node to which
the sampled packet belongs in the flow tracking table is
described in the following, and the process chart is illustrated
in Figure 5.
(1) The five-tuple (source IP, source port, destination IP, des-

tination port, and transport layer protocol) of the sampled
packet is hashed through the hash function for locating
the hash entry and the remainder of the hash value is taken
according to the length of the main hash table to locate
the entry of the flow to which the packet belongs in the
main hash table.

(2) In the located hash table entry, if the number of conflicts
recorded by the conflict counter is greater than t, a binary
search tree general search algorithm is used to search the
target flow node in the search tree. If it is not searched,
a new node is created for the flow and inserted into
the search tree, using the standard binary search tree
insertion algorithm, and the value of the conflict counter
is incremented. If the target flow node is hit at the root of
the search tree, the search process ends.

(3) In the located hash table entry, if the number recorded
by the conflict counter is not greater than t, the flow
node is searched linearly in the conflict chain. If it is not
searched, a new node is created for the flow and inserted
at the head of the conflict chain. The value of the conflict
counter is increased by 1, and if the value after increasing
is greater than t, the organization method of the conflict
flow nodes is switched to search tree, thus ending the
search process.

(4) After locating the target flow node or creating the new
node for the target flow, MiniSamp requires O(1) time
to maintain the longest distance of the search tree. Then,
when making a judgment, if the distance is farther than
the longest distance, the flow node is splayed to the root
of the tree and the search process ends.

(5) If the target flow node is not farther than the longest
distance from the root of the tree, MiniSamp requires
O(1) time to check whether the packets of the target
flow arrive continuously and maintain the relevant data
structure required for detection. If the target flow pack-
ets have recently arrived constantly, the flow node is
splayed to the root of the tree. Then, the search process
ends.
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FIGURE 5. Search flow node in flow tracking table.

The significance of maintaining the current longest dis-
tance of the search tree in each item of the main hash table
is adjusting the search tree structure at the minimum cost
during the search process to ensure that active flow nodes
are near the root of the search tree, thereby improving the
search efficiency of the flow nodes. MiniSamp can adaptively
adjust the longest distance of the search tree according to
changes in the network environment. A packet counter is used
to record the number of packets that have reached the search
tree within a short period, and the upper limit of this counter
is set to the value upper. The hash table opt_table is used to
record the active flows of the packets that have arrived in
a short period. To reduce the probability of hash collisions,
the length of opt_table is a prime number that is slightly

Algorithm 2 Distance(tuple,tree,opt_table,counter,upper)
Input: tuple Packet’s five-tuple

tree Search tree
opt_table hash table used for maintaining the longest

distance of the search tree
counter Packet counter
upper Upper limit set for the packet counter

Output: longest distance of the search tree

1 function distance(tuple,tree,opt_table,counter,up)
2 counter← counter + 1;
3 hash_value← opt_fun(tuple);
4 opt_table[hash_value%opt_table.len] ← 1; //

record the incoming packet flow in the hash table
opt_table

5 if counter < upper then //the number of packets
that hit the search tree recently is less than upper

6 return tree.dis; //no changes are made to
the longest distance of the search tree

7 else p
8 m← 0;
9 for i := 0 to opt_table.len - 1 do //count the

number of flows that recently hit the search tree
10 if opt_table[i] == 1 then
11 m← m + 1;
12 end if
13 end for
14 c← log(m);
15 n← ceil(c); //calculate the longest distance
16 tree.dis ← n; //update the longest distance of

the search tree
17 counter ← 0; //reset the value of the packet

counter to start a new adjustment
18 for i := 0 to opt_table.len - 1 do //reset the

entries’ values of opt_table to start a new
adjustment

19 opt_table[i]← 0;
20 end for
21 end if
22 return tree.dis;
23 end function

larger than three times upper. The hash values generated by
the hash function opt_fun are evenly distributed in opt_table.
The pseudocode that maintains the current longest distance
of the search tree is presented in Algorithm 2.

