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ABSTRACT A new comprehensive space-time model for the characterization of point rainfall rate is
presented. A detailed assessment of four key rain characteristics (probability of rain/no rain condition, first
and second order lognormal statistics and, space and time correlation functions) with consideration of the
impact of varying spatial-temporal integration lengths are discussed. A set of empirical equations have been
developed and the results show that they provide estimates of probability of rain/no rain with root mean
square errors of less than 1.3 in space and 0.04 in time. They provide good estimates of the parameters at any
space-time scales, particularly at higher resolutions that are of great importance to the design and planning
of networks operating at frequencies above 10 GHz. In particular, the authors have created databases of rain
characteristic parameters spanning North West Europe from which rain rate at any location of interest at
different space-time scales can be conveniently obtained. These have been validated by comparing the rain
rate exceedance distribution, R0.01, from the model estimates at different space-time scales across the British
Isles with values calculated from measured data. It has been found that the proposed model gives highly
accurate estimates of R0.01 for the continental area with error percentages (E) generally less than 2.5 but the
error percentage increases at the edges of the radar scans and in the oceanic area due to low data availability.

INDEX TERMS Rainfall rate, rain characteristics, radio-wave propagation, space-time model, satellite.

I. INTRODUCTION
Wireless communication systems operating at frequencies
greater than 10 GHz are significantly affected by rain atten-
uation of radio waves, which leads to poor network perfor-
mance [1]–[3]. This is particularly true for millimeter wave
communication links where the rainfall rate for 0.01% of the
time is an important parameter [4]. Rain events are highly
variable in both space and time and their characteristics
are influenced by factors such as climate type, season and
topography [5]. A quantitative understanding of the behavior
of the spatial and temporal variability of rain is required
to calculate the long-term rain-induced attenuation statistics,
e.g. ITU-R P.618-12 [6].

The extremely variable nature of rain makes it challenging
to estimate rain rates over large areas with high resolutions
directly frommeasurements. Although this can potentially be
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achieved with a high density network of rain gauges, the cost
of such a deployment is prohibitive and difficult to cover wide
areas with suitable space resolutions (say L). Therefore the
data that is available is often estimates at one point rather
than an area covered by multiple points. Meteorological radar
and satellite measurements compensate this drawback and
can capture the fine-scale spatial variability of rainfall, but the
time resolution (say T ) is often poor. In addition, it is difficult
to obtain accurate rainfall rate measurements over mountain
and oceanic areas due to difficulties associated with obtaining
accurate rain radar readings [7]. Such limitations have been
addressed using rain models, for example in [9]–[11].

Rain modeling has evolved to ameliorate the limited reso-
lutions of measurement apparatus to offer other resolutions,
particularly at smaller scales L ′ and T ′, using approaches
such as downscaling [12], [13], fractal theory (self-similarity)
[14], [15], and interpolation [16], [17]. However, the draw-
back in most of the existing rain studies is that they tend to
purely focus on predictions at either smaller space scales, so
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evolution in time of spatial patterns of rain field is not con-
sidered, [18], [19], or shorter time scales without explicitly
taking the spatial distribution of rain fields into account
[20], [21]. However, rain exhibits high variability and irreg-
ularity in both space and time. High intensity rain events,
especially those associated with strong convection, normally
cover only a few kilometers and last for short periods. These
cause severe outage in high frequency wireless networks. The
3D space-time point rain rate data at higher resolutions, which
is often not available from commonly used apparatus, is of
particular importance to describe these small-scale events and
is required by networks planners and designers of physical
layer fade mitigation techniques [22], [23]. A representative
model of rain dynamics would be a combination of a two-
dimensional model in space and a one dimensional model in
time.

