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ABSTRACT Grey wolf optimizer (GWO) is a new meta-heuristic algorithm. The GWO algorithm mimics
the leadership hierarchy and hunting mechanism of grey wolves in nature. Three main stages of hunting
include: encircling, tracking and attacking. It is easy to fall into local optimum when used to optimize
high-dimensional data, and there is imbalance between exploration and exploitation. An improved grey
wolf optimizer based on tracking mode and seeking mode is proposed to improve the diversity of the
population and the ability of the algorithm to balance exploration and exploitation. The algorithm is verified
by simulation experiments in three parts. Firstly, the proposed grey wolf optimizer based on tracking
mode (TGWO), the improved grey wolf optimizer based on seeking mode (SGWO), the improved grey
wolf optimizer based on tracking and seeking mode (TSGWO), Grey Wolf Optimizer (GWO), Particle
Swarm Optimization (PSO), Salp Swarm Algorithm (SSA), Sine Cosine Algorithm (SCA), Ant Lion
Optimizer (ALO),Whale Optimization Algorithm (WOA) andMoth-flameOptimization (MFO) are adopted
to optimize 21 typical benchmark functions respectively, and the obtained statistical simulation results are
compared; Secondly, the improved algorithm proposed in this paper is compared with Binary Grey Wolf
Optimizer (BGWO), Hybrid PSOGWO Optimization (PSOGWO) and GWO Algorithm Integrated with
Cuckoo Search (GWOCS); Finally, it is applied to the lightest design engineering problem of pressure
vessels. Simulation results show that the superior performance of the proposed algorithm for exploiting the
optimum and it has advantages in terms of exploration. The improved grey wolf optimizer based on tracking
mode and seeking mode can better solve function optimization and classical engineering problems with
constraints. It was found the improved grey wolf optimizer based on tracking mode has the high precision
and the characteristics of balanced exploration and exploitation.

INDEX TERMS Grey wolf optimizer, tracking mode, seeking mode, function optimization.

I. INTRODUCTION
There are more and more demands for solving various com-
plexity problems. In recent years, the emergence of meta-
heuristic algorithms for bionics has emerged in an endless
stream, and there is a faster way to solve many complex
optimization problems. This kind of meta-heuristic algorithm
has become a research hot-spot in solving optimization prob-
lems in recent years [1]. The concept of bionic algorithm
was first introduced in the genetic algorithm (GA) [2]. Since
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then, Popular algorithms in this field include: Particle Swarm
Optimization (PSO) [3]–[5]. Artificial Bee Colony algorithm
(ABC) [6], [7]. Cuckoo Search Algorithm (CS) [8]–[11].
Ant Lion Optimizer (ALO) [12], [13], Sine Cosine Algo-
rithm (SCA) [14], [15], Salp Swarm Algorithm (SSA) [16],
Whale Optimization Algorithm (WOA) [17], [18], Moth-
Flame Optimization (MFO) [19], Poor and Rich Optimiza-
tion (PRO) [20], Meerkats-inspired algorithm (MEA) [21],
Kidney-inspired Algorithm [22], SailFish Optimizer (SFO)
[23], Tree Growth Algorithm (TGA) [24], Squirrel Search
Algorithm [25], Earthworm Optimization Algorithm [26]. So
far, complex optimization problems have emerged endlessly,
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and it is difficult to obtain optimal solutions. This is also an
important reason why researchers are committed to practical
optimization problems. There are many swarm intelligence
algorithms that are widely used in combinatorial optimiza-
tion [27], function optimization [28], muti-objective function
optimization [29], three bar truss problems [30], cantilever
beam design problems [31], gear system design problem [32].
However, there are still some limitations and unreliability in
solving the practical optimization problems. Because of these
limitations, many scholars have made further researches and
improvements.