In the network environment, the flow packets may arrive
continuously. To improve the search efficiency, this situation
should be detected in real time. Once a flow node in the
search tree is identified as being hit continuously, the node
must immediately be splayed to the root of the tree. During
the detection process, a parameter w exists. If w packets
of a certain flow arrive continuously, MiniSamp determines
that the packets of this flow will continue to arrive con-
stantly. A circular queue of length w, detect_queue, is used
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Algorithm 3 Detect(tuple,w,detect_queue,detect_table)
Input: tuple Packet’s five-tuple

w Parameter
queue Circular queue used in the detection process
detect_table Hash table used during detection

Output: 1 indicates detected; 0 indicates not detected

1 function detect(tuple,w,queue,detect_table)
2 hash_value← detect_fun(tuple);
3 if !queue.full() then //when the circular queue is

not full, the hash value of current packet’s
five-tuple is enqueued

4 queue.push_back(hash_value);
5 return 0;
6 else p
7 v← queue.front(); //when the circular queue is

full, take the value of the queue head element
8 v← v % detect_table.len;
9 detect_table [v]← detect_table[v] - 1; //update

the hit number of queue head element’s flow in the
last w searches in the search tree

10 queue.pop();
11 queue.push_back(hash_value); //enqueue the

hash value of the current packet’s five-tuple
12 u← hash_value % detect_table.len;
13 detect_table[u]← detect_table[u] + 1; //update

the hit number of current packet’s flow in the last
w searches in the search tree

14 if detect_table[u] == w then //if the flow to
which the current packet belongs has been hit w
times in the last w searches in the search tree

15 return 1; //return detected
16 else
17 return 0; //return undetected
18 end if
19 end if
20 end function

to record the hash value of the five-tuples of recent packets.
The hash table detect_table is used to record the number of
hit times of the current active flows in the last w searches.
To reduce the probability of hash collisions in detect_table,
the length of detect_table is a prime number slightly larger
than five timesw, and the hash values generated by detect_fun
are evenly distributed in detect_table. The pseudocode for
detecting whether the packets of the target flow node arrive
continuously and maintaining the data structure used in the
detection process is presented in Algorithm 3.

D. UPDATING FLOW FEATURES
MiniSamp is a sampling model that supports application
classification. To support the trained classifier in identifying
the application types of sampled traffic, MiniSamp records
the statistical features of flows that can be used for application
classification during the sampling process. Kim et al. [33]

and Li et al. [34] have studied these features for classifying
traffic applications. With reference to the traffic application
features extracted by these authors, and combined with our
own research background, the flow record generated by Min-
iSamp is composed of the following flow features: transport
layer protocol, source port, destination port, minimum pay-
load length, maximum payload length, number of packets
(flow size), total data length (flow length), average segment
size, and number of ACK, SYN, FIN, and RST packets.
Features such as the minimum payload length, maximum
payload length, and number of packets can be used to identify
UDP applications; the number of ACK, SYN, FIN, and RST
packets and average segment size can be used to identify
TCP applications; the transport layer protocol, source port,
destination port, and total data length can be used to identify
both TCP and UDP applications. In the UDP flow record,
the statistical features of the TCP flags are set to 0.

MiniSamp stores the application features of the unidirec-
tional flow in the flow node and shared counter tree set.
The source IP, destination IP, source port, destination port,
transport layer protocol, minimum payload length, maximum
payload length, flow arrival time, and flow latest update time
are stored in the flow node. The number of packets, total data
length, and number of ACK, SYN, FIN, and RST packets
are stored in their respective shared counter trees. Therefore,
the flow feature storage unit is composed of a flow node and
counters that record the flow statistical feature values in the
shared counter tree set.

