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ABSTRACT Data centers need low-latency fabrics. Several flow scheduling schemes have been proposed to
minimize the Flow Completion Time (FCT) based on Shortest Job First (SJF) heuristic. However, to mimic
SJF, previous proposals sacrifice the generality (e.g., pFabric requires special hardware) or sacrifice the
performance to guarantee the generality (e.g., PIAS loses some of pFabric’s performance). Especially,
in multi-tenant data centers, traffic patterns from different applications aremixed together and vary over time,
thereby creating even more challenges. In this paper, we investigated that the performance of information-
agnostic scheme could be further improved by leveraging the unique characteristics of different traffic
types. Based on this investigation, we present Traffic Prediction based Flow Scheduling (TPFS), aiming
at achieving near-optimal performance and good generality in multi-tenant data centers with the mix-traffic
pattern. To achieve near-optimal performance, we design a two-stage machine learning algorithm to first
automatically cluster flows with the similar flow size distribution and then predict the priorities of flows
based on the clustering results. Besides, we implement TPFS in virtual switches, which exerts fine-grained
flow scheduling over the arbitrary network stacks of tenants. Testbed evaluation and simulations show that
TPFS outperforms the previous information-agnostic flow scheduling scheme PIAS and greatly reduces the
tail latency of the network.

INDEX TERMS Flow scheduling, datacenter networks, scheduling.

I. INTRODUCTION
In data centers, applications, such as web search, advertis-
ing, social networking and retail, often generate small-size
requests that need to be finished within microseconds [1]–[4].
Flows that fail to finish before their deadlines are abandoned,
which will cause bandwidth waste, user experience degra-
dation and finally reduce the revenue of providers. The root
cause of the above problem lies in that the latency-sensitive
short flows are often blocked by large flows generated by co-
existingworkloads, such as datamining [5], backup and video
stream. However, today’s data center transport protocols like
TCP, [1], [6]–[8] are oblivious to the latency requirements of
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short flows and treat the two types of flows equally, which
significantly increases the Flow Completion Time (FCT) of
short flows.

Motivated by this, a number of novel data center transport
designs have been proposed [4], [9]–[11]. Broadly speaking,
most of them are built on the SJF heuristic that assigns short
flows more bandwidth and high priority to minimize their
completion times. To prioritize short flows, these proposals
need to identify short flows and are aware of the size of flows.
Therefore, most of the proposals, such as pFabric [4] and
PDQ [10], assume the flow size information can be easily
obtained from applications. Particularly, pFabric can achieve
close to theoretically minimal latency over a variety of work-
loads. The performance, however, is gained at the cost of
the assist of special hardware, packet header customization,
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flow size information requirement, which greatly sacrifices
the generality.

To mimic SJF without prior knowledge, some
proposals [11], [12] leverage commodity switches coupled
with priority queues to achieve good generality. For example,
in PIAS [11], a flow is gradually demoted from higher-
priority queues to lower priority-queues according to its sent
bytes. While this can emulate SJF without knowing flow size,
the good generality comes at the cost of losing performance
that the average 99th FCT of the short flows is 20% worse
than pFabric in web search workload [11] and is 40% worse
than pFabric in mix-traffic (shown in Section VI).
Furthermore, multi-tenant data centers are increasingly

deployed in large providers, such as Google, Amazon and
Microsoft, to support a large variety of applications. By our
investigation, there are mainly two challenges: 1) traffics
from different applications are mixed together and dynam-
ically vary along the time, making the priority policy mis-
matches with the underlying traffic; 2) the network stack is
managed by users, making previous proposals that modify
TCP or kernels challenging to be deployed in multi-tenant
data centers [3], [4], [9]–[12].

In this paper, we raise a question: is it possible to achieve
near-optimal performance and obtain good generality simul-
taneously even inmore challengingmulti-tenant data centers?

We observe that the main challenge of using SJF based
schemes is the difficulty in obtaining flow size information.
Instead of simply assuming that flow information is com-
pletely agnostic, if the flow size can be estimated according to
historic flow trace, achieving near-optimal performance with
good generality is possible. Thus, our key insight to solve the
problem is that the flow size should be estimated before the
start of flows to further reduce the latency.

This paper presents Traffic Prediction based Flow
Scheduling (TPFS), a new transport design aimed at achiev-
ing near-optimal performance and good generality even in
more challenging multi-tenant data centers with mix-traffic.
At a high-level, TPFS predicts flow priority by using the
proposed two-stage machine learning algorithm and schedule
flows according to their priorities.

The first stage of TPFS is predicting flow size distributions.
We have investigated that the traffic is predictable, and there
are a lot of schemes designed for traffic prediction and clas-
sification [13], [14]. However, several challenges arise when
employing these schemes to predict the size of flow. Since
existing prediction algorithms are not perfect, most of them
can only predict the type of application and have potential
prediction errors. Our scheduling schemes have to tolerate
the imperfect prediction results. Thus, TPFS only assumes the
prediction algorithm can give a correct range of flow size and
schedules flows based on the flow size distribution. Second,
using different features may have different prediction results,
TPFS searches the best features to find the best prediction
results and merges the traffic with similar features using the
DBSCAN clustering algorithm to reduce the number of types
of traffic.