In the research of many scholars, the meta-heuristic algo-
rithm is improved to avoid the problem of falling into local
optimum. The Grey Wolf Optimizer (GWO) was proposed
by Mirjalili [33], which is a new heuristic algorithm to solve
the optimization problems. Shahrzad Saremi et al. proposed a
new muti-objective grey wolf optimizer (MOGWO) to solve
the challenging muti-objective optimization problems [34].
Hui Xu et al. proposed an improved GWO combined with
cuckoo search aiming at the disadvantage that GWO is prone
to fall into local optimum, especially when it is applied in
high-dimensional data [35]. Teng Zhijun et al. proposed a
hybrid greywolf optimizer based on Tent mapping to increase
global search capability [36]. Long and Wen proposed a new
constrained optimization algorithm MAL-IGWO by com-
bining the improved global optimization ability of the grey
wolf optimization algorithm (IGWO) with the improved aug-
mented Lagrangian multiplier method to deal with the con-
straint problems [37]. Li Shuxia et al. proposed an improved
grey wolf optimizer (IGWO) based on evolution and elim-
ination mechanism to achieve an appropriate compromise
between exploration and development, further accelerate the
convergence of exploration and development, and improve
the optimization accuracy of GWO [38]. Kohli and Mehak
introduced chaos theory into GWO to improve the global
convergence rate [39]. MAMushahhid proposed an improved
typical enhanced grey wolf optimizer (EGWO), which
improved the optimization ability of the algorithm and was
successfully applied in analog circuits [40]. Jian Liu et al.
proposed an improved double grey wolf optimizer [41].
E. Emary et al. proposed a variant of gray wolf optimization
(GWO) that uses reinforcement learning principles combined
with neural networks to enhance the performance [42]. Zaw-
baa et al. propose a combination of antlion optimization and
grey wolf optimization in a new algorithm called ALO-GWO
[43]. E. Emary and Zawbaa H M et al. proposed a novel
binary version of the gray wolf optimization (GWO) and used
it to select optimal feature subset for classification purposes
[44]. Four bioinspired optimization algorithms: antlion opti-
mization, binary version of antlion optimization, grey wolf
optimization, and social spider optimization are used to select
the optimal feature set for predicting the dissolution profile
of PLGA by Zawbaa H M et al. [45]. Zawbaa H M et al.
was found CI model shows that GWO algorithm is the most
accurate method to predict porosity [46]. E. Emary et al.
proposed an optimization algorithm based on two chaotic

FIGURE 1. Mathematical model diagram.

functions that employed to analyze their performance and
impact on grey wolf optimization, ant lion optimizer and
moth-flame optimization [47]. E. Emary et al. proposed a
classification accuracy-based fitness function by gray-wolf
optimizer to find optimal feature subset [48]. ShubhamGupta
et al. proposed a modified algorithm RW-GWO based on
random walk [49]. Akash Saxena et al. presented an adaptive
bridging mechanism based on β-chaotic sequence for the
improvement of Grey Wolf Optimizer (GWO) [50].

Seeking mode and tracking mode were first proposed in
cat swarm optimization (CSO) by Chu et al. [51]. Yang Shi-
da et al. proposed a novel cat swarm algorithm based on
the concepts of homotopy called a homotopy-inspired cat
swarm algorithm (HCSA) [52]. Pei-Wei Tsai et al. inves-
tigated a parallel structure of cat swarm optimization and
called it parallel cat swarm optimization (PCSO) [53]. Sharafi
Y et al. presented a new algorithm binary discrete opti-
mization method based on cat swarm optimization (BCSO)
[54]. Ganapati Panda et al. developed a new learning rule
based on population for the task definition model of IIR
system identification using the recently introduced cat swarm
optimization algorithm (CSO) [55]. An optimization method
of parameter estimation of single diode and double diode
model based on cat group optimization algorithm is pro-
posed by Guo et al. [56]. An improved grey wolf optimizer
based on tracking mode and seeking mode is proposed based
on the three stages of encircling, tracking and attack of
grey wolf aiming at the grey wolf optimizer has the dis-
advantage of easy convergence to local optimal. The algo-
rithm is verified by simulation experiments in three parts.
Firstly, the proposed tracking mode based grey wolf opti-
mizer (TGWO), the seeking mode based grey wolf optimizer
(SGWO), the tracking and seeking mode based grey wolf
optimizer (TSGWO), Grey Wolf Optimizer (GWO), Particle
Swarm Optimization (PSO), Salp Swarm Algorithm (SSA),
Sine Cosine Algorithm (SCA), Ant Lion Optimizer (ALO),
Whale Optimization Algorithm (WOA) and Moth-flame
Optimization (MFO) are adopted to optimize 21 typical
benchmark functions to show the effective of the proposed
algorithms; Secondly, the improved algorithm proposed in
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FIGURE 2. 2D and 3D position vectors and their possible next locations.

this paper is compared with Binary?Grey?Wolf?Optimizer
(BGWO), Hybrid PSOGWO Optimization (PSOGWO) and
GWO Algorithm Integrated with Cuckoo Search (GWOCS);
Finally, it is applied to the lightest design engineering prob-
lem of pressure vessels.