When a new flow feature storage unit is created for the
sampled packet, the data packet is parsed. Thereafter, the five-
tuple information, time of the flow arrival, time of the latest
update of the flow, minimum payload length, and maximum
payload length are written to the flow node. The latest update
time and arrival time of the flow are both the current time,
while the minimum payload length and maximum payload
length are the application layer payload lengths of the packet.
If the data packet is a TCP data packet, the TCP header is
parsed, and the flags ACK, FIN, SYN, and RST are detected
as set or not. If the flag is set, the Record function, which will
be discussed later in this paper, is used in the corresponding
shared counter tree to count the number of incoming flag
packets. The Record function is used to count the number of
packets for the sampled flow in the shared counter tree that
stores the flow size. The length of the packet len is calculated,
32B is taken as a data block, and the number of data blocks
denoted by c is obtained. The Record function is used to count
the flow c times in a shared counter tree that stores the flow
data blocks. The calculation formula for c is as follows:

c =
⌈
len
32

⌉
. (1)

When updating the flow features storage unit of the packet,
the latest update time of the flow in the flow node is firstly
updated, following which the data packet is parsed. The pay-
load length of the packet application layer is calculated and
compared with the maximum payload length and minimum
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FIGURE 6. Updating flow feature storage unit instance.

FIGURE 7. Shared counter tree storage structure.

FIGURE 8. Shared counter tree logical structure.

payload length recorded. If the length is greater than the
original maximum payload length, the maximum payload
length is updated. The update operation for the shared counter
tree is the same as that of the flow feature storage unit being
established. An example of theMiniSamp update flow feature
storage unit is illustrated in Figure 6, where SCT is the
abbreviation for shared counter tree.

To record a certain statistical feature of the sampled flow
during the sampling process, several shared counters are
allocated to all sampled flows. These counters are logically
organized into an approximate binary tree to form a shared
counter tree in MiniSamp.

The shared counter tree is explained as follows: The stor-
age space allocated for it is N bits, the space allocated for
each counter is a bit, and the number of counters in the shared
count tree is N/a. The height of the shared counter tree is h,
with a total of h layers, wherein the lowest layer is layer 0
and the highest layer is layer h-1. The number of leaf nodes
in the counter tree is p, and the degree of non-leaf nodes in
the counter tree is 2. If the number of h-1 nodes exceeds 1,
a virtual root node is set in the counter tree. A three-tiered
shared counter tree storage structure is illustrated in Figure 7,
and the logical structure is presented in Figure 8.

In the individual counter, the most significant bit is used as
the status bit, and the remaining a-1 bits are used for counting.
The storage structure of the counter is presented in Figure 9.

FIGURE 9. Individual counter storage structure.

FIGURE 10. Enhanced counters.

Let C[i], i ∈ [0, p) represent a certain leaf node of the
counter tree. The nodes contained in the path from C[i] to the
root node constitute an enhanced counter, which is known as
L[i].L [0] = {C [0] ,C [8] ,C [12]} is an enhanced counter.
Because p leaf nodes exist in the counter tree, it contains
p enhanced counters. The vector L is used to represent the
enhanced counter set in the counter tree. As illustrated in
Figure 11, L = {L [1] ,L [2] , . . . ,L [p− 1]}.
For any sampled flow f, r (r� p) counters are selected from

the p enhanced counters through the five-tuple information
of the flow and r hash functions hi, which are independent of
one another. The r enhanced counters constitute an enhanced
counter vector of the flow f. This vector is represented by Lf ,
and the i-th element in Lf is represented by Lf [i]. The specific
calculation formula for Lf [i] is as follows, where i ∈ [0, r),
and the range of the hash function hi is [0, p− 1):

Lf [i] = L[hi(f )]. (2)

To reduce the difficulty of designing hash functions,
instead of actually designing r independent hash functions,
we can design only one main hash function H and use a set
S composed of r random elements to simulate r independent
hash functions. The formula for the hashing flow f using the
hash function hi is as follows:

hi (f ) = H (f ⊕ S[i]) . (3)

Because r � p, the probability of randomly selecting r
different counters from the p enhanced counters of the shared
counter tree is

p (p− 1) . . . (p− r + 1)
pr

≈ 1. (4)

Therefore, the enhanced counters in the vector Lf are mutu-
ally different.

In Figure 11, r = 3, the enhanced counter vector of the
flow f is Lf = {L [1] ,L [0] ,L[4]}, and the enhanced counter
vector of the flow g is Lg = {L [3] ,L [4] ,L [6]}. Among
these, the enhancement counter L[4] is shared by the flow
f and g. Because different flows can share the same enhanced
counter, the number of flows that can be recorded by the
shared counter tree is much larger than the number of its
enhanced counters.