The second stage of TPFS is predicting flow priority.
The simplest way is to assign flow priority according to
the average size in the flow size distribution. However, this
heuristic scheme will increase the tail latency since the short
flows are given the same priority as the larger size flows.
To solve this problem, a flow should be gradually demoted
from the highest priority to the lowest priority when it sends
more data. However, large flows also generate traffic (called
bad load) in the higher priority queues, which increases the
queueing delay. Our analysis finds that throughput-sensitive
applications only have a small fraction of short flows while
latency-sensitive applications contain a large number of short
flows. Thus, TPFS sacrifices the performance of short flows
in throughput-sensitive applications to decrease the queueing
delay by removing the bad load. More generally, when there
are several types of applications with the different fraction of
short flows, we have to determine to sacrifice the performance
of which type of application for achieving the optimal perfor-
mance.We formulate the problem as an optimization problem
and give the maximum percentage of short flows that we can
sacrifice for increasing the performance.

On the other hand, motivated by AC DC [7], TPFS is
implemented in the virtual switches to address the difficulty
in deployment. Further, since traffic will pass through virtual
switches, TPFS can easily monitor flows and collect historic
flow information of all Virtual Machines(VMs).

We have implemented TPFS and built a small-scale testbed
with 8 hosts to evaluate its performance with realistic work-
loads from four different applications. Furthermore, we also
implement TPFS in ns-2 simulator to perform large-scale
simulations. The testbed experiments show that TPFS outper-
forms PIAS more than 30% for short flows. Our simulation
results show that the performance gap between TPFS and
pFabric is within 5% for short flows, and TPFS reduces the
tail latency up to 30% compared to PIAS.

The main contributions of TPFS are:

• We investigate the performance of pure information
agnostic schemes can be further improved by predicting
flow size.

• We propose TPFS, a prediction based flow scheduler to
optimize the FCT for flows in data center networks.

The rest of paper is organized as follows. Section II-A
briefly overviews the background of our work and shows the
motivation. Section III to Section IV show the architecture
of TPFS and design the scheduling algorithm. Section V and
SectionVI extensively evaluate our algorithm through testbed
experiments and simulations. Finally, the paper is concluded
in VII.

II. BACKGROUND AND MOTIVATION
In this section, we first introduce the background of this
work. Then, we present the main motivations of our
work. The first example shows that mismatched thresh-
olds reduce could reduce the performance of the informa-
tion agnostic approach. The second example shows that the
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performance gap between the information-agnostic approach
and the information-aware approach. Through the two moti-
vation examples, we show the key considerations of TPFS.

A. BACKGROUND
1) INFORMATION-AGNOSTIC FLOW SCHEDULING
The flow scheduling schemes need to know the flow
size or deadlines to allocate rate, adjust congestion window,
and schedule flows. Most of the schemes assume the flow
size can be easily obtained by modifying applications. How-
ever, modifying applications is difficult and very costly [15].
Besides, in Spark, the data is dynamically generated during
computation, making it is impossible to know the flow size
priori [16]. Therefore, information-agnostic flow schedul-
ing scheme PIAS [11] has been proposed, and many other
schemes [12], [15], [17] are built on PIAS or leverage the key
idea of PIAS.

PIAS leverages multiple priority queues available in exist-
ing commodity switches that flows in different queues are
scheduled with strict priority, while packets of flows in the
same queue are scheduled based on FIFO. In PIAS, a flow
is gradually demoted from the highest priority queue to
several lower priority queues when its sent bytes exceeds
the predefined thresholds. If there are K queues, network
managers need to predefine K − 1 demotion thresholds α1 ≤
α2 · · · ≤ αK−1 according to the traffic pattern. When traffic
pattern changes, to obtain the best performance, the demotion
thresholds need to be changed accordingly.

2) MULTI-TENANT DATA CENTERS
Multi-tenant data centers and cloud computing are emerging
technologies that have been widely used by larger providers
and companies. At a high level, the provided infrastructures
can be accessed remotely, and the operating system can
be configured and changed arbitrarily. Thus, compared to
traditional data centers, multi-tenant data centers are more
challenging to manage. For flow scheduling schemes, the
challenges mainly come from two aspects.

• Deployment: Since users control the operating system
of VMs, data center managers are unable to control the
network stacks. Without control over the network stack,
many proposals [3], [4], [9]–[12] cannot work. Besides,
using different network stacks will cause unfairness
between users [7], [8]. For example, some users may
uses D2TCP while other uses still use ECN-incapable
TCP. As a result, D2TCP flows will obtain more band-
width than ECN-incapable flows. Even all users use the
same protocol, unfairness may still arise when users use
different parameters.

• Mixed and Varying Traffic Pattern: In a relatively
large time scale, flows generated by different types
of applications are mixed together. Karuna [12] and
PIAS [11] generally set the thresholds according to the
flow size distribution of all flows. However, during a
small time scale, there may be only one or two types of

applications that are active, which causes the mismatch
between predefined thresholds and underlying traffic
will happen. This issue may decrease the performance,
and we will show this in our motivation examples.