II. BASIC PRINCIPLE OF GWO
Grey wolf belongs to canine family. Most grey wolves prefer
to live in groups. The grey wolves rely on a clear division
of labor and cooperation to survive. Due to the clear division
of labor, the gray wolf population is divided into four hier-
archical systems. The leading grey wolf is called α wolf, its
next level is called β wolf, the third level is called δ wolf,
and the lowest level of the gray wolf is called ω wolf. The
mathematical model established by the characteristics of the
gray wolf swarm intermediate level is shown in Fig. 1. The
grey wolf optimizer is a meta heuristic algorithm proposed

FIGURE 3. Attacking prey versus searching for prey.

in 2014. Grey wolf optimizer uses the characteristics of grey
wolf social class to simulate its hunting mechanism. It is
considered that three levels of wolves α, β and δ correspond
to the three solutions with the best fitness. In each iteration,
three wolves lead all wolves to a deeper exploration of the
most likely searching space until the best position was found.
The formula for the grey wolf surrounding the prey can be
described as follows.

−→
D =

∣∣∣−→C · −→Xp (t)−−→X (t)
∣∣∣ (1)

−→
X (t + 1) =

−→
Xp (t)−

−→
A ·
−→
D (2)

where t represents the algebraic number of the current itera-
tion,
−→
Xp (t) characterizes the position vector of the prey,

−→
X (t)

is the position vector reflecting the grey wolf, where both
−→
A

and
−→
C refer to the coefficient vector, and they are calculated

by:
−→
A = 2−→a · −→r1 −

−→a (3)
−→
C = 2 · −→r2 (4)

a = 2− 2
(

t
Tmax

)
(5)
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FIGURE 4. Location update of GWO.

where t represents the current number of iterations, Tmax
is the embodiment of the maximum number of iterations.
It can be seen from the above formula that as the number of
iterations increases, the convergence factor −→a represents a
value that gradually exhibits a linear decreasing trend from
2 to 0.−→r1 and−→r2 are random variables that are represented in
the interval [0, 1].
According to Eq. (1) and Eq. (2), the updating rule of the

position of surrounding prey by grey wolves is presented.
Fig. 2(a) shows the possible areas around the wolf when
re-updating the position. It can be seen from Fig. 2(a) that
the grey wolf in position (X ,Y ) can re-position the posi-
tion according to the location (X∗,Y ∗) of the prey. At each
iteration, the position vector of the grey wolf is updated by
constantly adjusting the values of

−→
A and

−→
C , so that the

grey wolf can go anywhere near the prey. The 3-dimensional
position update of the grey wolf is shown in Fig. 2(b). The
presence of the random variables −→r1 and −→r2 allows the grey
wolf position to be updated to any position according to
Eq. (1) and (2).

It is worth noting that the convergence factor −→a is a vari-
able that decreases linearly with the number of iterations from
2 to 0. According to Eq. (3),

−→
A is a random variable between

[−2a, 2a]. In this case, it is necessary to divide into two cases
according to the range of

−→
A . It can be seen from Fig. 3(a)

that When
−→
A is between [−1, 1], the next generation can

update the position arbitrarily between the current location
and the location of the prey. When |A| < 1, the grey wolf
attacks the prey at this time. This situation is more indicative
of the development capability of gray wolf, but these random
vectors proposed so far may make it easy to fall into local
optimal. It can be seen from Fig. 3(b) that when the random
variable

−→
A is between [−∞,−1] or [1,∞], the grey wolf

will not attack the prey. That is to say when |A| > 1, the grey
wolf will force the current agent to stay away from the prey
and search for more suitable prey. Random variable

−→
C can

also improve the exploration ability of the algorithm. It can
be seen form Eq. (4) that

−→
C is a random variable, and there

is no random linear reduction. The randomness is maintained
from the initial iteration to the final iteration, which improves
the global optimization ability of the final iteration.