The pseudocode for storing the statistical features such as
the number of sampled flow packets, and number of ACK,
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FIGURE 11. Enhanced counter vector.

SYN, FIN, and RST packets in the shared counter tree is
presented in Algorithm 4.

The process for storing the sampled flow length in the
shared counter tree is as follows.

Step 1: The sampled data packet is parsed, the data packet
length is calculated, and 32B are used as a data block to
calculate the number of data blocks c of the data packet.

Step 2: c← c - 1.
Step 3: The Record function is used in the shared counter

tree to count the number of data blocks in the flow to which
the packet belongs.

Step 4: If c is less than 0, the counting process of the total
length of the flow ends; otherwise, go to step 2.

E. RECOVERING FLOW FEATURES
The flow feature recover thread is started every 10 s. When
the sampling of a flow ends, the thread recovers the flow
features stored in the flow node and shared counter tree into
a complete flow record, and this flow record is added to the
flow record buffer queue.

The flow feature recovery thread firstly sets the status flag
to 0. At this time, no sampling is performed, and the captured
packets are temporarily stored in the packet buffer queue.
In order not to affect the ongoing sampling operation, 0.25 s
are waited before acquiring the mutex of the flow table, and
the current time is obtained. After acquiring the mutex of the
flow table, the flow nodes in the flow table are scanned in
turn. During the process of scanning each flow node, the time
interval between the latest update time of the flow and the cur-
rent time is calculated. If the time interval is greater than 16s,
the flow is considered as no longer active, ending the flow
sampling. At this time, using the five-tuple information of
the flow, the flow arrival time and Recover function, which
will be discussed later in this paper, to recover the number
of packets, data blocks, and number of ACK, SYN, FIN, and
RST packets of the sampled flow in the shared counter tree
set. The data blocks of the flow is multiplied by 32 to obtain
the flow length, and the flow length is divided by the number
of packets to obtain the average segment length of the flow.
The five-tuple information, flow arrival time, flow duration,
minimum payload length, maximum payload length, and sta-
tistical features recovered from the shared counter tree set

Algorithm 4 Record(pkt,root,a,p,r,S,H,F)
Input: pkt Sampled packet

root Index of the root node of the shared counter
tree in the array

a Counter storage space
p Number of enhanced counters in the shared

counter tree
r Scale of the enhanced counter vector corresponding

to the flow to which pkt belongs
S A set of r random numbers
H Main hash function
F Flow table space

Output: shared counter tree with updated statistical feature
values of the flows to which pkt belongs

1 function Record(pkt,root,a,p,r,S,H,F)
2 five_tuple ← extract(pkt); //extract the five-

tuple of pkt
3 hash_value← hash(five_tuple); //hash the five-

tuple
4 f ← locate(hash_value,F); //locate the flow

node in the flow table
5 f_tuple ← extract_flow_tuple(f); //extract the

flow labels(five-tuples and flow arrival time) from
the flow nodes

6 i← random()%r;
7 u ← H(f_tuple⊕S[i])%p; //locate the enhanced

counter for this count
8 while u < root do
9 C[u]← C[u] + 1;

10 if C[u] < pow(2,a-1) then
11 break;
12 else
13 C[u].status_bit ← 1; //set the status bit of

the current counter
14 C[u].num← 0; //clear the value of the current

counter to 0
15 u← floor(u/2)+ p; //to count in the parent

counter of the current counter; floor is the function
of round down

16 end if
17 end while
18 return root
19 end function

as well as average segment length are written into the flow
record buffer, and the content of flow record buffer is added
into the flow record buffer queue. After the relevant features
of the current scanned flow are recovered, the flow node is
released, and the value recorded by the conflict counter in
the main hash table entry is reduced by 1. If the value is not
greater than the threshold value t, the organization method of
the conflict flow nodes is switched to conflict chain.