The lack of three-dimension (3D) space-time modeling of
rain has long been a challenging issue and there are only a
few studies that have been published in the past few decades.
For example, taking advantage of the spatial disaggregation
scheme, like in [24], Venugopal in [25] proposed a space-time
downscaling model utilizing dynamic scaling property in
rainfall to predict spatially evolving rainfall fields which pre-
serve a prescribed space-time organization structure at finer
scales. Another classic space-time rain model was proposed
by Deidda et al. [26] based on the assumption that Taylor’s
hypothesis [27] can be applied. The space and time scales,
therefore, can be connected and then mutually-converted
using an advection velocity parameter so that the statistical
properties of rain at smaller scales can be deduced from larger
ones. Instead of focusing on rain rate only, alternative studies
of rain characteristics have also attracted a lot of interest
[28]–[31]. This is because in [32] Bell has demonstrated
that a reasonable lognormal distribution of rain fields can
be simulated provided systematic knowledge of the key rain
characteristics are known. Therefore, in [33], the authors have
proposed a new space-time interpolation approach that can
interpolate the key rain characteristics to finer scales of the
order of seconds, in time, and meters, in space, with high
accuracy.

In particular, the authors proposed a statistical model in
[34] based on the assessment of the impact of varying spatial
and temporal integration lengths on key characteristics of
point rainfall rate and their dependencies on the integration
volumes. However, the proposed model is only valid for
cases where either the spatial or temporal integration length
is constant (C), whilst the other is changing, denoted as:
{L, T = C} or {L = C , T}. As an extension of the work
in [34], this paper aims to fulfill two objectives: 1) assess the
impact of varying 3D spatial-temporal integration lengths on
rain; and 2) develop an appropriate model to estimate the rain
characteristics at changing space-time scales, particularly at
smaller ones. These objectives, when fulfilled, will enable the
estimation of point rainfall rate at any given scale together
with the prediction of rain-induced attenuation for wide area
networks with multiple links of varying lengths.

The reminder of this paper is organized as follows;
Section II describes the experimental data used in this study.
Section III discusses the methodology for modeling the point
rainfall rate and briefly describes how to generate rain fields
using rain parameters. Section IV presents the experimental
results and the proposed empirical equations for estimating
rain characteristics at different space-time scales. We have
also validated the results using real measurements from
datasets with better resolution. Conclusions are drawn in
Section V.

II. DATA DESCRIPTION
The experimental data used in this study is provided by
the Centre for Environmental Data Analysis (CEDA), which
holds a database of European rainfall rate estimate gener-
ated by NIMROD radar system. This covers several climatic
zones. The NIMROD system concurrently receives the radar
images from 15 C-band (5.3 cm wavelength) radars. The
radar network performs a series of 15-minute azimuth scans
at different elevations and converts the rainfall rate data onto
a 5-km Cartesian grid [35], [36]. The composite European
data is available fromApril 2002 as well as radar images from
1999. The processed radar and satellite data together with
surface reports and Numerical Weather Prediction (NWP)
fields are jointly used for precipitation rate analysis [37].
In this study, five years of radar data from 2010 to 2014 has
been studied. The dataset used consists of more than 150,000
radar maps with each map covering 432,000 grid points.

CEDA also holds another dataset with better resolution
over the British Isles. Radar networks within the UK have
several scan radii with space resolution up to 1km at time
intervals as short as 5mins (see [38]).

III. SPACE-TIME MODELING OF POINT RAIN RATE
The prediction of the dynamic rain attenuation statistics
in slant paths is required in many applications relating to
satellite communication. Matricciani in [39] has proposed a
physical-mathematical model using amethod known as ‘‘syn-
thetic storm technique’’ for calculating the rain attenuation.
The specific attenuation may be calculated from raindrop size
distribution but an adequate approximation may be obtained
from the rain rate. Rec. ITU-R P. 838-3 [40] provides a power-
law model linking specific attenuation γ and rainfall rate
R(mm/h) as follows;

γ ∼= αRβ (1)

where α and β are frequency dependent parameters.
Given that the average rainfall rate measured within a

spatial area A = L × L at time interval T is expressed as:

R (L,T ) =
1
T

∫ T/2

_T/2
dt
∫ L/2

_L/2

∫ L/2

_L/2
r(x, t)da (2)

where r (x, t), here x = (x1, x2), denotes the point rainfall
rate in mm/h at location x and time t . L and T are the spatial
and temporal integration lengths of NIMROD radar map,
respectively.
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The synthesis of rain fields requires detailed understanding
of four key characteristics of rain; the probability of rain
occurrence, first order statistics and, space and time corre-
lation function of rain [32]–[34]. It has been demonstrated
that point rainfall rate at one location for any combination of
spatial and temporal integration length is well modeled as a
lognormal process with a mixed probability density function
(PDF) [41]:

3R (µ, σ,P0)=


1− P0 no rain

P0
√
2πRσ

exp

[
−

(
lnR− µ
σ

)2
]

for rain

(3)

where P0 denotes the probability of rain occurrence at a point
when it is raining (R > 0), and {µ, σ } are the lognormal
parameters required to describe the distribution of rainfall
rate, where µ and σ are the mean and standard deviation
of R, respectively. Previous study in [34] showed that the
statistical parameters {P0, µ, σ } depend on the location x
and the integration volume. P0 is equivalent to the long term
probability of rain over a period T i.e P0 = Trainy/T. The
general empirical equation that gives good estimates of P0
throughout the whole range of integration length is:

P0 = 100− bexp
(
cxe
)

(4)

where b, c and e are model coefficients which can be deter-
mined for each location and x denotes either spatial integra-
tion length L, or temporal integration length T .
It has been shown in [32] that a zero mean, unit vari-

ance discrete Gaussian field, g (x), can be modeled with a
spatial covariance predetermined by the desired rain field
covariance. Over long term periods i.e. many 2D maps
gt (x), the Gaussian field can be transformed into a rain field
r(gt (x)) using nonlinear transformation:

r {gt (x)}

=

0, gt (x) < g0

exp
(
σQ−1

(
Q (gt (x))

P0

)
+ µ

)
, otherwise

(5)

then a rain field with the PDF in Eq. (3) can be produced
provided g0 = Q−1 (P0) is the chosen threshold, here

P0 =
∫
∞

g0

1
√
2π

exp
(
−
u2

2

)
du ≡ Q (g0) (6)

It is worth highlighting that the above transformation links
to the correlation coefficient ρ of the Gaussian rain field.
The space correlation function, which is equal to the inverse
Fourier transform of the normalized spectrum, is always used
to assess the horizontal structure of rainfall field. Given that
rain is wide sense stationary, the time correlation function
strongly depends on the time difference between t1 and t2.
The correlation function of rainfall rate can be expressed

as [42];

ρR=
E
{
RiRj

}
−E {Ri}E

{
Rj
}√

var (Ri) var
(
Rj
) =

cov
(
Ri,Rj

)
εiεj

=ϒ (ρ) (7)

TABLE 1. Probability of rain occurrence (%) for increasing
spatial-temporal integration lengths ranging from 5 km to 75 km and
15 mins to 120 mins at Portsmouth.

where Ri and Rj are the point rainfall rates at either two
locations or two times i and j, cov() is the covariance and ε is
the variance with |ρ| ≤ 1 and cov

(
Ri,Rj

)
≤ εiεj.

The correlation of rainfall rate can be calculated from
radar-derived rain rate and ρ can be obtained using functional
inverse ρ = ϒ−1 (ρR), see [41]. Taking the correlation
coefficient into account, a logical extension of Eq. (3) is that
the distribution of rain rate at two points on a horizontal plane
at a particular time or two time periods at the same location
is jointly lognormal with the joint PDF (see [3]):

f (R1,R2, ρ)

=
1

2πσ1σ2R1R2
√
1− ρ2

exp

(
−

1

2
(
1− ρ2

)
·

((
lnR1 − µ1

σ1

)2

−
(lnR1 − µ1)(lnR2 − µ2)

σ1σ2

+

(
lnR2 − µ2

σ2

)2
))

(8)

For simplicity, Eq. (8) can be denoted as

f (R1,R2, ρ) = 9R1,R2 (µ1, σ1, µ2, σ2) (9)

where parameters {µk , σk} , k = 1, 2 describe the lognormal
statistics of point rain rate at either two locations or two time
periods of interest. The four parameters at varying integration
lengths can be estimated from empirical distribution function
of rainfall rate using the technique proposed in [43].