The grey wolf population is divided into four grades α, β, δ
and ω. The first three grades α, β and δ are in corresponding
to the three solutions with the best fitness. Then the wolf
positions with these three grades are updated by adopting the
following formula.

−→
Dα =

∣∣∣−→C1 ·
−→
Xα −

−→
X

∣∣∣ (6)
−→
Dβ =

∣∣∣−→C2 ·
−→
Xβ −

−→
X

∣∣∣ (7)
−→
Dδ =

∣∣∣−→C3 ·
−→
Xδ −

−→
X

∣∣∣ (8)
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where
−→
Xα is the position vector of α wolf,

−→
Xβ is the position

vector of β wolf, and
−→
Xδ represents the position vector of δ

wolf.
Under normal circumstances, it is assumed that the first

three levels of grey wolves know the general position of the
prey on theway of hunting. After obtaining the above position
vector, the wolves will perform the final update according to
the obtained position by adopting the following formula.

X1 = |Xα − A1 · Dα| (9)

X2 =
∣∣Xβ − A2 · Dβ ∣∣ (10)

X3 = |Xδ − A3 · Dδ| (11)

X(t+1) =
X1 + X2 + X3

3
(12)

The position update principle of the algorithm is shown
in Fig. 4. During each iteration update, the position of the grey
wolf is estimated by the best three levels of positions. X(t+1)
is the updated position of the next generation of wolves,
and each candidate solution will update the distance between
them and the prey [57]. In summary, the grey wolf optimizer
begins to randomly initialize the population, and then updates
the position of the candidate solution each according to the
three wolves with the best fitness, namely, α wolf, β wolf, and
δ wolf. The range of the random variable |A| < 1 determines
that the wolf is approaching the prey, |A| > 1 indicates that
the wolf is forced to stay away from the prey to find a more
suitable prey, and converges to the optimal solution in the last
iteration.

III. IMPROVED GREY WOLF OPTIMIZER BASED ON
TRACKING MODE AND SEEKING MODE
A. TRACKING MODE AND SEEKING MODE
According to the high alertness of cats in idle state and
the characteristics of tracking dynamic targets, a cat swarm
algorithm based on seeking mode and tracking mode was
proposed in 2006. In this paper, tracking mode and seeking
mode are integrated into grey wolf optimizer to improve the
randomness of its search. The improved algorithm realizes
the balance of exploitation and exploration, and is not easy to
fall into the local optimal solution.

The tracking mode is a kind of simulation of the state of a
wolf when it is tracking a dynamic target. It mainly applies the
update of velocity and position of each dimension to change
the position with random disturbance. The tracking mode is
implemented by adopting the following steps.
Step 1: Calculate the speed of the ith Wolf in each dimen-

sion according to the following formula:

vi,d (t+1)=vi,d (t)+r × C ×
(
Xbest,d (t)−xi,d (t)

)
(13)

where Xbest,d (t) is the best position for the wolf currently
available, d = 1, 2, · · ·M , xi,d (t) indicates the location of
the ith wolf, r andC are random variables located in the scope
[0, 1].
Step 2: Update the location by the following formula:

xi,d (t + 1) = xi,d (t)+ vi,d (t + 1) (14)

FIGURE 5. Flowchart of GWO based on tracking mode and seeking mode.

where xi,d (t + 1) represents the updated position of the wolf
at the next iteration.

The seeking mode is recorded by the four elements (mem-
ory pool SMP, the change field SRD, the change number
CDC , and the judgment of its own position SPC). The mem-
ory pool (SMP) describes the size of each wolf’s search
memory, which is mainly used to find the location with the
best fitness. The variation domain (SRD) generally has a value
of 0.2, which plays a decisive role in the changing range of
each dimension. The number of changes (CDC) is the number
of dimensions of the wolf variation in each generation. SPC
is defined as a Boolean value that determines whether the
position passed by the current iteration can be used as a
candidate solution. However, No matter the value of SPC
is true or false; the value of SMP will not be influenced.
The specific steps of the seeking mode can be described as
follows.
Step 1: Put the complete positions in the current iteration

into the memory pool (SMP) with N copies, where N is the
size of thememory pool. If SPC is true, then letN = SMP−1;
if SPC is false, then let N = SMP and use the position in the
current iteration as a candidate solution.
Step 2: Change the dimension of each wolf in the memory

pool (SMP). So a perturbation is produced in the dimension,
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TABLE 1. Parameter settings for each algorithm.

