
Received February 20, 2020, accepted March 10, 2020, date of publication March 30, 2020, date of current version May 8, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2982028

A Time Fractional Model With Non-Singular
Kernel the Generalized Couette Flow
of Couple Stress Nanofluid
MUHAMMAD ARIF1, FARHAD ALI 2,3, ILYAS KHAN4, AND KOTTAKKARAN SOOPPY NISAR 5
1Department of Mathematics, City University of Science and Information Technology, Peshawar, Khyber Pakhtunkhwa, Pakistan.
2Computational Analysis Research Group, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
3Faculty of Mathematics and Statistics, Ton Duc Thang University, Ho Chi Minh City, Vietnam.
4Department of Mathematics, College of Science Al-Zulfi, Majmaah University, Al-Majmaah 11952, Saudi Arabia.
5Department of Mathematics, College of Arts and Science, Prince Sattam bin Abdulaziz University, Wadi Al-Dawaser 11991, Saudi Arabia.

Corresponding author: Farhad Ali (farhad.ali@tdtu.edu.vn)

ABSTRACT The aim of the present work is to calculate the closed form solutions of the unsteady couple
stress nanofluids flow in a channel. Couple stress nanofluids (CSNF) is allowed to pass through the parallel
plates separated by a distance h. In this study, we choose blood as base fluid with gold nanoparticles
suspension. The lower plate is at rest and the upper plate is suddenly moved with constant velocity U0.
Recently, Atangana–Baleanu (AB) introduced a new definition of fractional derivatives. This AB definition
of fractional derivative has been applied to the present couple stress nanofluid (CSNF) model. The closed
form solutions of present CSNF model via AB approach are obtained by using the Laplace and finite
Fourier sine transforms. Exact results of velocity and temperature are displayed and discussed for different
parameters of interest. Solutions obtained here are reduced to three different cases in limiting sense i.e.
(i) fractional couple stress nanofluid without external pressure gradient. (ii) ordinary couple stress nanofluid.
(iii) regular couple stress fluid. Finally, skin friction and Nusselt number are evaluated at lower and upper
plates and listed in tabular forms. The results show that increasing external pressure gradient, CSNF velocity
increases whereas decreases by increasing Reynolds number. Increasing volume fraction slow down the
CSNF velocity. The velocity of Newtonian viscous fluid is higher than CSNF velocity.

INDEX TERMS Couple stress nanofluid (gold in blood), Atangana–Baleanu, generalized Couette flow,
Laplace and Fourier transforms.

NOMENCLATURE
CSNF Couple Stress nanofluid
AB Atangana–Baleanu
Au Gold nanoparticles
ρ Density
−→
V Velocity in vector form
u Velocity
w Dimensionless velocity
T Temperature
Tw Wall temperature
Th Ambient temprature
βT Thermal expansion
k Thermal conductivity
µ Dynamic viscosity

The associate editor coordinating the review of this manuscript and

approving it for publication was Rosario Pecora .

cp Specific heat at constant pressure
g Acceleration due to gravity
p Pressure
b1 Body forces
η Couple stress parameter
h Distance between the plates
U0 Unifotm velocity
H (t) Heaviside unit Step Function
Re Reynolds number
Gr Grashof number
Pr Prandtl number
φ Volume fraction of nano-particles
θ Dimensionless temprature
G Constant pressure gradient
τ Time
ABDβτ Atangana–Baleanu fractional derivative
β Fractional parameter
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Eβ Expression for Mittag-Leffler function
Fα(., .) Expression of Robotnov and Hartleys’

function
wp (ξ) Steady velocity field
wτ (ξ, τ ) Unsteady Velocity field
Sf (ξ, t)Nu Skin friction Nusselt number
Sf (0, t) Skin friction at lower plate
Sf (1, t) Skin friction at upper plate

I. INTRODUCTION
There are many kind of fluids in nature one is Newto-
nian and the other one are non-Newtonian fluids which
have a lot of industrial and daily life applications in
many physical, practical and different engineering processes.
Non-Newtonian fluids have widely used for engineering and
practical life applications puroses. Due to this popularity of
non-Newtonian fluids, recently researchers are more inter-
ested to study these fluids. Couple stress fluid (CSF) is con-
sidered as non-Newtonian fluid which is less investigated in
the recent literature. The idea of CSF theory was discovered
by Stokes [1]. He noticed that couple stresses are the simplest
generalization theory of the classical fluids which allows
for the effect of polar such as the presence of couple stress
forces and body couples. In another paper the theory related
to CSF is investigated briefly by Stokes [2]. In this paper he
also shows the applications of CSF and different real world
problems which are calculated by many researchers.

Couple stress fluids (CSFs) model have widely used in
modern sciences and technology like, the crude oil is extrac-
tion phenomana, some applications in electrical engineering
processes, the process of aerodynamics heating, solidification
processes of liquid crystals, cooling processes of metallic
plate in a bath, colloidal and suspension solutions [3]–[5].
The problems related to couple stress fluids (CSFs) in a
channel have useful engineering and industrial applications.

CSF theory and mathematical model have many daily
life applications, like pumping phenomena when the fluids
synthesis lubricants and problems related to biological pro-
cess and animal blood and many other example. The model
of couple stress fluids have been chosen by scientists and
researchers for many scientific and industrial uses which is
applied on some physical real wolrd problems. Ramanaiah [6]
discussed the siginificance of CSFs and use these fluids in
different problems. Sinha and Singh [7] studied CSF for
mechanical purposes like process of rolling contact bearings
considering cavitation. Lin [8] explained the influences of
couple stresses (CSs) and the characteristics of(CSs) inside
the cyclic squeeze films and the advance characteristics of
CSF between a sphere and a flat plate. Banyal [9] discussed
the imporatant condition for the onset of stationary CSF.
Devakar et al. [10] investigated CSF solutions of some fully
developed flows inside the concentric cylinders the con-
dition at the boundary is chosen as slip boundary condi-
tions. In another paper Devakar and Iyengar [11] calcultated
some CSF taking three different cases namely, CSF Cou-
ette flow, CSF Poiseuille and CSF generalized Couette flow.

Furthermore, the conditions are taken in this study are slip
boundary condition.