3) CAUSES OF VARYING TRAFFIC PATTERN
The traffic pattern inevitably changes over time, and we
summary the causes as fellows:

• VMs Start/Stop:Multi-tenants data centers allow users
to rent VMs on demands. For example, in Amazon EC2,
users can rent VMs from serval hours to couples of
days. Since different users may run different applica-
tions, the traffic patten will change as the set up of new
VMs or the destroy of old VMs.

• Application Change: Since users fully control their
VMs, they may change the function of VMs. For
instance, they may deploy web search at the beginning
and change to data mining application letter. This will
also change the traffic pattern of the network.

• VMs Migration: VMs migration technologies are
widely used in multi-tenants data centers [18], [19].
Data center providers usually migrate VMs to the same
physical machines to save energy, or migrate VMs to the
same rack to reduce latency. When VMs are migrated
from one rack to another rack, the underlying traffic
patten may also change.

B. MOTIVATION
In this subsection, we conduct some simulations to show the
problems and our motivation.

1) PROBLEM OF MISMATCHED THRESHOLDS
Although PIAS leverages ECN [1] to mitigate the threshold
mismatch problem, we will show the tail latency of the net-
work is still decreased compared to the optimal settings.

To explore the impacts of mismatched thresholds, we com-
pare two settings in web search workload by varying the
network load from 0.1 to 0.8. The Data Mining thresholds
are calculated according to data mining workload, and the
Optimized thresholds are obtained by running the simulation
multiple times. The simulations are run at 10Gbps links using
the simulation code and settings from the PIAS paper [20].
The simulation results are shown in Figure 1.

Figure 1a shows the average FCT for short flows. We can
see that the performance of PIAS decreases about 10% at
0.8 load when the thresholds are changed from Optimized
to Data Mining. As to the tail latency shown in Figure 1b,
the performance decreases about 20% at 0.8 load. This is
because that the flow size distribution of web search and data
mining (shown in Figure 3) are very different that 80% of
flows in data mining are smaller than 1KB while only 20%
of flows in web search are smaller than 1KB. As a result,
mismatched thresholds significantly reduce the performance.
Observation 1: Flow scheduling schemes should handle

mixed and varying traffic.
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FIGURE 1. Motivation example: PIAS has sub-optimal performance in
web search workload.

FIGURE 2. The histogram of IP and transport ports for three Facebook
workloads from data base, web search, data mining clusters.

2) LARGE IMPROVEMENT SPACE FOR TAIL LATENCY
The priority of flows is gradually decreased in PIAS to mimic
SJF heuristic. Does this mean PIAS can mimic SJF perfectly
and achieve near-optimal performance?We answer this ques-
tion by comparing PIAS to pFabric [4] to find out the per-
formance gap between PIAS (pure information-agnostic) and
optimal SJF-based scheme (pure information-aware). Note
that, pFabric schedules flows according to their remaining
size and gives flows with the smallest remaining size the
highest priority. We can see pFabric as the optimal solution
to achieve SJF.

Figure 1a shows that pFabric outperforms PIAS by up to
6% for short flows at 0.8 load, while the performance gap
increases to about 20% at 0.3 load for 99th short flows. This
indicates that the improvement space of information-agnostic
scheme is large. By analyzing PIAS, we find that PIAS cannot
quickly identify short flows and large flows. When short
flows and large flows arrive at the same time, the short flows
will be blocked by large flows until large flows are demoted
to lower priority queues. As a result, the completion times
of short flows are greatly affected by other flows. For exam-
ple, we use α1 = 46 packets in Optimized thresholds, and
about 70% of flows are larger than α1. This means the short
flows(< 46 packets) has 70% probability been blocked if it
arrives with another flows at the same time.

3) PREDICTABLE TRAFFIC
Can we identify short flows and large flows quickly to
improve this problem? By our investigation, if we can predict
flow size and obtain some flow information, we can mitigate
the problem. Fortunately, much existing work shows that the
type of flows is predictable and applications have their unique
characters [13], [14], [21], [22].

FIGURE 3. The flow size distribution of web search, data mining, cache
and hadoop workloads.

To show this, we count the IP address and transport ports
from three realistic workloads collected at Facebook’s data
base, web search and data mining cluster [21], and we plot
the histogram in Figure 2. Note that since the IPs and ports
are encrypted, the values are not real IPs and ports used by
Facebook. We can see that in each workload, each machine
send similar numbers of flows and there are no hot machines.
In contrast, the majority of flows are sent from a small num-
ber of ports as shown in Figure 2b. Note that, in data base
workload, although there are no obvious hot-ports, 16 ports
generate more than 92% the number of flows. Thus, the trans-
port ports contain the information of the type of flows. On the
other hand, we plot the web search workload [1], the data
mining workload [23], the cache workload [21], and the
hadoopworkload [21] in Figure 3.We can find that all the four
applications have their unique flow size distributions. Hence,
if we can predict the type of a flow, we can know the range
of its flow size and further predict its priority.
Observation 2: Pure information-agnostic schemes have

large improvement space

III. TPFS OVERVIEW
This section outlines the design and architecture of TPFS.
TPFS makes a trade-off between pure information-agnostic
and pure information-aware flow scheduling mechanisms.
The goal of TPFS is to design an effective and practical
prediction-based flow scheduling that leverages the potential
information to predict flow size and further reduces the tail
latency of short flows.