that is to say:

dim = (1± rand · SRD) · dimsel (15)

where dimsel is the number of dimensions selected to be
changed, SRD represents the control range of the dimensional
change of each individual, SRD = 0.25 in this paper, rand is
a uniformly distributed random number between [0, 1].
Step 3: Calculate the fitness values of all the found candi-

date solutions in the memory pool.
Step 4: Among the optimal candidate values of the calcu-

lated fitness values, the position of the optimal candidate is
taken as the position of the current individual.

According to the grey wolf optimizer, Each iteration will
update the position of α wolf, β wolf and δ wolf. As the
iteration continues and the problem has the higher dimension,
greywolf optimizermay fall into local optimum. In this paper,
tracking mode and seeking mode are used to interfere the
grey wolf optimizer algorithm randomly, and three improved
strategies are proposed. The first strategy is the grey wolf
optimizer based on tracking mode (TGWO). Integrate the
tracking mode into the grey wolf optimizer using Eq. (13)
and (14) to make the wolf’s position Xα , Xβ , and Xδ interfered
and updated to increase their global search ability. The sec-
ond strategy is the grey wolf optimizer based on seeking
mode (SGWO). This specific method is to separately add
the seeking mode to the grey wolf optimizer. The best three
solutions plus the disturbance. After using the seeking mode
to determine its position, Eq. (15) is adopted to randomly
change the candidate solution, and select the candidate with
the highest fitness value to replace the current wolf position.
The third strategy is the greywolf optimizer based on tracking

and the seeking mode (TSGWO). The tracking mode is used
to update the position Xα of the α wolf, the seeking mode
is used to update the positions Xβ and Xδ of the β wolf and
the δ wolf. The improved grey wolf optimizer improves the
convergence accuracy and avoids the situation of falling into
local optimum.

B. IMPROVED ALGORITHM FLOW
The algorithm procedure of the grey wolf optimizer based
on the tracking mode and the seeking mode is described as
follows.
Step 1: Initialize the algorithm control parameters: popula-

tion size (SearchAgents_no), the maximum iteration number
(Max_iteration), memory pool (SMP), number of changes
(CDC), each individual’s change domain (SRD), random ini-
tialization speed, random positions of α wolf, β wolf and δ
wolf (Alpha_pos,Beta_pos,Delta_pos).
Step 2: update the positions of α wolf, β wolf and δ wolf

using Eq. (9) - (11). Calculate the fitness value of all wolves,
Set the Xα as the best search agent, and calculate the fitness
value f (Xα).
Step 3: TGWO algorithm uses Eq. (16) and (17) to update

the positions of α wolf, β wolf and δ wolf. AGWO algorithm
updates the α wolf using the seeking pattern and updates β
wolf and δ wolf with the tracking mode by using Eq. (16)
and Eq. (18); SGWO algorithm uses the seeking mode to
update the positions of α wolf, β wolf and δ wolf, Copy the
individuals in the current seeking mode to generate a series of
individuals to fill the search memory pool: X1, X2 and X3 are
liberated into the memory pool as candidates, setting SMP =
5, At this time, the candidate solution is copied N copies by
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TABLE 2. Benchmark functions.
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FIGURE 6. Three-dimensional images of the test functions.
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FIGURE 6. (continued.) Three-dimensional images of the test functions.
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FIGURE 6. (continued.) Three-dimensional images of the test functions.

Eq. (18), N = SMP − 1; the fitness values of all candidate
points in the memory pool are calculated separately; Execute
mutation operator. The change range of each dimension is
determined by the change field SRD, setting SRD = 0.25;
For each individual in the memory pool, set CDC = 0.65
according to the size of the CDC , and select the dimension
to be randomly changed by Eq. (19); Add a disturbance to
the original position according to Eq. (15) and reach the
new position to replace the original position; Recalculate
the fitness values of all candidate solutions in the memory

pool after changing dimensions; The candidate point with
the highest fitness value is selected from the memory pool
to replace the current wolf position.