Opanuga et al. [12] investigated magnetohydrodynamics
flow of CSFs using second law analysis. Khan et al. [13]
calculated the closed form solutions for MHD flow of CSFs
with the effect of heat transfer. Hayat et al. [14] discussed
three-dimensional couple stress fluid flow over a stretched
surface. Morever, there are many other analytical solutions
couple stress fluid which have been analyzed by Naeem [15],
a class of flows for CSFs. Beg et al. [16] investigated the
mathematical modeling of oscillatory couple-stress bio-fluid
in a rotating channel. CSFs have enormous applications in
diverse fields of sciences like engnineering biological sci-
ence and modern science. Due to these applications many
researchers taking interest in CSFs and investigated for dif-
ferent scientific reasons and purposes. Like Adesanya and
Makinde [17] showed the effects of CSF on entropy gen-
erations rate by cosidereing porous media and CSFs are
considerd in a channel with convecting heating. In another
article Adesanya and Makinde [18] calculated the process of
irreversibility in a CSFflowwith the effect of heated plate and
adiabatic free surface. Furthermore, Naduvinamani et al. [19]
investigated the effect of roughness of surface on couple
stress squeeze film between anisotropic porous rectangular
plates. Lin and Hung [20] discussed the combined effect
of non-Newtonian CSFs inertia on the squeeze film char-
acteristics between a long cylinder and an infinite plate.
Lu and Lin [21] studied combinedly the effects of
non-Newtonian rheology and viscosity-pressure system.
Ashmawy [22] analyzed unsteady Couette flow of a microp-
olar fluid with slip effect.

There were some real world problems which cannot
explained by simple classical models. To find the solutions
of such problem fractional calculus was introduced. It means
that fractional clculus is the generalized form of classical
models. The idea of fractional calculus was developed when
Leibniz gave the nth order derivatives representation of a
function. Leibniz asked a question from Del Hospital that
what will happen if we take the order of a differential equa-
tion in fraction. After that, many researchers start thinking
over it and they introduced various definitions of fractional
derivatives for many reasons. The researchers and scientists
are carried their studies in fractional calculus due to the
enormous very interesting useful applications in many fields
of sciences especially in physical science, chemical science,
science related to biology or living organisms, different fields
of engineering and other sciences which have been grown
up recently. The idea of fractional calculus used by many
researchers initially which are mentioned in [23]. Further-
more, some useful applications of Fractional calculus (FC)
in industries and engineering phenomena, for example, dif-
fusion phenomena, dispersion and advection phenomena
of different solutes in porous or fractured media [24].
Olmstead and Handelsman [25] investigated diffusion pro-
cess. In this process thay explained a semi-infinite region
by taking some nonlinear surfaces. In another paper
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Marks and Hall [26] analyzed the differintegral interpo-
lation phenomena from a bandlimited signal’s samples.
Cuesta et al. [27] also discussed the phenomenon of image
denoising by using some generalized fractional models of
time integrals. Similarly, Fareed et al. [28] explained some
viscoelastic behavior of different materials briefly using the
concept of fractional calculus. Gaul et al. [29] developed a
fractional model for the purpose damping description phe-
nomenon using the idea of fractional operators and defini-
tions. Podlubny [30] explained some important applications
regarding to fractional derivatives for the measurement of
heat and load intensity by change in the blast furnace walls.
The above are some useful applications in of fractional cal-
culus in daily life in the field of engineering, some bio-
logical uses of fractional operators have been investigated
by Magin [31]. Furthermore, the new fractional operators
have a very strong and complex memories allowing capturing
behaviors of combining simultaneously classical diffusions
and anomalous behavior. Morever, the definitions of frac-
tional derivative explained the viscoelastic and viscoplastic
behavior of different materials. Due to these practical life
applications like, Bio-engineering, kinetics of polymers and
in many other areas of modern science and technologies the
scientists are focused to discussed different phenomena using
fractional calculus and fractional operators.

Based on the interest of researchers, several definitions for
fractional derivatives have been proposed in the literature.
Among them, Caputo-Fabrizio (CF) developed a fractional
order derivatives on the basis of an exponential function,
to remove the diffiecincy and shotcomings of singularity
problem of the kernel in earlier studies [32]. Caputo-Fabrizio
developed a fractional model which have no singular kernel.
Recently, this fractional order definition is very famous in
modern research in the field of fractional calculus. Due to
this popularity many researchers have been chosen the defi-
nition of CF for various purposes in modern science to ana-
lyzed many problems. The definition of CF has non-locality
problem to remove these deficiencies of non-locality of
the kernel, a new definition has been developed by
Atangana and Nieto [33] and Atangana [34] proposed a latest
version of fractional derivatives definition which have no
singularity and non-locality issues in their definition. This
definition is new and very less investigation have been done
using AB derivatives. This latest idea of AB fractional deriva-
tives have been used by Arif et al [35] and for the sake of
comparison CF fractional derivatives is also applied on the
proposed problem. Furthermore, in this study they find the
closed form solutions of very famous model couple stress
fluid model in a channel taking the effect of external pressure
gradient. Akhtar [36] also calculated the closed form solu-
tions CSF in channel but they used Caputo and CF fractional
model.

Research on nanofluids is getting more attention from
the researchers these days due to several engineering and
industrial application. A fluid consists of nanoparticles called
nanofluid. Nanofluid formed by adding some nano-meter

sized particles in the base fluids like water, kerosin oil, engine
oil, transformer oil and many other fluids for the porpose of
heat transfer enhancement. By the addition of these nano-
meter szed particles there is an increase occur in the rate of
thermal conductivity which is the need of modern world. The
size of these nanoparticles are (1-100) nanometer which dis-
solved in the base fluid forming nanofluids. It can be observed
that the addition of these nanoparticles in the base fluid not
only used for the enhancement of the thermal conductivity
fluid but it also change the characteristcs and properties of
the base fluid for many scientific purposes, when required.
The first experimental work on nanofluid was conducted
by Choi and Eastman [37] where he suspended nanometer-
sized particles in conventional base fluids. Soon after, Choi
work on this idea was used by other researchers for heat
transfer enhancement, where they dispersed nanoparticles
in base fluids. In fluid studies, the idea of nanoparticles in
different base fluid was used by several researchers (for New-
tonian fluids and non-Newtonian), however, for Couple stress
fluids CSFs only a few studies exists. Ramzan [38] calcu-
lated some applications and effect of viscous dissipation and
joule heating for CSF taking nanoparticles in their studies.
Hayat et al [39] investigated the effect of magnetic field in 3D
couple stress fluid flow inside arteries using the concept of
nanoparticles. Arif et al [40] studied enhanced heat transfer
in working fluids using nanoparticles with ramped wall tem-
perature. Awais et al [41] discussed hydromagnetic effect on
CSNF flow over a moving wall. As nanofluids are used in a
wide range for different purposes in modern world. Recently,
many researchers work on nanofluid and use these fluid in
different circumstances like, Gireesha et al. [42], [43] investi-
gated heat and mass transfer phenomena in chemically react-
ing Casson nanofluid model. Mahanthesh and Gireesha [44]
explained thermal radiation, viscous dissipation and Joule
heating effects on Marangoni convective two-phase flow
of Casson fluid with fluid-particle suspension. In another
paper Mahanthesh et al. [4] discussed the effect of Nonlin-
ear radiative flow of casson nanoliquid which allow to past
through a cone andwedge withmagnetic dipole. Ramesh [45]
explained the effect of heat and mass transfer on CSF fluid
flow porous medium is also considered in this study with the
effect of magnetic field in an inclined asymmetric channel.
Different nanoparticles are used for various scientific reasons
and engineering and biological purposes.