If the number of flow records in the flow record buffer
queue exceeds n, where n is far smaller than the size of the
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FIGURE 12. Flow features record recovery process.

hash table, a mutex of the ordered flow record buffer queue is
obtained, whereby the queue orders the flow records accord-
ing to the source IP and arrival times. Once all flow records in
the flow record buffer queue have been dequeued and added
into the ordered flow record buffer queue, the mutex on the
ordered flow record buffer queue is released. When the scan-
ning and recovery of all of the flow nodes in the flow table
are completed, the mutex of the flow table is released, and the
state flag is set to 1. At this point, the flow feature recovery
phase ends and sampling is restarted. An example of a flow
feature record recovery process with the tuple information of
tuple3 is presented in Figure 12.

The concept of the host activity period is used inMiniSamp
to replace the concept of the application session. The host
activity period is a set of flows with the same source IP.
The application types of the flows in the set may differ. The
flows in the set are sorted according to arrival time. The time
interval between two flows is less than τ seconds. The output
thread outputs the flow records from the ordered flow record
buffer queue to the sampled flow record file in the units of the
host activity period.

To recover certain statistical features of the sampled flows,
the concept of the subtree counter is introduced. In Figure 8,
the subtree rooted at C[13] contains the nodes C[13], C[10],
C[11], C[4], C[5], C[6], and C[7]. All nodes in the subtree
form a subtree counter. The value of the subtree counter
can be calculated as follows, for example, using the value
of the subtree counter with C[13] as the root: value(13) =
22aC [13]+ 2a (C [10]+ C [11])+ (C [4]+C [5]+C [6]+
C[7]).

Whether a node in the shared counter tree can be used
as the root node of its subtree is related to the status bit of
this counter node. In Figure 13, the enhanced counter L[4] is
used as an example. In (a), because C[4] does not overflow,
the status bit is not set to C[4]; therefore, C[4] can be the
root node of its subtree, there is no need to judge whether the
ancestor nodes of C[4] can be the root. Only one leaf node,
C[4], exists in this subtree, and the height of the subtree is
L = 1. In (b),C[4] overflows, whileC[10] does not overflow.
The status bit is set to C[4], and C[10] can be the root node
of its subtree, there is no need to judge whether the ancestor
nodes of C[4] can be the root. Only two leaf nodes, namely
C[4] and C[5], and a non-leaf node, C[10], exist in this
subtree, and the height of the subtree is L = 2. In (c), both
C[4] and C[10] overflow. The status bits are set to C[4] and

FIGURE 13. Subtree counter.

C[10], and C[13] can be the root node of the subtree. There
are four leaf nodes and three non-leaf nodes in the subtree,
and the height of the subtree is L = 3.
Chen et al. [32] previously derived Equation (5) through

statistical principles, and its result is the unbiased estimator of
the statistical feature value. In this equation, Xi is the value of
i-th subtree counter, n is the total value of the shared counter
tree, and ki refers to the result of basing 2 and powering path
value of the i-th subtree counter. The first term in the equation
records the number of total packets stored by r subtree coun-
ters, and the second term records the noise produced during
the counting process.

s =
∑r−1

i=0
Xi −

∑r−1

i=0

nki
p

(5)

The pseudocode for recovering the statistical features, such
as the numbers of data packets, ACK packets, SYN packets,
FIN packets, and RST packets from the shared counter tree is
presented in Algorithm 5.

To recover the total length of the flow f from the shared
counter tree, the Recover function is firstly used to restore
the total number of data blocks occupied by flow f, following
which Equation (6) is applied to calculate the total length of
the flow f.

len← 32× c (6)

IV. EXPERIMENTS
A. EXPERIMENTAL TARGET
MiniSamp and RelSamp were compared from the perspec-
tives of sampling flow application recognition accuracy and
flow table storage space consumption, thereby verifying that
MiniSamp effectively reduces the storage space required
for the flow table during sampling and can ensure that the
sampled traffic contains sufficient application characteristics
to support application classification. Compared to the flow
tracking table organized by the hash list and hash splay, it was
verified that MiniSamp can search the flow node at a faster
speed.