vi (t + 1) = vi (t)+ ri × Ci × (Xi (t)− xi (t)) (16)

Xi (t + 1) = Xi (t)+ vi (t + 1) (17)

Wolf _C = repmat (X1 (i, :) , SMP− 1, 1) (18)

Dims_Changed = round (CDC ∗ size (Wolf _C, 2)) (19)
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FIGURE 7. Simulation results of function F1-F13 and F18-F21 with 30 dimension.
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FIGURE 7. (continued.) Simulation results of function F1-F13 and F18-F21 with 30 dimension.
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FIGURE 7. (continued.) Simulation results of function F1-F13 and F18-F21 with 30 dimension.
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TABLE 3. Running results of functions under 30 dimension.
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TABLE 4. Running results of functions under 100 dimension.
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TABLE 5. Running results of functions F14-F17.

Step 4: Update X of using Eq. (16); Update the position X ′

of each wolf using Eq. (20).

X ′ =
X ′1 + X

′

2 + X
′

3

3
(20)

Step 5: If f
(
X ′

)
< f (X), then f (X) = f

(
X ′

)
, otherwise

unchanged. If f (X) < f (Xα), then f (Xα) = f (X).
Step 6:Meet the conditions for stopping the algorithm and

output the optimal solution f (Xα), otherwise return to Step
2.

The pseudo-code for the grey wolf optimizer based on the
tracking mode and the seeking mode is described as follows.
Random initialization of grey wolf population
Initialize a, A, C , SMP, CDC , SRD and velocity
Set the Xα,Xβ ,Xδ
Calculate the fitness values of wolves
Set the Xα as the best search agent
l = 1
While ( l < Max_iter)

for each wolf
Update the position by Eq. (12) f (X)

end for
Compute the fitness of each search agents in the pack
Update the X1, X2, X3 using Eq. (9) - (11)
Update the X using Eq. (12)

for X1, X2, X3
Update X ′1, X

′

2, X
′

3by Eq. (16) - (17)
Update X ′ using Eq. (20)

end for
for every wolf i = 1, . . . ,N
if f

(
X ′

)
< f (X)

f (X) = f
(
X ′

)
end if

end for
if f (Xα) < f (X)
f (Xα) = f (X)

end if
Update Xα
l = l + 1

end while
Output Xα
The flow chart of the grey wolf optimizer based on the

tracking mode and the seeking mode is shown in Fig. 5.

IV. SIMULATION EXPERIMENTS AND RESULTS ANALYSIS
A. TEST FUNCTIONS
The numerical efficiency of the improved algorithm devel-
oped in this study was tested by solving 21 mathematical
optimization problems. Three groups of test functions are
employed with different characteristics to test the perfor-
mance of the improved algorithm from different perspec-
tives: unimodal (F1-F7, F18-F19), multi-modal (F8-F13, F20-
F21), and fixed-dimension multimodal functions (F14-F17)
[58], [59]. The main parameter settings for each algorithm
are shown in Table 1. The expressions, dimensions, ranges,
and minimum values of the benchmark functions are shown
in Table 2. The 3D images of the test functions are shown
in Fig. 6.

B. SIMULATIONS AND PERFORMANCE ANALYSIS WITH
OTHER ALGORITHMS
The proposed tracking mode based grey wolf optimizer
(TGWO), the seeking mode based grey wolf optimizer
(SGWO) and the tracking and seeking mode based grey
wolf optimizer (TSGWO) were compared with GWO, PSO,
SCA, SSA, ALO, WOA and MFO. For each benchmark
function, the improved algorithm was run 10 times starting
from different populations randomly generated. The average
and standard deviation of the best approximated solution in
the last iteration are reported in Tables 3-5. The average and
standard deviation can compare the overall performance of
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FIGURE 8. Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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FIGURE 8. (continued.) Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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FIGURE 8. (continued.) Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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TABLE 6. The improved algorithm optimizes the results of the 30-dimensional function.
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TABLE 7. The improved algorithm optimizes the results of the 100-dimensional function.
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FIGURE 9. Simulation results of function F14-F17.

the algorithm. The convergence curve can intuitively show the
optimization performance of the algorithm. The convergence
curves of 30-dimensional unimodal andmultimodal functions
are shown in Fig. 7, and The convergence curves of 100-
dimensional unimodal and multimodal functions are shown
in Fig. 8. The convergence curves of fixed-dimension multi-
modal functions are shown in Fig. 9. The simulation results
show that the proposed improved algorithms are superior to
other algorithms for most test cases of unimodal functions
and multimodal functions.