Blood is very important and necessary fluid in the human
body and the motion of blood is explained by the biomagnetic
fluid dynamics (BFD). In human body the themotion of blood
can be described by hemodynamics. BFD examine themotion
of the blood through vessels. As blood is the suspension of
red blood cells in plasma, and it is in the category of non-
Newtonian fluid. In the present study we have considered
blood as base fluid and gold is chosen as nanoparticles. Many
researchers have been used gold nanoparticles in blood base
fluid for diferrent biological purposes.

The purpose of this article is to investigate unsteady cou-
ple stress nanofluid CSNF between the two parallel plates.
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Additionally, blood is chosen as base fluid and gold (Au)
nanoparticles are uniformly dispersed in the base fluid.
Instead of the classical model of couple stress fluid, a time
fractional model based on AB definition has been used. The
Laplace transform and Fourier sine transform technique has
been used to obtain the exact solutions for the present prob-
lem. The effects of various parameters are investigated on
the fluid flow using different graphs. Finally, Skin fraction
for (CSNF) for the lower and upper plate are calculated and
presented the numerical values in tabular form.

II. MATHEMATICAL MODELING AND SOLUTION
OF THE PROBLEM
The present study explained the flow behavior of laminar
flow and an incompressible couple stress nanofluid (CSNF)
have been taken inside an infinite horizontal channel between
the two infinite parallel plates. The motion of blood base
nanofluid is taken along the x -direction in the absence of
body couples. The continuity and momentum equation of the
CSNF and energy equation, are given by [46], [47]:

∇ ·
−→
V = 0, (1)

ρnf
∂
−→
V
∂t
= −∇p− µnf∇ × ∇ ×

−→
V

−η∇ × ∇ × ∇ × ∇ ×
−→
V

+g (ρβ)nf (T − T∞)+ ρ
−→
b1 , (2)(

ρcp
)
nf
∂T
∂t
= knf∇ × ∇ × T . (3)

Here ρnf ,
−→
V ,T ,

−→
b1 , p, µnf , η,

(
ρcp

)
nf and knf repre-

sents density, velocity vector, temperature, body force vector,
pressure, dynamic viscosity, couple stress parameter, heat
capacitance of the nanofluid and thermal conductivity of the
nanofluid. The velocity field for the present flow is

−→
V =

(u(y, t), 0, 0) and temperature field is T = (T (y, t) , 0, 0)
which satisfies all the equation of continuity (1) and the
governing equations (2) and (3) of the CSNF and the body
forces

−→
b1 is ignored in the present study [48]:

ρnf
∂u(y, t)
∂t

= −
∂p
∂x
+ µnf

∂2u(y, t)
∂y2

−η
∂4u(y, t)
∂y4

+ g (ρβ)nf (T − T∞),

(4)(
ρcp

)
nf
∂T (y, t)
∂t

= knf
∂2y(y, t)
∂y2

. (5)

1) GENERALIZED COUETTE FLOW
The flow between the plates in which one plate is stationary
and second plate is moving with constant velocity with the
effect of external pressure gradient such type of fluid motion
is called generalized Couette flow.

The CSNF fluid between the plates is incompressible, lam-
inar and plates are separated by a distance h. In this problem
upper plate is stationary and the lower plate is assumed to

FIGURE 1. Geometry of the problem.

have a constant velocity U0. The lower plate temperature
is Tw and the upper plate has an ambient temperature Th.
In the given work gold (Au) is taken in blood as base fluid.
Additionally, the CSNF motion is along the x -direction due
to the constant pressure gradient G as shown in Fig. 1.
According to the above assumptions, the governing equa-

tions along with initial and boundary conditions are given
as [36], [48]:

ρnf
∂u(y, t)
∂t

= G∗ + µnf
∂2u(y, t)
∂y2

− η
∂4u(y, t)
∂y4

+ g (ρβT )nf (T − T∞) , (6)

(
ρcp

)
nf
∂T (y, t)
∂t

= knf
∂2y(y, t)
∂y2

, (7)

u(y, 0) = 0, T (y, 0) = 0, for 0 ≤ y ≤ h
u(0, t) = H (t)U0, T (0, t) = Tw, for t > 0,
u(h, t) = 0, T (h, t) = Th, for t > 0,
∂2u(0, t)
∂y2

=
∂2u(h, t)
∂y2

= 0, for t > 0,

 (8)

where H (t) represents Heaviside function.
For nanofluids, the expressions of ρnf , µnf ,

(
ρcp

)
nf ,

(ρβT )nf and knf are given by [48].

ρnf = ρf

(
(1− φ)+

φρs

ρf

)
, µnf = µf

(
1

(1− φ)2.5

)
,

(ρβT )nf = (ρβT )f

[
(1− φ)+

φ (ρβT )s

(ρβT )f

]
,

knf = kf

[
2kf + ks − 2φ(kf − ks)
2kf + ks + φ(kf − ks)

]
,

(
ρcp

)
nf = (ρcp)f

[
(1− φ)+

φ(ρcp)s
(ρcp)f

]
. (9)

Here ρf and ρs represents the density of the base fluid and
solid particles respectively, µf andµs represents the dynamic
viscosity of the base fluid and solid particles respectively, kf
and ks represents thermal conductivity of the base fluid solid
particles respectively.

The following non-dimensional quantities have been used
for dimensional analysis.

ξ =
y
h
; w =

u
U0
; τ =

U0t
h
, θ =

T − Th
Tw − Th

.
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TABLE 1. Thermo-physical properties of Blood and Gold
nanoparticles [48], [49].

into equations(6-8), we get:

A
∂w(ξ, τ )
∂τ

= G+
∂2w(ξ, τ )
∂ξ2

−λ
∂4w(ξ, τ )
∂ξ4

+ Bθ (ξ, τ ) , (10)

P0
∂θ (y, τ )
∂τ

=
∂2θ (ξ, τ )
∂ξ2

, (11)

w = 0, θ = 0, for 0 ≤ ξ ≤ 1 and τ = 0,
w = 1, θ = 1, for ξ = 0 and τ > 0,
w = 0, θ = 0, for ξ = 1 and τ > 0,
∂2w
∂ξ2
= 0, at ξ = 0 and ξ = 1.