IV. INTEGRATION AND DOWNSCALING OF RAIN
CHARACTERISTICS
A. PROBABILITY OF RAIN OCCURRENCE
To assess the impact of space-time averaging on rain
intermittence, the theory presented in [34] and the mixed
rain distribution in Eq. (3) can be used to obtain P0 at
different space-time scales. In this paper, P0 at increasing
spatial-temporal integration lengths ranging from 5km to
75km and 15mins to 120mins at all locations within the
studied area have been analyzed. Taking Portsmouth as an
example, the probability of rain occurrence at 96 space-time
combinations have been calculated and listed in Table 1.
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FIGURE 1. Plot of P0 distribution for increasing spatial and temporal
integration length at Portsmouth in the southern UK.

TABLE 2. Equation 11 fitted coefficients for a range of spatial integration
lengths at Portsmouth.

TABLE 3. Equation 12 fitted coefficients for a range of temporal
integration lengths at Portsmouth.

Whilst it is challenging to derive a physical model for rain
intermittence, modeling P0 based on the calculated values is
more expeditious. Eq. (4) can be used for downscaling P0 to
other space and time scales, particularly those smaller than
radar estimates.

Table 2 and 3 list the fitted coefficient values of Eq. (4)for
space domain and time domain, respectively. Using these
coefficients together with values from Table 1, we can pro-
duce a 3D space-time plot of P0 distribution as shown
in Fig. 1. For small space-time scales, it is realistic to
assume that P0 (L→ 0,T → 0) → 0 and for large scales,
P0 (L→∞,T →∞)→ 1.
It is therefore adequate to re-evaluate Eq. (4) to produce a

space-time prediction formula forP0 in 3D space-time scales:

P0 (L,T ) = 100− bexp
(
cLLeL + cTT

eT
)

(10)

From UK NIMROD radar data at Portsmouth, the
calculated P0 (L = 1km,T = 5mins) = 12.56, whilst the
estimated P0 (L = 1km,T = 5mins) from Eq. (10) is 12.18,
giving a difference of 3%. This is deemed to be accept-
able taking into account the varying space-time resolutions.

FIGURE 2. Test for log-Normality of rainfall rate distribution for each
location with space resolution of 5km and time intervals of 15mins. The
dots are values calculated from measured radar data and the straight
lines (fitted curves) are transformed CCDF using the fitting method
described in [43].

Therefore for Portsmouth, Eq. (10) can be expressed as.

PPortsmouth(L,T )

= 100− 92.12

∗exp
(
−0.0215 ∗ L0.8211 − 0.0125 ∗ T 0.6383

)1
(11)

Similar results can be produced for any location within the
studied region of North West Europe.

B. STATISTICS OF RAIN
The statistics of rainfall rate over a grid areawere computed to
obtain the values for each central location. The area sizeA =
400km×400 kmwas chosen as studies in [44] have shown that
log-normal parameters {µ, σ } become stable and converge to
virtually constant values for any combination of spatial and
temporal integration lengths when A > 350 km × 350 km.
Using the technique described in [43], the transformed com-
plementary cumulative distribution function (CCDF) can be
achieved together with estimates of the log-normal parame-
ters {µ, σ }.

Fig. 2 shows the test for log-Normality of rainfall rate dis-
tribution for four locations. The straight lines clearly shows
that rain rate at each location is log-normally distributed.
The log-Normality property of rain can be observed at other
space-time combinations (for brevity other results are not
presented in this paper). It has also been found that the log-
normal parameters exhibit monotonous changes. To be spe-
cific,µ gradually decreaseswith increasing integration length
while σ shows a completely opposite tendency. This paper
presents some of the derived values of {µ, σ } at Portsmouth
with increasing spatial integration lengths ranging from 5 km
to 75 km and the temporal periods between 15mins and
120mins to show these tendencies, see Table 4.

Fig. 3, as an example, shows that the log-normal parame-
ters, in both space and time, can be approximated by a second

1Note: The fitted coefficient values given in Eq. (11) are examples that
estimate the smaller space-time scales values of interest. So the accuracy for
large scales is relatively low. However, the values are adjustable to meet the
requirements of users (i.e. other range of scales).
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TABLE 4. Experimental value of log-normal distributions for increasing
scale at Portsmouth.