Figure 4 shows the main architecture of TPFS. To adapt to
the variation of the underlying traffic, we need a centralized
architecture to adjust the settings of distributed end-hosts
accordingly. Thus, TPFS uses a loosely-coordinated architec-
ture [17]. This architecture mainly contains, distributed end-
hosts, a centralized master node, and hardware switches.

A. END-HOSTS
To avoid controlling over the VMs or requiring changes the
network stack, motivated by AC DC [7], the main functions
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of TPFS are implemented in the virtual switch (vSwitch) run-
ning on distributed end-hosts. vSwitch-based implementation
is very light-weight and scalable to achieve good generality.
More specifically, in vSwitch, TPFS records the flow size of
all finished flows and associated information including MAC
address, IP address and transport ports. Besides, during the
transmission of a flow, TPFS adjusts its priority according
to the priority policy made by the master. Similar with PIAS,
the TOS field of packets are tagged at end-hosts by vSwitches
to notify switches the priority of flows.

B. MASTER NODE
Distributed end-hosts locally collect flow information and
send the information to the master. Then, the master analyzes
global flow information using prediction algorithms to make
priority policies. The flow information and priority policies
are coordinated loosely at O(10) minutes interval. Besides,
we note that existing commercial platforms have already
adopted the centralized architecture to manage vSwitches
and the network, such as VMware NSX [24] and OpenStack
Neutron [25]. Thus, the master can be easily implemented as
a plugin in these platforms.

C. HARDWARE SWITCHES
TPFS leverages the existing priority queues of hardware
switches. Specifically, packets are classified into different
priority queues based on the TOS tag in the packet header.
Then, packets are dequeued from the highest priority queue
to the lowest priority queue when the link is idle.

D. KEY IDEA
Based on observation 2, we can find that pure information-
agnostic approaches are not optimal. To achieve the best
generality and simplicity, it assumes the information is com-
pletely unknown. However, by our investigation, the flow size
is predictable in data centers. If we can predict flow size,
we can increase the performance. Thus, the key design of
TPFS is leveraging potential information to predict flow size
while still achieves good transparency to applications.

At a high level, TPFS mainly have two steps to predict the
priority:

• Predicting Flow Size Distribution: Given a set of flow
size from all finished flows, TPFS selects key features
that aggregate flowswith similar size and split flows into
different types via clustering algorithm.

• Predicting FlowPriority:Then, TPFS predicts the flow
priority based on the flow size distribution of each type
of flows. Finally, the flows are scheduled according to
the predicted priority at hardware switches.

IV. TPFS DETAILED DESIGN
In this section, we describe the detailed design of TPFS.
We begin by describing our two-stage prediction algo-
rithm and then show how to determine the scheduling
thresholds.

FIGURE 4. The architecture of TPFS .

TABLE 1. Potential useful features for classification.

A. PREDICTING FLOW SIZE DISTRIBUTION
Given periodic flow information, TPFS should predict flow
size and the priority of flows according to the information.
However, as shown in Figure 5, the flow size range of all flows
may be too large that we cannot accurately predict flow size.
Thus, we need some key features to further split the flows into
different types that flows have similar size in each type. For
example, in Figure 5, we may find features to split flows into
two types and each type has small flow size range.

TPFS needs to select some features and uses features
to split flows into different types. As shown in Table 1,
the potential useful features can be classified into four
levels [13], [15].

• Flow-level includes flow start time, mean packet size
and average packet interval. These features are widely
used by flow classification algorithms [13], [14].

• Community-Level includes machine id, the position of
machines, the service group. Since machines in data
centers are organized at racks and separated into service
groups where flows in the same machine, racks, or ser-
vice groups may have similar size.

• Application-Level includes IP addresses, transport port.
Applications usually use their reserve port to send
data or specific machines only run one type of applica-
tion. For example, HTTP traffic uses port 80, FTP uses
port 21 and shuffle process of Hadoop uses 13652 by
default [15]. Thus, IPs and port may indicate application
types.

• OS-level includes process ID and names of applications.

We further analyze this features and find that community-
level and OS-level features are challenging to collect in multi-
tenant data centers, because the VMsmay be migrated to new
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positions and we cannot control the stacks of VMs. On the
other hand, we have shown that the transport ports have the
strong correlation with the type of applications. Thus, we
mainly leverage the transport ports, IP addresses and sent
bytes.

Since we don’t know which feature is important, the key
idea of our algorithm is to search all possible feature combi-
nations and find the most useful features. For example, if we
aggregate flows according to their IP addresses and find the
range of flow size distribution is too large, then IP addresses
is not a good feature for the underlying traffic. In contrast,
if we change to use the transport ports, we can get flow size
distribution varying in a small range. This idea is also used
by CS2P [26] that designed for predict throughput of flows.