B. EXPERIMENTAL ENVIRONMENT
The experimental environment is illustrated in Figure 14.
The traffic set used in the experiment was obtained from the
mirror server. MiniSamp and RelSamp were deployed in
the sampling server for sampling of the experimental traffic,
while an application identification classifier was deployed
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Algorithm 5 Recover(f,root,a,p,r,S,H,F)
Input: f Ended sampled flow

root Index of the root node of the shared counter
tree in the array

a Counter storage space
p Number of enhanced counters in the shared

counter tree
r Scale of the enhanced counter vector

corresponding to the flow f
S A set of r random numbers
H Main hash function
F Flow table space

Output: statistical features of the flow f

1 function Recover(f,root,a,p,r,S,H,F)
2 f_tuple← extact_flow_tuple(f); //extract flow

labels(five-tuples and flow arrival time) from flow
nodes

3 for i := 0 to r-1 do //locate r enhanced
counters of flow f

4 u[i]←H(f_tuple ⊕ S[i])%p;
5 end for
6 for i := 0 to r-1 do
7 X[i]← 0;
8 end for
9 for i := 0 to r-1 do
10 v[i] ← get_subtree_root(u[i]); //locate the

root node of the i-th subtree of flow f
11 X[i] ← get_subtree_value(v[i]); //calculate

the value of the i-th subtree counter of flow f
12 end for
13 for i := 0 to r-1 do //calculate the path

lengths of the r subtrees of flow f from the root
node to the leaf nodes

14 l[i]← get_path_len(i);
15 k[i]← pow(2,l[i]-1);
16 end for
17 n← get_total_packet(root); //calculate the

total value of the shared counter tree
18 X_sum← 0;
19 for i := 0 to r-1 do //calculate the sum of

the counter values for each subtree of flow f
20 X_sum← X_sum + X[i];
21 end for
22 noise← 0;
23 for i := 0 to r-1 do
24 noise← noise + (n × k[i]/p); //calculate the

noise sum of the subtrees of f
25 end for
26 S ← X_sum – noise; //recover the statistical

features of the flow f
27 return S;
28 end function

in the classification server. The operating system version of
the mirror server and sampling server was CentOS Linux
release 7.3.1611, while the operating system version of the

FIGURE 14. Experimental environment.

classification server was Windows 10. The language used in
the experiment was C++. The packet replay tool Tcpreplay
version 4.1.2, deep packet inspection tool Tstat version 3.1.1,
and classification software Weka version 3-6-13 were used.

C. EXPERIMENTAL DATA SOURCE
The traffic captured at the laboratory’s LAN gateway was
used as the experimental data source. The traffic flowing
through the gateway is the traffic of all users’ PCs in the
LAN accessing to the Internet during a certain time period.
The specific means of obtaining the experimental data was
implementing a duplex mirror between the sample server and
the LAN switch.

The mirror traffic was captured in the mirror server twice
to obtain the experimental data for the two experiments,
the identification accuracy comparison, and the flow table
space cost comparison. A total of 9 GB of traffic was captured
the first time, and this traffic set was used as the test traffic
set. The second time, a total of 20 GB of traffic was captured,
and this traffic set was used as the training traffic set. The
deep packet detection tool was used to label the training and
test traffic with the application types in the flows.

To obtain the data of the average search time overhead
comparison experiment, five sets of 2 GB traffic sets were
captured on the mirror server as test traffic sets 1 to 5.

D. EXPERIMENTAL PROCESS
(1) Comparison of sampling flow application recognition

accuracy
In this experiment, the SVM classifier and C4.5 decision

tree classifier were used to identify the application types of
the sampled flow records of RelSamp and MiniSamp, and to
compare the two sampling algorithms in terms of application
recognition accuracy.

The SVM and C4.5 machine learning algorithms were
trained with the sampling flow records of RelSamp as the
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training data, and the SVM classifier and C4.5 decision tree
classifier were obtained. The training steps were as follows:

Step 1: On the sampling server, the traffic replay tool was
used to replay the training traffic on the listened network card
at a transmission rate of 100 Mbps.

Step 2: RelSamp was used to sample the training traffic.
To obtain sufficient flows, the effective sampling ratio pe was
set to 0.15 and the source IP selection probability ph was
set to 0.3. As the sampling flow had to maintain sufficient
application characteristics, the flow sampling probability had
to be increased and pf was set to 1.0. The packet sampling
probability pp was calculated by Algorithm 1 as 0.5.