 . (12)

Here a0 = (1− φ)2.5,

a1 = (1− φ)+ φ
ρs

ρf
,

a2 = (1− φ)+ φ
(ρβT )s

(ρβT )f
,

b0 = (1− φ)+ φ

(
ρcp

)
s(

ρcp
)
f

,

b0 = (1− φ)+ φ

(
ρcp

)
s(

ρcp
)
f

,

b1 =

(
ks + 2kf

)
− 2φ(kf − ks)(

ks + 2kf
)
+ φ(kf − ks)

,

P0 =
Pr hb0U0

νf b1
,A = Re a0a1,

B = Gra0a2,Re =
U0h
νf
,

Pr =
µcp
kf
,Gr =

h2gβ (Tw − T∞)
υfU0

,

G =
G∗a0h2

µfU0
, λ =

a0η
µf h2

.

where Re, Pr, Gr, G, G∗ and λ represents the Reynolds
number, Prandtl number, Grashof number, pressure gradient,
dimensional pressure and nanofluid particles size effect due
to Couple stresses respectively.

III. EXACT SOLUTIONS USING ATANGANA-BALEANU
FRACTIONAL DERIVATIVES
Applying the definition of Atangana-Baleanu to the govern-
ing equations we get the following fractional CSNF model
with fractional operator β as follows:

ABDβτ Aw(ξ, τ ) = G+
∂2w(ξ, τ )
∂ξ2

−λ
∂4w(ξ, τ )
∂ξ4

+ Bθ (ξ, τ ) , (13)

ABDβτ P0θ (ξ, τ ) =
∂2θ (ξ, τ )
∂ξ2

. (14)

Here ABDβτ is the definition of AB time-fractional derivatives
having order β which is defined as [34].

ABDβτ (τ ) =
N (β)
(1− β)

τ∫
0

Eβ

(
−β (τ − t)β

1− β

)
f ′ (τ ) dt, (15)

whereN (β) represents here normalization function, such that
N (1) = N (0) = 1 and β ∈ (0, 1) .

In Eq (15) Eβ shows the generalized Mittag-Leffler
function defined by [50].

Eβ
(
−tβ

)
=

∞∑
k=0

(−t)βk

0 (βk + 1)
. (16)

A. SOLUTIONS OF ENERGY EQUATION
The Laplace transform technique is applied to Eq. (14) and
incorporate the initial condition which is given in Eq. (12),
we have the following transform equation:

pβP0H1θ (ξ, p)(
pβ + H2

) =
d2θ (ξ, p)
dξ2

, (17)

After applying the Laplace transform to boundary condi-
tions Eq. (12) reduces to the following form:

w (ξ, p) =
1
q
, θ (ξ, p) =

1
p
for ξ = 0 and p > 0,

w (ξ, p) = 0, θ (ξ, p) = 0, for ξ = 1 and p > 0,
∂2w (ξ, p)
∂ξ2

= 0, at ξ = 0 and ξ = 1.


(18)

Applying the sine Fourier transform to Eq. (17) taking the
limits from 0 to h with respect to ξ and incorporate Eq. (18),
we obtained the following solution:

θ s (n, p) =
σn

p

( (
pβ + H2

)
H1P0pβ + σn

(
pβ + H2

)) , (19)

equivalently,

θ s (n, p) =

(
H3
(
pβ + H2

)
p
(
pβ + H4

) ) . (20)
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Applying partial fraction, we get the following result:

θ s (n, p) =
H3H2

H4p
+
H3 (H4 − H2)

H4

1

p1−β
(
pβ + H4

) .
(21)

The inverse Laplace result:

θs (n, τ ) =
H3H2

H4
+
H3 (H4 − H2)

H4
h (t) ∗ Fβ (−H4, τ ) ,

(22)

where

Fβ (−H4, τ ) = L−1
(

1
pβ + H4

)
=

∞∑
n=0

(−H4)
n τ (n+1)β−1

0 ((n+ 1)β)
.

(23)

Here Fα(., .) shows robotnov and Hartleys’ function which is
defined in [51]. Moreover,

L−1
(

1
s1−β

)
= h(t) =

1
tβ0(1− β)

H1 = 1/1− β, σn = nπ/h,H2 = β/1− β,

H3 =
σn

H1P0 + σ 2
n
, and H4 =

σ 2
nH2

H1P0 + σ 2
n
.

By using inverse sine-Fourier transform to Eq. (22),
we have the following form [52], [53].

θ (ξ, τ )= 1−
ξ

h
−

(
ξ (h− 1)

h

)
+

2
h

∞∑
n=1

H3 (H4 − H2)

H4
h (t)

∗Fβ (−H4, τ ) sin
(
nπξ
h

)
. (24)

B. SOLUTIONS OF MOMENTUM EQUATION
The Laplace transform is applied to Eq. (13) and initial
condition which is given in Eq. (12), have been incorporated
the following solutions are obtained:

AH1pβ

pβ+H2
w(ξ, p)=

G
p
+
d2w(ξ, p)
dξ2

−λ
d4w(ξ, p)
dξ4

+Bθ (ξ, p) .

(25)

Apply the sine Fourier transform to Eq. (25) and taking
limits from 0 to h with respect to ξ and using Eq. (18),
we have the following solution:

AH1pβ

pβ + H2
ws(n, p) =

G (1− (−1)n)
pσn

+
σn

p
− σ 2

nws(n, p)

+λ
σ 3
n

p
− λσ 4

nws(n, p)+ Bθ s (n, p) .

(26)

Multiply pβ+H2
AH1pβ

both sides, we get:

ws(n, p) =
(
G (1− (−1)n)+ σ 2

n + λσ
4
n

pσn

)
×

[ (
pβ + H2

)(
AH1pβ + σ 2

n
(
pβ + H2

)
+ λσ 4

n
(
pβ + H2

))]

+Bθ s (n, p)

×

[ (
pβ + H2

)(
AH1pβ + σ 2

n
(
pβ + H2

)
+ λσ 4

n
(
pβ + H2

))] .
(27)

Equation (27) in more appropriate form can be written as:

ws(n, p) =
(
G (1− (−1)n)+ σ 2

n + λσ
4
n

pσn

)
×

[
H5
(
pβ + H2

)(
pβ + H6

) ]
+ Bθ s (n, p)

×

[
H5
(
pβ + H2

)(
pβ + H6

) ]
, (28)

where,

H5 =
1

AH1 + σ 2
n + λσ

4
n
,

H6 =
σ 2
nH2 + λσ

4
nH2

AH1 + σ 2
n + λσ

4
n
.