The flow clustering algorithm of TPFS works in four steps:
1) Choose feature combinations from all the features as

selected feature set Features. For example, if there are n
features, we will try 2n combinations. In our work, we mainly
consider the IP address and transport ports.

2) After selecting the features, the feature combination has
many values, we statistic the flow size of each value and get
a flow size distribution. For example, if we select the port
as the feature, and we can get the flow size distribution of
port = 80 is F1, the flow size distribution of port = 22 is
F2. Since there are a lot of flow size distributions, we need
to cluster similar flow size distributions to reduce the number
of types. Before clustering the similar flow size distribution,
we first show how to measure the similarity and distance
between two flow size distributions. Assuming the flow size
distribution for all flows ranges from xmin to xmax . We define
xi = xmin + i × xmax−xmin

M+1 , and for a flow size distribution
F(x), we can describe it with Xi = F(x i1),F(x

i
2), . . . ,F(x

i
M )

where M determines the accuracy of the description. Then,
the distance between two flow size distribution is:

d(Fi,Fj) = ||Xi − Xj|| =

√√√√ M∑
l=1

(x il − x
j
l )
2 (1)

3) Using Xi, each flow size distribution can be mapped
to a point in the M -dimension space. Now, we can use
DBSCAN [27] to automatically learn the number of types N
and classify flows into type Ti.
4) Assuming we get N types of flow size distributions with

Fi where δi is the standard deviation of Fi. Our goal is to
find the best combination features Feature∗s that minimize
the sum of standard deviation:

Feature∗s = min
Featuress

n∑
i=1

δi (2)

The performance and scalability of this algorithm are
mainly determined by the DBSCAN. Since we only use flow
history in the past O(1) hours, the total data set will not too
large. Besides, the flow size clustering is run atO(10) minutes
interval, TPFS can tolerate minutes level running time.

FIGURE 5. The motivation of flow size distribution prediction.

FIGURE 6. The motivation of priority prediction: Types T1 (dark/blue) and
T2 (light/yellow) generate different percentage of bad load (with grid) in
the queue Pi .

B. PREDICTING FLOW PRIORITY
Assuming the flows have been clustered into N classes
Ti, 1 ≤ i ≤ N , and there are K priority queues Pi, 1 ≤ i ≤ K
where P1 has the highest priority. Given a flow f ∈ Ti, TPFS
predicts which priority the flows belong to.

However, the main challenge of this problem is that
although the size range of each type of class is small, it may
also coverage several queues, and it is difficult to predict the
correct priority immediately.More specifically, to mimic SJF,
the optimal priority policy is giving flows with small size the
highest priority. Thus, when the flow size is known priori,
pure information-aware scheme [4] can determine a series
of thresholds that classify flows into priority queues based
on their size. For instance, for a queue Pi and associated
threshold p1, p1 ≤ p2 · · · ≤ pk , it should serve flows in
[pi−1, pi). However, in TPFS, we don’t know the flow size,
and we only know the flow size distribution. If the flow size
of a class varies in [pi, pi+3], and 90% percentage of flows
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is in [pi+2, pi+3). In this situation, if we use the average
size as the predicted flow size and classify all flows into
Pi+3, then the FCT of 10% flows that belong to [pi, pi+2)
will increase. Especially, if these 10% flows are short flows,
the tail-latency will significantly increase. Apparently, this
heuristic will violate the SJF policy.

1) PROBLEM OF PIAS
Pure information-agnostic scheme PIAS [11] solves this
problem by using the sent bytes of a flow, and queue Pi
serves flows whose sent bytes in [pi−1, pi). Thus, a flow is
gradually demoted from the highest priority to lowest priority
when it sends more data. However, this scheme also has the
drawback that cannot remove unnecessary load generated by
large flows from high priority queues, and we use a simple
example shown in Figure 6 to show this. The load ρi of a
queue Pi mainly contains two parts. The first part of the load
is the traffic generated by flows whose size in [pi−1, pi)(good
load in the Figure). The second part of the load is the traffic
generated by flows within [pi,∞)(bad load in the Figure).
Obviously, the second part of the load should be removed
to reduce the queueing delay since it belongs to large and
low priority flows. However, for pure information agnostic
schemes, it is hard to identify this part of flows.

2) KEY IDEA OF PREDICTING PRIORITY
TPFS leverages the pure information-agnostic scheme and
further improves its performance by removing the bad load.
As shown in Figure 6b, TPFS has learned a number of classes,
and each class may have different flow size distribution. For
example, 80% flows of class T1 is in Pi while 80% flows
of class T2 is in the lower priority queues than Pi. Thus,
we can directly remove most of the flows of T2 to reduce
almost half of the load of Pi. However, if we remove all flows
of T2 from Pi to Pi+1, 20% of high priority flows are also
removed, and the FCT of those flows are increased. We call
those flows are false removed flows. Therefore, we have
to make a tradeoff between the percentage of removed bad
load and the percentage of false removed flows. For example,
as shown in Figure 6b, we made the tradeoff by finding a
proper threshold pt2i that removes 70% bad load with only
5% false removed flows.