Step 3: The sampled flow record was labeled with the
application type of the training traffic according to the
five-tuple information in the sampled flow record.

Step 4: The sampled flow record file labeled with the
application type was input as training data into the SVM and
C4.5 machine learning algorithm for training and obtaining
the SVM classifier and C4.5 decision tree classifier.

The experimental steps were as follows:
Step 1: On the sampling server, the traffic replay tool was

used to replay the traffic in the test traffic set on the listening
network card at a transmission rate of 100 Mbps.

Step 2: MiniSamp was used to sample the traffic on the
monitoring network card and the sampled flow record was
generated. The effective sampling ratio, source IP sampling
probability, stream sampling probability, and packet sam-
pling probability were set to the same values as those when
using RelSamp to sample the traffic during the training pro-
cess. Considering the size of the test traffic set used in the
experiment, the size of the shared counter tree that stores
the statistical features of the flow in MiniSamp was set to
h = 4, r = 100, a = 8, and p = 2,000.
Step 3: According to the five-tuple information in the

MiniSamp sample flow record and application label of the
tested traffic, labels were applied to the MiniSamp sampled
flow records.

Step 4: The labeled MiniSamp sample flow records were
input into the SVMclassifier and C4.5 decision tree classifier.
The application types of the MiniSamp sample flow records
were identified in units of flows, and the application recog-
nition accuracies of the two classifiers for each application
were recorded separately.

Step 5: RelSamp was used to sample the traffic on the
monitoring network card and the sampled flow record was
generated. The process of identifying the application types of
the RelSamp sampled flow records was the same as that of
MiniSamp. Finally, the accuracies of the two classifiers were
recorded for each application.

(2) Flow table space overhead comparison
This experiment tested and compared the amount of flow

table storage space required by MiniSamp and RelSamp dur-
ing the sampling process.

The experimental steps were as follows:
Step 1: In the RelSamp sampling process, a statistics thread

was started, the amount of storage space required for the

flow table was calculated every 2 min, and the statistics were
written to a file; a log was generated thereafter.

Step 2: During theMiniSamp sampling process, a statistics
thread was started, the amount of storage space required
by the flow table and storage space occupied by the shared
counter tree set were counted every 2 min, and the statistics
were written to a file, following which logs were generated.

(3) Comparison of average searching time cost
This experiment tested and compared the average time

overhead for searching a flow node for a single packet in
the hash collision chain flow tracking table (Hash_List), hash
splay tree flow tracking table (Hash_Splay), and MiniSamp
flow tracking table. The experiment was divided into five
groups, with test flow sets 1 to 5 as inputs.

The experimental steps for each group were as follows:
Step 1: On the sample server, the traffic replay tool was

used to replay the test traffic set on the monitoring network
card at a transmission rate of 100 Mbps. Traffic flow track-
ing was performed in the flow tracking tables of Hash_list,
Hash_splay, andMiniSamp. To reduce the depth of collisions
in the hash table entries, the hash table length was set to 1,000.
For improved adaptation of MiniSamp to the experimental
network environment, the threshold t of MiniSamp was set
to 10, the parameter w was set to 4, and the parameter upper
was set to 100.

Step 2: A packet counter was present in the flow tracking
process, which was incremented each time a packet was
obtained from the input buffer circular queue.

Step 3: When the flow node was about to be searched in
the flow tracking table, the time stamp recorded at this time
was time1; when the target flow node was searched in the
flow tracking table and the adjustment to the search tree was
completed, or when the target flow node was newly created,
the time stamp recorded at this timewas time2. The difference
between time2 and time1 was the time overhead for searching
the flow node in the flow tracking table.

Step 4: The total time cost of searching the flow node for
each packet during the experiment was accumulated. When
the flow tracking was completed, the total time cost divided
by the value of the packet counter was the average time cost
of searching the flow node for a single packet in the flow
tracking table.