According to the results of the algorithms on the unimodal
test functions in Table 3 and the convergence curves of the
30-dimensional unimodal functions, Fig. 7(a)-(g) and Fig.
7(n)-(o), it is evident that the TGWO algorithm outperforms
other algorithms on the majority of unimodal benchmark
functions, followed by SGWO. TGWO can converge to the

optimal value 0 by optimizing the unimodal functions F1-
F4 and F18-F19; For functions F5 and F9, TGWO has the
best optimization effect, followed by TSGWO; The aver-
age value of the optimization function F6 of the SSA algo-
rithm is the closest to the optimal solution and the standard
deviation is the smallest. The convergence curves of the
100-dimensional unimodal functions are shown in Fig. 8(a)-
(g) and Fig. 8(n)-(o). From results of in Table 4, it can
be concluded that the optimal value obtained by TGWO
algorithm for optimizing unimodal functions F1-F4, F7, F18
andF19 is the closest to the optimal solution; the conver-
gence towards the optimum only in final iterations as may
be observed in F5 and F6, but the average value obtained
by the TSGWO algorithm is the closest to the optimal
value of the function, and its standard deviation is also the
smallest.
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FIGURE 10. Simulation results of function F10F13 and F18-F21 with 30 dimension.
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FIGURE 10. (continued.) Simulation results of function F10F13 and F18-F21 with 30 dimension.

For 30-dimensional multimodal functions, it can be seen
from Fig. 7(h)-(m) and Fig. 7(p)-(q). This figure shows that

the TGWO shows the fastest convergence on the composite
test functions as well. From the average and standard devia-
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FIGURE 10. (continued.) Simulation results of function F10F13 and F18-F21 with 30 dimension.
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FIGURE 11. (continued.) Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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FIGURE 11. (continued.) Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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FIGURE 11. (continued.) Simulation results of function F1-F13 and F18-F21 with 100 dimension.
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FIGURE 12. Simulation results of function F14-F17.

FIGURE 13. Structural diagram of pressure vessel.

tion in Table 3, it can be concluded that the TGWO algorithm
is superior to other algorithms inmost function optimizations.

The result obtained by the optimization function F11 indicate
that there are three algorithms that can achieve the optimal
value, including TGWO, TSGWO and WOA. The result of
optimization function F13 of TSGWO algorithm is the best of
these algorithms. For the fixed-dimension multimodal func-
tions of F14-F17, The convergence curve of fixed-dimension
multimodal functions is shown in Fig. 9(a)-(d), it can be seen
fromTable 5 that the improved algorithms can obtain the opti-
mal solution. To sum up, the results verify the performance of
the improved GWO algorithms in solving various benchmark
functions compared to well-known meta-heuristics.

C. SIMULATION EXPERIMENTS AND PERFORMANCE
ANALYSIS OF IMPROVED ALGORITHMS
This section compares the improved algorithm with other
improved grey wolf optimizer algorithms including Binary
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TABLE 8. Improved algorithm optimizes the results of functions F14-F17.

FIGURE 14. Optimal convergence curve of pressure vessel.

Grey Wolf Optimizer (BGWO), Hybrid PSOGWO Opti-
mization (PSOGWO) and GWO Algorithm Integrated with
Cuckoo Search (GWOCS). Optimization of 21 functions
fully proves the superiority of the algorithm proposed in this
paper. To further prove the merits of the proposed improved
algorithms, this subsection solves the 30-dimensional and
100-dimensional versions of the unimodal and multimodal
test functions. The experimental results are composed of
some statistical parameters, such as best, average and stan-
dard deviation. Statistical results are reported in Tables 6-8.

The convergence curves of 30-dimensional unimodal mul-
timodal functions are shown in Fig. 10, The convergence
curves of the algorithms on some of the 100-dimensional
multimodal test functions are illustrated in Fig. 11. It can be
seen from Table 6-7 that TGWO is very competitive with
other improved algorithms. In particular, it was the most

FIGURE 15. The improved algorithm optimizes the convergence curve of
pressure vessel.

efficient optimizer for functions F1-F4, F8-F12 and F20, and
at least the second best optimizer in most test problems. The
improved algorithm can hence provide very good exploita-
tion. Another fact that can be seen is the accelerated trend in
the convergence curves.