3) PROBLEM FORMULATION
We assume ρi is the load of the queue Pi, and Pi serves two
parts of flows. The first part is good flows in [Ti−1,Ti) with
load ρGi and the second part is bad flows in [Ti,∞) with
load ρBi . Thus, ρi = ρGi + ρ

B
i , and the serving time for

good flows isWG
i =

∑i−1
k=1W

G
k +

RGi
1−

∑i
l=1 ρl

where RGi is the

average remaining size of good flows [11]. If we sacrifice α
percentage of good flows for removing β percentage of bad
flows, we can reduce the load of Pi to ρ̂i = (1 − α)ρGi +
(1 − β)ρBi . Then, we have the following optimization prob-
lem, we choose an optimal α to minimize the objective:

the average serving time of good flows in Pi:

min
α

ŴG
i = (1− α)[

i−1∑
k=1

WG
k +

RGi
1−

∑i−1
l=1 ρl + ρ̂i

]

+α[
i−1∑
k=1

WG
k +

RGi
1−

∑i−1
l=1 ρl + ρ̂i

+
RGi

1−
∑i+1

l=1 ρl
]

subject to 0 ≤ α ≤ 1 (3)

where the first part is the serving time of Gi in queue Pi
and the second part is the serving time of sacrificed Gi in
queue Pi+1.

4) ANALYSIS
Recall that we cluster flows into N types, and each type Ti
has a unique flow size distribution Fi(x). Thus, the good load
ρGi and bad load ρBi are generated by the N types, and ρGi =∑N

l=1 ρ
G
i,Tl and ρ

B
i =

∑N
l=1 ρ

B
i,Tl where ρi,Tl is the load of Tl

in queue Pi. If we gives Tl a threshold p
Tl
i and demote the type

Tl flows into Pi+1 when their sent bytes exceed pTli , we will
remove αi,Tl = Fl(Pi) − Fl(P

Tl
i ) percentage good flows and

βi,Tl =
P
Tl
i −Pi−1
Pi−Pi−1

percentage bad flows (note that a bad flow

will send Ti − Ti−1 bytes in Pi, and it sends P
Tl
i − Pi−1 bytes

when the threshold is PTli ). Then, αi =
∑N

l=1 αi,Tl and βi =∑N
l=1 βi,Tl . Finally, the above optimization problem becomes

that we choose an optimal set of thresholds {pTli } for each
queue Pi to minimize the equation 3.

5) PROBLEM SOLUTION
The above problem is a Sum-of-Linear-Ratios (SoLR) prob-
lem that is NP hard [11], making we can not solve the prob-
lem. To solve the problem, we note that the optimal solution
should remove maximum bad load while removing minimum
good load. Thus, we consider the following optimization
problem, we choose a set of thresholds {pTli } to maximize the
removed bad load:

max
{p
Tl
i }

βρBi =

N∑
l=1

PTli − Pi−1
Pi − Pi−1

ρBi,Tl

subject to αρGi =
N∑
l=1

(Fl(Pi)− Fl(P
Tl
i ))ρ

G
i,Tl ≤ δ (4)

Note that pi−1 is predefined thresholds, and ρBi,Tl and ρ
G
i,Tl

can be know from the flow size distribution. Therefore, when
given the δ that the maximum good load can be removed
and Fi is concave, the equation 4 is a concave optimization
problem that has only N variables. The scale of the problem
is small and can be solved in a timely manner.

Now, we show how to choose δ. Because wewant to reduce
the average serving time for good flows, thus ŴG

i should be
smaller thanWG

i :

WG
i − Ŵ

G
i > 0 (5)
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Substituting equation 2 into it, we can finally get:

α <

1
1−

∑i
l=1 ρl
−

1
1−

∑i−1
l=1 ρl+ρ̂i

1
1−

∑i+1
l=1 ρl

<

1
1−

∑i
l=1 ρl
−

1
1−

∑i−1
l=1 ρl

1
1−

∑i+1
l=1 ρl

(6)

Therefore, to guarantee we can optimize the performance of
good flows, we should choose:

δ = αρGi <

1
1−

∑i
l=1 ρl
−

1
1−

∑i−1
l=1 ρl

1
1−

∑i+1
l=1 ρl

ρGi (7)

Therefore, when given the δ, pre-defined thresholds pi
for each queue, and N flow size distributions Tl , we can
determine a set of thresholds pTli to adjust the priority of each
type of flow. We assume the cumulative density function of
all flows is F(x), and F(x) is combined by N types Ti where
FTi (x) is the flow distribution of Ti.
Once we know the cumulative density function of flow size

distribution F(x), we can determine a series of thresholds that
classify flows into priority queues based on their sent bytes x.
For a queue Pi and associated threshold pi, it should serve
flows pi−1 ≤ x < pi.