FIGURE 3. Plot of lognormal distribution parameters µ for different space
scales when T = 15mins and different time scales when L = 5km (for
Portsmouth UK): (a) plot ofµ, and (b) plot of σ .

TABLE 5. Fitted coefficient values of Eq. (12) for lognormal parameters in
both space and time domains.

order polynomial:

ψ(x) ≈
∑2

k=0
pkx2−k (12)

which is appropriate to conveniently downscaled {µ, σ } to
any other space-time scales with reasonable accuracy. In this
particular example the polynomial coefficients are given
in Table 5. This polynomial conversion has been used exten-
sively to downscale {µ, σ } values to other scales of interest
and validated using rain rate distribution estimates.

From the ITU-R P.838-7 [45], rain rate exceedance distri-
bution is required by radio communications engineers, and
the percentage of exceeded rain rate between R0.001 and R0.01

FIGURE 4. Complementary cumulative distribution function of rainfall
rate for different spatial-temporal integration lengths.

is of particular important. The study in [41] showed that the
first and second order moments of rainfall rates are:

E {R} = P0exp
(
µ+

σ 2

2

)
≡ µR (13)

and

E{R}2 = P0exp
(
2µ+ σ 2

)
, (14)

and the variance of R is:

σ 2
R = P0

[
exp

(
σ 2
)
− 1

]
exp

(
2µ+ σ 2

)
. (15)

Therefore the lognormal parameters at other space-time
scales can be derived as follows:

µ (L,T ) = ln
(

µR

P0 (L,T )

)
−

1
2
−
P0 (L,T ) σ 2

R (L,T )
µR

(16)

σ (L,T ) =

√
1+

P0 (L,T ) σ 2
R (L,T )

µR
(17)

The exceeded rain distribution can be plotted using

PR {R > R|R > 0} = P0 (L,T )× Q
(
lnR− µ (L,T )
σ (L,T )

)
(18)

where Q() is the complementary error function,R is the given
rain rate and PR represents the percentage of exceedance of
that given rain rate.

Fig. 4 compares the rainfall rate exceedance distributions
for Portsmouth at different combinations of space-time scales
using model-derived {P0, µ, σ } and the calculated values
from measured radar data. The results of three combina-
tions ({1 km, 5mins}, {2 km, 10mins} and {3 km, 15mins})
are presented. Fig. 4 show that the exceeded rainfall rate
distributions yielded by the model and calculated from radar
measured data are accurate with root mean square errors of
less than 0.005. The rainfall rate exceeded for 0.01% of time
is approximately between 18mm/h and 37mm/h depending
on the spatial-temporal integration length. In addition, R0.01
value from ITU-R P838-7 is about 45mm/h for Portsmouth,
which is higher than the model prediction and values calcu-
lated from measured data. This is consistent with the find-
ings in many other studies. For example, in [46] the authors
evaluated 1-mins rain rate interpolationmodels and compared
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FIGURE 5. Contour maps of error percentage of R0.01 over the British Isle
at spatial integration length of 1km and temporal period of 5mins.

the results of R0.01exceedance distribution with ITU-Rmodel
for nine sites in South Korea. They obtained error percentage
of 3.32% and 12.59% for 5-mins and 10 mins conversions,
respectively, to 1 min but the error percentage increases
rapidly for conversions from longer duration measurements.
The ITU-R P838-7 model is a general model and therefore is
not accurate at specific locations. Hence the ITU recommends
that users should use their own data to produce better results.
Assessments show that the model proposed in this paper
provides good estimates of P0 at the scale range between
{100m, 20 s} and {35 km, 60mins}. However an assessment
of accuracy for all space-time scales could not be ascertain
due to lack of data at all space-time resolutions.

To reduce computation time, the authors have created
databases for users to easily obtain the rain characteristic
parameter values using Eq. (19) and (20) [33] to convert the
coordinates into longitude and latitude values at location of
interest;

z(longitude) = 0.0658y− 19.8364 (19)

z(latitude) = −0.0409y+ 59.430 (20)

where y denotes either row or column number of the NIM-
ROD data grid and z is the corresponding coordinate value in
either latitude or longitude.
R0.01 has been analyzed over the whole of the British Isles

using the downscaled data from the proposed model and the
error percentages (E) between themodel estimates and values
calculated from UK measured data is calculated using

E =
|Pv −Mv|

Mv
× 100% (21)

where, Pv and Mv are the model predicted and measured
values, respectively.