Substituting, θ s (n, p) from Eq. (20) into equation (28),
we get:

ws(n, p) = H5

(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn

)
×

[ (
pβ + H2

)
p
(
pβ + H6

)]+ BH3H5

( (
pβ + H2

)
p
(
pβ + H4

))

×

[(
pβ + H2

)(
pβ + H6

)] . (29)

Separation of the RHS of Eq. (29) using partial fraction
gives:

ws(n, p) =
(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn

)
×

(
H5H2

H6p
+

H5 (H6 − H2)

H6p1−β
(
pβ + H6

))

+BH3H5


1
p
−

(H2 − H4)
2

(H4 − H6) p
(
pβ + H4

)
+

(H2 − H6)
2

(H4 − H6) p
(
pβ + H6

)
 .
(30)

Taking the inverse Laplace transformwe obtain the follow-
ing solution:

ws(n, τ ) =
(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn

)
×

(
H5H2

H6
+
H5 (H6 − H2)

H6
h(t) ∗ Fβ (−H6, τ )

)

+BH3H5

 1−
(H2 − H4)

2

(H4 − H6)
1 ∗ Fβ (−H4, τ )

+
(H2 − H6)

2

(H4 − H6)
1 ∗ Fβ (−H6, τ )

 ,
(31)
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where

L−1
(

1
s1−β

)
= h(t) =

1
tβ0(1− β)

(32)

Fβ (−Hi, τ ) = L−1
(

1
pβ + Hi

)

=

∞∑
n=0

(−Hi)n τ (n+1)β−1

0 ((n+ 1)β)
(33)

where Hi = H4 and H6.
Fβ (., .) shows Robotnov and Hartleys’ function which is

given by [51].
After some mathematical calculation Eq. (31) can be writ-

ten in more suitable form as:

ws(n, τ ) =

(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn
(
σ 2
n + λσ

4
n
) )

+

((
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn
(
AH1 + σ 2

n + λσ
4
n
) )

h(t) ∗ Fβ (−H6, τ )

)

−

((
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn
(
σ 2
n + λσ

4
n
) )

h(t) ∗ Fβ (−H6, τ )

)

+

BH3H5 −
BH3H5 (H2 − H4)

2

(H4 − H6)
1 ∗ Fβ (−H4, τ )

+
BH3H5 (H2 − H6)

2

(H4 − H6)
1 ∗ Fβ (−H6, τ )

 .
(34)

Equation (34) can be written in more appropriate form as:

ws(n, τ ) =



(1− (−1)n)
σn

+
(−1)n

σn

−
G (1− (−1)n)

σn

+
G (1− (−1)n)

σ 3
n

+
G (1− (−1)n)(

1+ σ 2
n
)


+
(
αnh(t) ∗ Fβ (−H6, τ )

)
−
(
βnh(t) ∗ Fβ (−H6, τ )

)
+

[
χn − γn

(
1 ∗ Fβ (−H4, τ )

)
+`n

(
1 ∗ Fβ (−H6, τ )

) ]
. (35)

Now, applying the inverse sine-Fourier transform to
Eq. (35), we obtain the following form [52], [53].

w(ξ, τ ) =



1− G−
(
1
h
−
Gh
2

)
ξ

−
G
2
ξ2 + G


cosh

(
h
2
− ξ

)
cosh

(
h
2

)




+
2
h

∞∑
n=1

[
αnh(t) ∗ Fβ (−H6, τ )

−βnh(t) ∗ Fβ (−H6, τ )

]
sin (σnξ)

+
2
h

∞∑
n=1

[
χn − γn

(
1 ∗ Fβ (−H4, τ )

)
+`n

(
1 ∗ Fβ (−H6, τ )

) ]
sin (σnξ) ,

(36)

where

αn =

(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn
(
AH1 + σ 2

n + λσ
4
n
) )

βn =

(
G (1− (−1)n)+ σ 2

n + λσ
4
n

σn
(
σ 2
n + λσ

4
n
) )

χn = BH3H5, γn =
BH3H5 (H2 − H4)

2

(H4 − H6)

and

`n =
BH3H5 (H2 − H6)

2

(H4 − H6)
.

Now the total solution is arranged as a combination of
post-transient (steady-state solution) and transient solutions,
where the post-transient solution wp (ξ) is given by:

wp (ξ) = 1− G−
(
1
h
−
Gh
2

)
ξ

−
G
2
ξ2 + G

{
cosh

( h
2 − ξ

)
cosh

( h
2

) }
, (37)

and the transient solution wτ (ξ, τ ) is given as:

wτ (ξ, τ ) =
2
h

∞∑
n=1

[
αnh(t) ∗ Fβ (−H6, τ )

−βnh(t) ∗ Fβ (−H6, τ )

]
sin (σnξ)

+
2
h

∞∑
n=1

[
χn−γn

(
1 ∗ Fβ (−H4, τ )

)
+`n

(
1 ∗ Fβ (−H6, τ )

) ]
sin (σnξ) .

(38)

IV. LIMITING CASE: (NEWTONIAN FLUID FLOW
WITHOUT BUOYANCY EFFECT)
By putting (λ = 0) and (Gr = 0) couple stress fluid model
can be reduced to the following form:

ρnf
∂u(y, t)
∂t

= G∗ + µnf
∂2u(y, t)
∂y2

. (39)

The dimensionless form of Eq. (39) can be written as:

A
∂w(ξ, τ )
∂τ

= G+
∂2w(ξ, τ )
∂ξ2

. (40)

Applying AB fractional definition to Eq. (40) we get the
following result:

ABDβτ Aw(ξ, τ ) = G+
∂2w(ξ, τ )
∂ξ2

. (41)
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The Laplace transform is applied to Eq. (41) for closed
form solutions, we have the following transform solyution:

pβH1Aw (ξ, p)(
pβ + H2

) =
G
p
+
d2w (ξ, p)

dξ2
, (42)

Apply sine Fourier transform to Eq. (42), we get the
following result:

AH1pβ

pβ + H2
ws(n, p) =

G (1− (−1)n)
pσn

+
σn

p
− σ 2

nws(n, p)

(43)

equivalently,

ws(n, p) =
(
G (1− (−1)n)+ σ 2

n

pσn

)
×

[ (
pβ + H2

)(
AH1pβ + σ 2

n
(
pβ + H2

))] , (44)

After some calculation, Eq. (44) can be written in the
following form:

ws(n, p) =
(
G (1− (−1)n)+ σ 2

n

σn

)
×

(
A1H2

A2p
+

A1 (A2 − H2)

A2p1−β
(
pβ + A2

)) . (45)

Upon inversion, Eq. (45), gives:

ws(n, τ ) =
(
G (1− (−1)n)+ σ 2

n

σn

)
×

(
A1H2

A2
+
A1 (A2−H2)

A2
h (t) ∗ Fβ (−A2, τ )

)
,

(46)

where,

A1 =
1

AH1 + σ 2
n
,A2 =

σ 2
nH2

AH1 + σ 2
n
,H2 =

β

1− β
.