V. TESTBED EVALUATION
In this section, we evaluate the performance of TPFS on our
small-scale testbed through three experiments. First, we eval-
uate how the performance of TPFS is influenced by mixing
two types of applications. Second, we evaluate the perfor-
mance of TPFS by mixing four types applications. Finally,
we show the CPU overhead of TPFS.

A. EVALUATION SETTINGS
1) TESTBED
We built a small-scale testbed that consists of 8 hosts
connected to a Pronto 3290 48-port Gigabit Ethernet
switch. Eight hosts running TPFS are Dell OPTIPLEX with
a 2-core Intel I3-3220 3.3GHz CPU, 4G memory, and a
Broadcom BCM5719 NIC. The default OS is Ubuntu 16.04
64 bit version with Linux 4.4.15 kernel. The base round-trip-
time in our testbed is around 200µs. Note that, the default
ECN marking scheme is the per-queue marking in PIAS.
However, since our hardware switch only supports the per-
port ECNmarking, we set the ECNmarking threshold of each
queue to 4KB ( a half of the queue size) and use 8 queues.

Scheme compared:We evaluate the following schemes:
• pFabric: pFabric perfectly mimics SJF and can achieve
close to theoretically minimal latency over a variety
of workloads. Through comparing TPFS with pFabric,
we can inspect how information-agnostic affects the per-
formance and the performance gap between our schemes
and the optimal. Because pFabric needs special hard-
ware to support, we only compare it in simulations.

• PIAS: We use the PIAS software implemented in
NETFILTER [28] and use the settings in the software.
Besides, we choose the DCTCP as our transport protocol
as PIAS does.

• TPFS: TPFS is implemented according to the design
described above in OpenVSwitch 2.6.0 [29]. However,
we find that OpenVSwitch will add additional 20µs
RTT to our testbed. To fairly compare with PIAS,
we also implement TPFS built on the PIAS software in
NETFILTER. For convenient, we set αi < δ

ρGi
< 10%

for all loads.

2) WORKLOAD
We use four realistic workloads: the web search workload [1],
the data mining workload [23], the cache workload [21], and
the Hadoop workload [21] as shown in Figure 3. To generate
flows, 7 hosts run web search, data mining, cache, Hadoop
applications on different transport ports, then client running
on one host randomly and evenly sets up TCP connections
to the applications running on the other hosts and requests
flows. The flows are requested using a Poisson arrival pro-
cess whose parameter is chosen depending on desired link
load. Note that we only emulate some features of flows due
to lack the datasets. We found that most of the datasets
used by the work of flow classification are not publicly
released while public datasets lack the flow-level and detail
information [13], [14], [21]. As a result, we can only emulate
the difference of flows in transport ports and flow size.

3) METRIC
Our main performance metric is the FCT normalized to the
PIAS. Besides, we break down the FCT stats across small
(0,100KB] and large (10MB,∞) flows, and medium (100KB,
10MB] flows. In order to show tail latency, we also compare
the 99th FCT of short flows under different mechanisms.

B. EVALUATION RESULTS
1) MIXING TWO APPLICATIONS
In this evaluation, we let the client randomly requests flows
from web search and data mining workload, and evaluate the
performance of TPFS and PIAS by varying the average traffic
load from 0.1 to 0.8.

From the evaluation results show in Figure 7, we can see
that TPFS achieves the best performance, reduces the FCT for
short flows by up to 30% and reduces the FCT for 99th short
flows by up to 32%. The above performance improvements
are expected, since TPFS improves the thresholds scheme
of PIAS and uses more proper and accurate thresholds.
The above results also indicate that predicting flow size by
leveraging the flow information is needed to improve the
performance. Besides, TPFS also improves the performance
for medium flows and achieves up to 10% lower FCT. The
performance of TPFS for large flows is a little worse than
PIAS that is too small to see in the figure. This is because that
TPFS removes bad load from higher priority queues to lower

VOLUME 8, 2020 64673



S. Wang et al.: Improving Flow Scheduling Scheme With Mix-Traffic in Multi-Tenant Data Centers

FIGURE 7. [Testbed] The impact of mixing web search and data mining traffic.

FIGURE 8. [Testbed] The impact of mixing web search, data mining, cache, hadoop traffic.

priority queues, thus increasing the latency of the large flows.
Although the latency of large flows is increased, it will not
affect the revenue of providers since latency-sensitive short
flows are more important.

Besides the FCT of flows, we also found that our clustering
algorithm successfully selects the port as the feature and
clusters flows into two types according to their ports. Since
the scenario is very simple and there are only two clusters,
we don’t plot the clustering results.

2) MIXING FOUR APPLICATIONS
In this evaluation, we let the client randomly requests flows
from all the four types of workloads.

The evaluation results are shown in Figure 8. Compared
with DCTCP, the average and 99th FCT of small flows can be
decreased by up to 50% and 90% respectively. We can find
that compared to mixing two applications, the performance
improvement space increases. This is because that as the
number of application types increases, if the range of their
flow distributions have few overlaps, we will have more
accurate information to predict the flow priority. Thus, this
indicates that TPFS may have better performance in the real
data center with a large number of applications.