An example of a contourmap of error percentage ofR0.01 at
scale of {L = 1 km,T = 5mins} is presented for discussion.
Fig. 5 shows that the model accuracy for the British Isles
is very high with error percentage values generally lower
than 2.5% except in the south-east of England. However, the
E value tends to be high towards the edges of radar scan
region due to insufficient data, especially in the oceanic area.

C. CORRELATION FUNCTION OF RAIN
High frequency wireless networks planning require knowl-
edge of the horizontal structure of rain fields and the evolution

FIGURE 6. Space correlation functions of rainfall rate at different
space-time scales (Portsmouth).

of rain events. The analysis of the correlation properties of
rain is not always straightforward due to non-stationary, non-
homogeneous and irregular rainfall patterns. To simplify the
study, the spatial structure of rainfall field is usually assumed
to be homogeneous and isotropic such that the space corre-
lation function only depends on the separation distance d =
|x− y|. Given that such assumptions are only valid over small
areas and short time periods, they allow the effects caused
by factors such as rainfall field shape as well as intermittent
sampling of rain events to be avoided.

The general empirical equation for both the space and time
correlation,Cexp

R (f ) , of rainfall rate obtained fromNIMROD
rain radar maps takes the form [34]:

Cexp
R (f ) =

a
a+ f n

(22)

where a > 0 and n > 0 are parameters to be determined from
data and f can either be d (where d represents the distance in
kilometer) or t (where t is the time lag in minutes).
Cexp
R (d) was analyzed at a range of combinations of

spatial-temporal integration lengths. Fig. 6 shows a plot of
the correlation coefficient values as a function of the separa-
tion distance for four randomly chosen space-time scales at
Portsmouth. The curves are the best fit curves using Eq. (22).
The root mean square errors (RMSE) between the correlation
coefficients derived from measured data and those calculated
using estimates of a and nfor a number of space-time combi-
nations are presented in Table 6. It shows that Eq. (22) gives
accurate estimates of the correlation coefficient values for a
wide range of integration scales. Longer integration lengths
yield higher values than smaller ones due to the averaging
out of local variations that exist at smaller dimensions. The
near linear sections in Fig. 6 suggest an exponential tendency
of the correlation coefficient with distance, and this is true
for other combinations of space-time integration volumes
although the results are not presented in this paper. It also
indicates that the exponential law is appropriate for the pre-
diction of rainfall field structure for North West Europe.

Correlation coefficient of rainfall in time, Cexp
R (t), is also

an important parameter for the design and implementation
of fade mitigation techniques, especially for links with high
elevation paths. Considering rain cloud movement and the
evolution of rain events, it can be argued that time correlation
of rainfall is primarily affected by advection. The same as in
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TABLE 6. Coefficient values of space correlation functions of rainfall rate
at selected spatial-temporal integration length at Portsmouth.

FIGURE 7. Time correlation functions of rainfall rate at different
space-time scales (Portsmouth).

TABLE 7. Coefficient values of temporal correlation functions of rainfall
rate for different spatial-temporal integration lengths at Portsmouth.

space, Cexp
R (t) at different integrated space-time scales was

studied. Fig. 7 shows plots of the calculated and fitted corre-
lation coefficients as a function of time. The time correlation
of rainfall also significantly changes with varying spatial-
temporal integration lengths. The longer the integration time,
the smoother the time correlation would be due to decreasing
variance with increasing integration period. However, the
correlation coefficient values become unpredictable when the
time lag is longer than 1000mins and the space resolution
exceeds 30km for time resolution of 120minsat one location.
It also shows that the fitted curves using Eq. (22) agree well
with the measured data with RMSE ranging from 0.007 for
{5 km, 15mins} to 0.156 for {20 km, 60mins}. The best fit
coefficient values for Cexp

R (t) with increasing space-time
scales are given in Table 7.