The inverse sine-Fourier transform is applied to Eq. (46)
we get the following form [52], [53].

w(ξ, τ ) =



1− G−
(
1
h
−
Gh
2

)
ξ

−
G
2
ξ2 + G


cosh

(
h
2
− ξ

)
cosh

(
h
2

)



+
2
h

∞∑
n=1

[
A1 (A2 − H2)

A2
h(t) ∗ Fβ (−A2, τ )

]
sin (σnξ) .

(47)

The solution obtained in Eq. (47) is for Newtonian viscous
fluid in the absence of free convection effect:

Steady state and unsteady solutions are given as under:

up (ξ)=1−G−
(
1
h
−
Gh
2

)
ξ−

Gξ2

2
+G

{
cosh

( h
2 − ξ

)
cosh

( h
2

) }
,

(48)

transient solutions is given by

uτ (ξ, τ ) = +
2
h

∞∑
n=1

 A1 (A2 − H2)

A2
h(t)

∗Fβ (−A2, τ )

 sin (σnξ) . (49)

V. SPECIAL CASES
In this section, we discuss the following two special cases:

A. COUPLE STRESS NANOFLUID MODEL WITHOUT
EXTERNAL PRESSURE GRADIENT
By putting (G = 0) the governing equation reduce to the
following form:

ABDβτ Aw(ξ, τ ) =
∂2w(ξ, τ )
∂ξ2

− λ
∂4w(ξ, τ )
∂ξ4

+ Bθ (ξ, τ ) .

(50)

In order to find the closed form solutions of the above
equation apply both the Laplace and sine Fourier transforms
we obtain the following result:

AH1pβ

pβ + H2
ws(n, p) =

σn

p
− σ 2

nws(n, p)+ λ
σ 3
n

p
− λσ 4

nws(n, p)

+Bθ s (n, p) . (51)

Multiply pβ+H2
AH1pβ

both sides, we get:

ws(n, p) =
(
σ 2
n + λσ

4
n

pσn

)
×

[ (
pβ + H2

)(
AH1pβ + σ 2

n
(
pβ + H2

)
+ λσ 4

n
(
pβ + H2

))]
+Bθ s (n, p)

×

[ (
pβ + H2

)(
AH1pβ + σ 2

n
(
pβ + H2

)
+ λσ 4

n
(
pβ + H2

))] .
(52)

After some mathematical calculations the above equation
reduced to the following form:

ws(n, p) =
(
σ 2
n + λσ

4
n

pσn

)
×

[
H5
(
pβ + H2

)(
pβ + H6

) ]

+Bθ s (n, p)×

[
H5
(
pβ + H2

)(
pβ + H6

) ]
. (53)

Applying partial fraction, we get the following result:

ws(n, p)=
(
σ 2
n + λσ

4
n

σn

)
×

(
H5H2

H6p
+

H5 (H6 − H2)

H6p1−β
(
pβ + H6

))

+BH3H5


1
p
−

(H2 − H4)
2

(H4 − H6) p
(
pβ + H4

)
+

(H2 − H6)
2

(H4 − H6) p
(
pβ + H6

)
 .

(54)
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The inverse Laplace transform gives:

ws(n, τ ) =
(
σ 2
n + λσ

4
n

σn

)
×

(
H5H2

H6
+
H5 (H6 − H2)

H6
h(t) ∗ Fβ (−H6, τ )

)

+BH3H5

 1−
(H2 − H4)

2

(H4 − H6)
1 ∗ Fβ (−H4, τ )

+
(H2 − H6)

2

(H4 − H6)
1 ∗ Fβ (−H6, τ )

 , (55)

where

L−1
(

1
s1−β

)
= h(t) =

1
tβ0(1− β)

(56)

Fβ (−Hi, τ ) = L−1
(

1
pβ + Hi

)
=

∞∑
n=0

(−Hi)n τ (n+1)β−1

0 ((n+ 1)β)
(57)

where Hi = H4 and H6.
Fβ (., .) represents Robotnov and Hartleys’ function [51].
Equation (55) can be written in more appropriate form as:

ws(n, τ ) =

(
σ 2
n + λσ

4
n

σn
(
σ 2
n + λσ

4
n
))

+

((
σ 2
n + λσ

4
n

σn
(
AH1 + σ 2

n + λσ
4
n
)) h(t) ∗ Fβ (−H6, τ )

)

−

((
σ 2
n + λσ

4
n

σn
(
σ 2
n + λσ

4
n
)) h(t) ∗ Fβ (−H6, τ )

)

+


BH3H5 −

BH3H5 (H2 − H4)
2

(H4 − H6)
1 ∗ Fβ (−H4, τ )

+
BH3H5 (H2 − H6)

2

(H4 − H6)
1 ∗ Fβ (−H6, τ )

 .
(58)

Equation (58) can be written in the more appropriate
form as:

ws(n, τ ) =
(
(1− (−1)n)

σn
+
(−1)n

σn

)
+
(
αnh(t) ∗ Fβ (−H6, τ )

)
−
(
βnh(t) ∗ Fβ (−H6, τ )

)
+

[
χn − γn

(
1 ∗ Fβ (−H4, τ )

)
+`n

(
1 ∗ Fβ (−H6, τ )

) ]
. (59)

After applying the inverse Fourier transform to Eq. (59) we
get the following form [52], [53].

w(ξ, τ ) = 1−
ξ

h
+

2
h

∞∑
n=1

×

[
αn1h(t) ∗ Fβ (−H6, τ )

−βn1h(t) ∗ Fβ (−H6, τ )

]
sin (σnξ)

+
2
h

∞∑
n=1

[
χn − γn

(
1 ∗ Fβ (−H4, τ )

)
+`n

(
1 ∗ Fβ (−H6, τ )

) ]
sin (σnξ) ,

(60)

FIGURE 2. Velocity profile of gold in blood CSNF for different values of β
when G = 2,Re = 0.2,Gr = 1.5, τ = 0.2, λ = 0.2 and φ = 0.01.

where

αn1 =

(
σ 2
n + λσ

4
n

σn
(
AH1 + σ 2

n + λσ
4
n
))

βn1 =

(
σ 2
n + λσ

4
n

σn
(
σ 2
n + λσ

4
n
)) , χn = BH3H5,

γn =
BH3H5 (H2 − H4)

2

(H4 − H6)
and

`n =
BH3H5 (H2 − H6)

2

(H4 − H6)
.