E. EXPERIMENTAL RESULTS AND ANALYSIS
(1) Comparison of sampling flow application recognition

accuracy
Table 1 presents the application recognition accuracy of the

SVM classifier on the flow records collected by RelSamp and
MiniSamp. Table 2 presents the application recognition accu-
racy rate of the C4.5 classifier for RelSamp and MiniSamp.

It can be observed fromTables 1 and 2 that, compared to the
sampling traffic of RelSamp, when the SVM classifier was
used to identify the applications of MiniSamp for sampling
traffic, in each of the applications identified, the application
recognition accuracy was reduced by at least 1.1% and at
most 5.3%. The application identification accuracy of the
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TABLE 1. Accuracy of classifying sampled flow using SVM.

TABLE 2. Accuracy of classifying sampled flow using C4.5.

MiniSamp for sampling traffic when using the C4.5 classifier
was reduced by a minimum of 0.2% and a maximum of 1.9%.
It verifies that MiniSamp can accurately record and recover
the flow features of the sampled traffic using shared counter
trees. It can be observed that, compared to the SVM classifier,
the C4.5 classifier could identify the application types of the
sampled traffic more accurately. Therefore, using MiniSamp
to sample the traffic can ensure that sufficiently accurate
application features are retained in the sampled traffic, and
MiniSamp decreases the accuracy of the sampled traffic’s
application classification very little compared with RelSamp.

(2) Flow table space overhead comparison
Figure 15 illustrates the changes in the amount of stor-

age space required by the flow table over time when using
MiniSamp and RelSamp.

It can be observed from Figure 15 that, during the sampling
process, the flow table space required by MiniSamp was
always less than that of RelSamp. MiniSamp saved up to
268 kB of flow table storage space and at least 111 kB of
flow table storage space compared to RelSamp. Therefore,
compared to RelSamp, using MiniSamp to sample the traffic
can effectively reduce the storage space required by the flow
table during the sampling process.

FIGURE 15. Flow table space overhead comparison.

TABLE 3. Flow node average search cost.

TABLE 4. Relative search time percentages.

(3) Comparison of average searching time cost
Table 3 presents the average time required to search the

flow node for a single packet in the flow tracking tables of
Hash_List, Hash_Splay, and MiniSamp. Table 4 presents the
relative percentage of time for searching the flow node for a
single packet in the flow tracking table of Hash_Splay and
MiniSamp based on Hash_List.

According to the experimental results in Tables 3 and 4,
it can be concluded that in most cases, within the same
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network environment, the time overhead required to search
the flow node for a single packet in the MiniSamp flow
tracking table was 73.2% of the time required to complete the
same operation in Hash_List, and 86.4% of the time required
to complete the same operation in Hash_Splay. Therefore,
compared to Hash_List and Hash_Splay, MiniSamp requires
the lowest average time to search flow nodes, and possesses
the highest searching efficiency.

V. CONCLUSION
Thememory allocationmethod of RelSampmay cause a huge
waste of storage space on the traffic sampling device and long
conflict chains, thereby reducing the searching efficiency of
the flow nodes in the high-speed network. Based on storage
compression, this paper has proposed a high-performance
sampling model known as MiniSamp for application classifi-
cation detection.

MiniSamp compresses the counter space that records the
statistical features of the sampled flow by introducing shared
counter trees into the flow table, and it integrates a search tree
into the flow table to resolve hash conflicts in the hash table
entries. Furthermore, the search tree structure can be adjusted
according to the network environment in real time to improve
the searching efficiency of the flow nodes.

It was verified that MiniSamp can effectively reduce the
storage space required during the sampling process with-
out decreasing the accuracy of the application classification.
Moreover, MiniSamp can search the sampled flow nodes at a
faster speed than RelSamp in the high-speed network.

Nevertheless, MiniSamp still has a deficiency. In the pro-
cess of adjusting the longest distance within the search tree
and detecting whether the current flow node is consistently
hit, two parameters exist, upper andw. If these parameters can
be adjusted according to the network environment changes in
real time, the structure of the search tree would be adjusted
more optimally to locate flow nodes.

To further improve the search efficiency of flow nodes, our
future work will focus on how to adjust the parameters upper
and w during the sampling process.
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