The convergence curves of the TGWO, TSGWO, SGWO,
BGWO, PSOGWO and GWOCS are provided in Fig. 12 to
see the convergence rate of the algorithms. Tables 8 include
the results of fixed-dimension multimodal functions. As the
results presented in Table 8, the TGWO algorithm outper-
forms others in all of the composite test functions. This proves
that improved algorithms can well balance exploration and
exploitation phases.

As a summary, the results of this section revealed the
superiority of the proposed improved algorithm.
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TABLE 9. Operation results of pressure vessel optimization.

TABLE 10. Statistical results of pressure vessel optimization.

TABLE 11. Operation results of pressure vessel optimization.

TABLE 12. Statistical results of pressure vessel optimization.

D. OPTIMAL DESIGN OF PRESSURE VESSELS
The lightest design of pressure vessel is a common optimiza-
tion problem in practical engineering. Pressure vessel design
is to reduce the cost on the premise of safety. The structure of
the pressure vessel is shown in Fig. 13.
Objective Function:

f (X) = 0.6224X1X3X4 + 1.7781X2X2
3 + 3.1661X2

1X4
+ 19.84X2

1X3

Constraint Condition:

g1 (X) = 0.0193X3 − X1 ≤ 0

g2 (X) = 0.00954X3 − X2 ≤ 0

g3 (X) = 1296000− πX2
3X4 −

4/
3πX

3
3 ≤ 0

g4 (X) = X4 − 240 ≤ 0

where X1 and X2 are head (Th) and cylinder wall thickness
(Ts), 0.0625 ≤ X1, X2 ≤ 6.1875; X3 is the radius of the
cylinder and head (R), X4 is the cylinder length (L), 10 ≤
X3,X4 ≤ 200. Of the four variables, X1 and X2 are uniformly
discrete variables with an interval of 0.0625, X3 and X4 are
continuous variables.

Grey wolf optimizer and the improved grey wolf optimizer
based on tracking and seeking modes to solve function
optimization problems are used for the optimal design of
pressure vessels. The maximum number of iterations is set to
500, the results of 10 times of operation are recorded and the
optimal value is obtained. The experimental results are shown
in Table 9 and 11, the statistical results of average value and
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variance are shown in Table 10 and 12. Convergence curves
of improved algorithms TGWO, SGWO, TSGWO, GWO,
PSO SSA, SCA, ALO, WOA and MFO for pressure vessel
optimization are shown in Fig. 14. The convergence curves
obtained by TGWO, SGWO, TSGWO, BGWO, PSOGWO
and GWOCS optimized pressure vessels are shown
in Fig. 15.

According to the results of the convergence curve and the
running data, it can be concluded that the improved grey wolf
optimizer based on trackingmode (TGWO) has the best effect
on the pressure vessel under the condition of meeting the
strength, and the variance also has a good stability perfor-
mance. The application of the improved algorithm in pressure
vessel optimization design shows that the algorithm is also
suitable for solving challenging practical engineering prob-
lems.

V. CONCLUSION
This study presented an improved grey wolf optimizer based
on tracking mode and seeking mode. The performance of the
proposed improved algorithm was benchmarked on 19 test
functions. The results showed that TGWOwas able to provide
highly competitive results compared to well-known heuris-
tics such as GWO, PSO, SSA, SCA, ALO, WOA, MFO,
BGWO, PSOGWO, GWOCS. The simulation results show
that the TGWO achieves the balance between exploration
and exploitation, and effectively overcomes the lack of grey
wolf optimizer in local search ability. The limitation of the
improved algorithm in this paper is that it does not opti-
mize discrete engineering problems. Moreover, the results
of pressure vessel engineering design problems show that
the TGWO algorithm has high performance to solve real
problems with unknown and challenging search spaces as
well. For future work, these advantages will be applied to
other algorithms, such as ant lion optimizer (ALO) and
firefly algorithm (FA), to improve the population diversity,
reduce the possibility of falling into the local optimum and
improve the ability of the algorithm to balance exploration
and exploitation.
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