B. CLASSICAL MODEL OF REGULAR COUPLE
STRESS FLUID
The solutions obtained in Eq.(47) is for a fractional model
of Couple Stress nanofluid. The corresponding solutions for
classical Couple stress fluid model are obtained by substitut-
ing β = 1 and φ = 0, Eq. (47), as:

w (ξ, τ ) = 1− G−
(
1
h
−
Gh
2

)
ξ

−
Gξ2

2
+ G

{
cosh

( h
2 − ξ

)
cosh

( h
2

) }

−
2
h

∞∑
n=1

(
G(1−(−1)n)
σ 3n (1+σ 2n )

+
1
σn

)
sin (σnξ) e

−

(
σ2n+λσ

4
n

Re

)
τ
.

(61)

The solutions obtained in Eq. (61) is the same as obtained
by Akhtar and Shah [Eq. (1), 36], hence this verifies the
correctness of the present work.

VI. NUSSELT NUMBER AND SKIN FRICTION
A. NUSSELT NUMBER
The mathematical expression of Nusselt number Nu for
CSNF is given as

Nu = −
knf
kf

(
∂θ

∂ξ

)
ξ=0

. (62)
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FIGURE 3. Variation in couple stress nanofluid CSNF velocity for different values of pressure gradient G when Re = 0.2, Gr = 1.5,
τ = 0.2, λ = 0.2 and φ = 0.01.

FIGURE 4. Variation in CSNF velocity for different values of Reynolds number Re when G = 2,Gr = 1.5, τ = 0.2, λ = 0.2
and φ = 0.01.

B. SKIN FRICTION
The mathematical expression of skin friction for Couple
stress nanofluid is given as

Sf (ξ, τ ) =
1

(1− φ)2.5

(
∂w
∂ξ
−
∂3w
∂ξ3

)
. (63)

As we have CSNF in channel bounded by twow parallel
plates. Therefore, the mathematical representation of Skin
friction at the lower plate can be written as

Sflp (0, τ ) =
1

(1− φ)2.5

(
∂w
∂ξ
−
∂3w
∂ξ3

)
. (64)

where Cflp( , ) shows skin friction at the lower plate.
Similarly, the mathematical expression of skin friction at the
upper plate is given as:

Sfup (1, τ ) =
1

(1− φ)2.5

(
∂w
∂ξ
−
∂3w
∂ξ3

)
. (65)

where Cfup( , ) shows skin friction at the upper plate.

VII. RESULTS AND DISCUSSION
This section of our study consists the results computed
numerically in various graphs. Figure 1 shows the geometry
of the proposed problem. The obtained results are shown
in Figure 2 to 16 for different parameters and for clear under-
standing. These graphs show the effect of CSNF parameters
in a channel.

Variation of the fractional parameter β is shown in the
Figure 2. It is found that increasing β results a decrease in
CSNF velocity.

It is important to note that in all these graphs the results
of Couple stress fluid of fractional order (0 < β < 1) and
integer order (β = 1) are compared in order to clearly see
the differences. All these graphs show the flow behavour of
CSNF that the classical velocity have lower magnitude as
compared to the magnitude of fractional velocity. However,
by increasing β there is a decrease in the magnitude of CSNF
velocity. For the case, β = 1 present solution reduced to
the solutions obtained by Akhtar [36] which shows the valid-
ity of our obtained solutions and verifies the correctness of
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FIGURE 5. Variation in CSNF velocity for different values of Grashof number Gr when G = 2,Re = 0.3, τ = 0.2, λ = 0.2
and φ = 0.01.

FIGURE 6. Variation in CSNF velocity profile for different values of time τ when G = 2,Re = 0.3,Gr = 1.5, λ = 0.2
and φ = 0.01.

FIGURE 7. Variation in CSNF velocity profile for different values of couple stress parameter λ when G = 2, Re = 0.3, Gr = 1.5,
τ = 0.2, λ = 0.2 and φ = 0.01.

obtained results. Figure 3 depicts the variation in CSNF
velocity for different values of external pressure gradient G
fluid is moving in a channel. From this figure, it can be

noticed that couple stress nanofluid CSNF velocity increases
by increasing the absolute value of external pressure gradi-
ent G from G = 2 to G = 3. It is due to the fact that
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FIGURE 8. Variation in CSNF velocity profile for different values of volume fraction parameter φ when G = 2, Re = 0.3,
Gr = 1.5, τ = 0.2 and λ = 0.2.

FIGURE 9. Comparison of AB fractional velocity
(
0 < β < 1

)
with classical velocity when G = 2, Re = 0.3, Gr = 1.5, λ = 0.2

and φ = 0.04.

increasing external pressure, CSNF becomes thinner due to
which viscosity of the fluid decreases, as a result, CSNF
velocity accelerates and the magnitude of velocity increases.
In other words increasing external pressure gradient speed up
the motion of the CSNF in a channel. Furthermore, increasing
external pressure will increase the volume flow rate in a
channel.

Figure 4 shows the variation of the Reynolds number (Re)
on the CSNF fluid velocity. By increasing Re, velocity of
the fluids decreases, as Re is the ratio of inertial forces to
the viscous forces. By increasing Re of CSNF, it produces
turbulent behavior in the fluid flow, due to these turbulent
forces CSNF becomes more viscous as a result it controls the
flow of the CSNF velocity. From the comparison of the two
graphs Re = 0.1 and Re = 0.3 clearly shows that increasing
Reynolds number Re, force the velocity to decreases.
Figure 5 shows the velocity profile of the couple stress

nanofluid for different values of Gr . Increasing the value
of Gr = 1.5 to Gr = 2.5, variation in CSNF can be
observed. This variation of Gr is obvious in many situations

that increase Gr results in an increase in the CSNF velocity.
It is due to the fact thatGr shows buoyancy forces when these
forces increase the fluid viscosity decreases due to which
velocity increases. This effect of Gr is very important and
have useful applications in the fluid dynamics.

Figure 6 displays the velocity of couple stress nanofluid
CSNF for different values of τ . From this figure, it is clearly
seen that for short interval of time τ = 0.2, the magnitude
of the CSNF velocity is lower, while for a long time τ = 2,
the fluid velocity increases it is due to the fact that we have
considered unsteady couple stress nanofluid CSNF in our
assumptions. It is further noticed from this figure that for
τ = 0.2, the behavior of CSNF velocity decreases with the
increase of AB fractional parameter β and for τ = 2, this
effect of β reverses on CSNF velocity.

Figure 7 shows the effect of CSNF velocity profile for
different values of couple stress parameter λ keeping other
values constant. As we have considered gold nanoparticles
suspended in blood as base fluid. Usually, when we mix any
additives in the fluid the forces (present in the fluid) oppose
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FIGURE 10. Comparison of fractional velocities in the absence
(
G = 0

)
and presence

(
G 6= 0,> 0

)
of external

pressure when Re = 0.3,Gr = 1.5, τ = 0.2, λ = 0.2, β = 0.2 and φ = 0.04.

the forces generated by additives. This opposite forcemakes a
couple force and a couple stress is induced in the fluidmotion.
Therefore, Figure 7 clearly show that increasing couple stress
parameter λ = 0.1 to λ = 0.2, as a result CSNF velocity
decreases due to these opposite forces flow of CSNF in the
channel decreases.