3) OVERHEAD
To show the scalability of TPFS, we measure the CPU over-
head of TPFS by setting up multiple simultaneous TCP flows
between two hosts running TPFS. The total CPU utilization
is measured on the sender using Python psutil ad 1 second
interval for 30 seconds.

As shown in Figure 10, the CPU overhead of TPFS are
compared to the CPU overhead of OpenVSwitch(OVS) with-
out TPFSmodule. The evaluation results show that during the
30 seconds, the difference of average CPU overhead between

TPFS and OVS is within 3% as the increasing of concurrent
flows. Since the concurrent flows in data centers on one
machine are small, TPFS will have a good scalability in real
deployment, and the CPU overhead is negligible.

VI. SIMULATION
In this section, we evaluate the performance of TPFS through
ns-2 simulator. First, we evaluate the performance of TPFS
in large-scale scenarios. Second, we show the impact of the
threshold mismatch in TPFS and further show it is necessary
to identify the type of traffic to further improve the perfor-
mance.

A. SIMULATION SETTINGS
1) SCHEME COMPARED
We compare TPFS with pFabric and PIAS. We use per-
queue ECN marking schemes and set the queue size to be
240 packets and ECNmarking threshold to be 65 packets used
by PIAS.

2) TOPOLOGY
We use leaf-spine topology to evaluate the performance of
TPFS. The network has 144 hosts, 9 leaf switches, and
4 spine switches. All hosts are connected by 10Gbps links
with 20.2µs delays, and leaf switches are connected to spine
switches by 40Gbps links with 0.2µs delays. Therefore,
the oversubscription of the network is 1:1 and the end-to-end
round-trip latency across spines is about 85.2µs [11].

3) WORKLOAD
To generate flows, each server sets up TCP connections to
the other servers and requests flows whose flow sizes are
randomly selected from the four workloads. The flows are
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FIGURE 9. [Simulation] The impact of mixing web search, data mining, cache, hadoop traffic.

FIGURE 10. The CPU usage for OVS and TPFS on one machine.

requested using a Poisson arrival process whose parameter is
chosen depending on desired link load.

B. SIMULATION RESULTS
1) MIXING FOUR APPLICATIONS IN LARGE SCALE
In this simulation, we mix all the four types of workloads and
evaluate the performance of TPFS in large-scale simulations.

Figure 9 shows the simulation results. Compared to PIAS,
both TPFS and pFabric reduce the average FCT of short flows
and greatly reduce the 99th FCT of short flows. Compared
to pFabric, TPFS has a little worse performance within 3%
for short flows, and TPFS has very similar performance with
pFabric for 99th FCT of short flows when the load is smaller
than 0.4. This indicates TPFS can achieve near-optimal per-
formance when the load is light. When the load is heavy,
we find that the performance gap between TPFS and pFabric
becomes larger for 99th short flows and medium flows. This
is that because pFabric sacrifices the performance of large
flows while TPFS still gives some large flows that can’t
be identified immediately higher priority. However, while
pFabric achieves the best performance for short and medium
flows, it also has the worst performance for large flows.

2) IMPACTS OF THRESHOLD MISMATCH
In TPFS, threshold mismatch occurs when the features of
a application suddenly change. For example, when a user
changes the port for web search applications. TPFS adjusts
the thresholds periodically to improve this problem. In this
simulation, we evaluate how this problem impacts the perfor-
mance once it happens. We repeat the previous simulation by

FIGURE 11. The impacts of threshold mismatch when TPFS cannot
identify(W/O) one of four types of applications.

suddenly changing the transport ports of one of the four types
of applications, respectively. Thus, TPFS cannot identify the
type of the port-changed application and will use the default
pre-defined thresholds to adjust its priority.

The simulation results are shown in Figure 11. Although
TPFS has sub-optimal performance when it cannot identify
some applications, it also has a better performance than PIAS.
Specifically, we can see that when TPFS cannot identify
web search and cache workloads, the performance reduces
by up to 12% and 10% for 99th short flows, respectively.
When TPFS cannot identify data mining and hadoop work-
loads, the performance reduces a little. This indicates that the
impacts of thresholdmismatch aremainly affected by the type
of workloads. Since more than 80% of flows of data mining
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and hadoop workloads are smaller than 100 KB, they have
little impacts on the performance. In contrast, only about 50%
of flows of web search and cache workloads are smaller than
100 KB, they will generate a large number of bad loads in
the highest priority queue by using the default thresholds.
Besides, this simulation also shows that it is necessary to
identify the type of flows and remove bad loads, which are
the motivation of this work.

VII. CONCLUSION
This article validated that the traffic is predictable in data
centers, and there is a large improvement space for the pure
information-agnostic scheduling. Based on this, we verified
that the performance of information-agnostic scheme could
be further improved by leveraging the unique characteristics
of different traffic types. Thus, we have presented TPFS
that predicts flow size to further reduce the completion time
of flows. Testbed and simulation results demonstrated that
TPFS could greatly reduce the completion time of small
flows and outperformed the previous information-agnostic
flow scheduling algorithm PIAS.
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