Figure 8 shows the influence of volume friction parameter
φ on CSNF velocity. It is found that increasing φ from
0.01 to 0.02 CSNF velocity decreases because the density of
CSNF velocity increases and finally, the flow of CSNF in a
channel resists and as a result the magnitude of velocity slows
down.

A comparison of couple stress fluid velocities for fractional
and classical orders is made in Figure 9. This figure shows
that for smaller time τ = 0.2, classical velocity is maximum
while for higher values of time τ = 2, the magnitude
of velocity for AB fractional derivative is maximum. This
shows that CSNF flow in a channel is affected by fractional
parameter β for small and higher values of time the variation
is quite the opposite. Furthermore, CSNF is in the class of
non-Newtonian fluid and β have dual effect on on-Newtonian
fluid for small and large time.

Figure 10 displays a comparison of CSNF flow in the
presence and absence of external pressure gradient G. From
this figure it is clearly noted that the role of the external
pressure gradientG in CSNF velocity is to accelerate the fluid
motion and hence fluid achieved maximum velocity.

Figure 11 shows a comparison of CSNF velocity and New-
tonian viscous fluid velocity. From this figure, it is clear
that the magnitude of velocity for Newtonian viscous fluid
is higher than that of couple stress fluid velocity. The nature
of Newtonian visvcous fluid and CSNF is quite chage that’s
why the velocity of these fluids show variations.

FIGURE 11. Comparison of CSNF velocity with Newtonian viscous fluid
velocity when G = 2,Re = 0.2,Gr = 1.5, τ = 0.2, β = 0.2 and φ = 0.01.

Figure 12 depicts the temperature profile for different
values of the time τ . From this figure, it can be seen that
the energy profile decreases with the increase of fractional
parameter β. This behavior of β on temperature profile is
decreasing for time τ = 0.2 and for time τ = 2, this behavior
of β is reverses as shown in this figure. The increase in β
shows a decrease in temeprature for small time while for large
time this behavoiur is opposite.

Figure 13 shows the influence of volume friction parameter
φ on the temperature profile. More exactly, the graph shows
that increasing φ results in an increase in the temperature of
the CSNF. This behavior of φ is studied for two different
times i.e. τ = 0.2 and for τ = 2. Furthermore, from this
figure, it is observed that the temperature of CSNF velocity
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FIGURE 12. Temperature profile for different values of τ (fractional and classical cases). Pr = 12, β = 0.2 and φ = 0.01.

FIGURE 13. Influence of nanoparticles volume fraction on temperature for different times when β = 0.2 and Pr = 12.

FIGURE 14. Plots of Volume flow rate, along τ, for two different ξ (fractional and classical velocities) when Re = 0.1,Gr = 1.5,
λ = 0.2 and φ = 0.04.

increases with time. Furthermore, increasing the valume fric-
tion φ as a result there will be a maximum collision and as a
result the kinetic energy of CSNF is increases.

Figure 14 shows the volume flow rate Q (τ ), along τ for
two different ξ . This figure shows that increasing ξ means
to increase the distance between the plates which shows
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FIGURE 15. Plots of Volume flow rate, along τ, for different G (fractional case 0 < β < 1) when
Re = 0.1,Gr = 1.5, β = 0.2, λ = 0.2 and φ = 0.04.

FIGURE 16. Plots of Volume flow rate, along τ, for different Re (fractional case 0 < β < 1) when Gr = 1.5, β = 0.2,
λ = 0.2 and φ = 0.04.

that more and more fluid is passing through the channel.
The increase in the distance between the plates is directly
proportional to the volume flow rate. Figure 15 depicts the
volume flow rate Q (τ ) along τ , of CSNF flow in a channel
with the variation in G. By increasing G the rate of volume
flow is increases because G accelerate the flow due to which
the more volume of the CSNF passes through the channel.
Furthermore, the increase in external pressure gradientGwill
increase the volume flow rate at the centre of the channel.
Figure 16 shows the volume flow rate Q (τ ), along τ for
different Reynolds number Re, (fractional case, 0 < β < 1)

on the CSNF velocity in a channel. From this figure,
we observed that the rate of volume flow-through the channel
is affected by Re, because Re, controls the fluid motion due
to which less fluid will pass through the channel. Finally,
the Nusselt number Nu and skin friction Cf of CSNF at the
lower and upper plate are evaluated and presented in tabular
forms which are given in Tables 2, 3 and Table 4 respectively.
Note that in these the bold numbers show the variation in that
specific parameter.

Table 2 and Table 3 show the skin friction variation at lower
and upper plate respectively. These tables show the result of
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TABLE 2. Skin friction of CSNF at lower plate:(Comparison of fractional and classical results).

TABLE 3. Skin friction of CSNF at upper plate:(Comparison of fractional and classical results).

TABLE 4. Nusselt number for couple stress Nanofluid.

skin friction variation for fractional and classical model of
CSNF. In the tables the bold values show the Skin friction
variation for G,Re,Gr, τ , λ, β and φ.

Table 4 shows the Nusselt number variation for couple
stress nanofluid. The bolds values in the table shows the
Nusselt number for β, τ and φ.

VIII. CONCLUDING REMARKS
The aim of this study is to obtain an exact solution for the
couple stress nanofluid CSNF in a channel. The solutions
obtained for AB fractional derivative are shown in graphs.
Blood is considered as base fluid and gold (Au) is taken as
nanoparticles. The obtained solutions satisfy the initial and
boundary conditions. Some special cases are deduced and
published results in the literature are recovered for accuracy
purpose. Furthermore, AB fractional derivatives are applied
to the couple stress nanofluid CSNF model to compare their
effect on velocity profile for small and large times.

The key points are listed below.
• The effect of AB fractional derivatives is shown in the
velocity profile. From the graphical results, we noticed
that for a short time the magnitude of CSNF velocity

decreases with an increase in β while for τ = 2 the
magnitude of velocity increases with the increase in β.

• Increasing external pressure gradient CSNF velocity
increases.

• The velocity of the CSNF decreases by increasing the
values of Re.

• Increasing time t, velocity of the CSNF increase.
• Increasing the volume fraction φ velocity of CSNF
decreases.

• The velocity of Newtonian viscous fluid is higher than
CSNF velocity.

• By increasing Gr, CSNF velocity increases.
• By increases φ temperature of CSNF increases.
• Volume flow rate increases withG and ξ while decreases
with Re.
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