From Table 6 and 7, it is noted that the coefficients {a, n}in
both space and time domains increasewith increasing integra-
tion volumes, and this has been confirmed after analysis of the
integrated data with a wide range of combinations of space-
time scales between {5 km, 15mins} and {20 km, 60mins}.

Eq. (22) therefore can be written in the form

Cexp
R (f ) ∼=

aψ (L,T )

aψ (L,T )+ f nψ (L,T )
(23)

with factorable parameters, for a set of values of distance d
or time t . The coefficients aψ (L,T ) and nψ (L,T ) explicitly

TABLE 8. Parameter values of Eq. (24) and Eq. (25) at Portsmouth.

FIGURE 8. Comparison of measured and model predicted correlation
function of rainfall rate at Portsmouth, (a) is space correlation, and
(b) is time correlation.

depend on the space resolution, L, and time interval, T .
Models that have been derived and proposed in this paper to
represent these coefficients for all locations at varying space-
time combinations can be expressed as:

aψ (L,T ) ∼= b1Lb2 + b3T b4 + b5 (24)

nψ (L,T ) ∼= c1 + c2e(c3L
c4+c5T c6 ) (25)

where b1, . . . b5, and c1, . . . c6 can be determined using non-
linear least square method.

The specific forms of Eq. (24) and Eq. (25) are developed
primarily to allow efficient computation without significant
loss of accuracy. However, an assurance of accuracy is based
on sacrificing algebraic tractability as a result of the numer-
ous coefficients involved.

Given that UK NIMROD holds another database for the
British Isles with the higher resolutions of 1 km in space
and 5mins in time, the correlation coefficient values at a
number of space-time combinations that are smaller than
{5 km, 15mins} have been calculated from the data. The val-
ues of the coefficients in Eq. (24) and Eq. (25) for Portsmouth
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are presented as an example, the fitted coefficient values are
given in Table 8.

A comparison of the correlation coefficient values of rain-
fall rate calculated from measured data and the proposed
model prediction are presented in Fig. 8. The model pre-
dictions show high agreement with real measurements at
different space-time scales for both space and time correlation
with averaged RMSE of 0.025 in space and 0.049 in time.
This is true for other combinations. This shows that Eq. (24)
and Eq. (25) can be applied to estimate rain characteristic
parameters at space and time resolutions for which there is
no data, particularly at higher resolutions. The application of
the proposed model also serves to reduce the long comput-
ing time often required to process data to obtain correlation
coefficient values of rain at multiple space-time scales.

V. CONCLUSION
This paper has proposed a numerical models that can be used
to predict point rainfall rate in space and time simultaneously,
particularly at higher resolutions than are currently available
fromNIMROD rain radar. Dynamic description of the param-
eters associated with rain field estimates has been presented
with extensive investigation of area-time average of rainfall
rate. This is because integration over varying spatial and tem-
poral integration lengths changes the first and second order
statistics of rainfall rate and thus rain-induced attenuation on
radio links.

The paper has proposed a set of empirical equations that
can be used to estimate rain parameters at varying space-
time scales with fairly high accuracy. The results have been
validated by comparing model predictions with values cal-
culated from measured data. Databases of rain parameters
spanning North West Europe have been produced for users to
conveniently obtain rain rate information at any location of
interest for any combination of spatial-temporal integration
lengths. This offers great convenience as almost no computa-
tion time is required. Given these databases, the prediction of
rain characteristics at other space-time resolutions, especially
those that are not available from rain radar measurements, can
be obtained. The accuracy was tested by analyzing the rain
rate exceedance distribution at different space-time scales
and the model validity is for space and time scales between
{100m, 20 s} and {35 km, 60mins}.
A contour map of the error percentage (E) of exceeded

rain rate value of R0.01 for the British Isle at the scale of
{L = 1 km,T = 5mins} has been presented and the results
show that the error percentage is very low for the continental
area where the calculated E is less than 3% for all areas apart
from the south-east of England. It has also been noted that
the E values tend to be high towards the edges of radar scan
region, such as the oceanic area due to low availability or
lack of data. An empirical model to estimate the correlation
coefficient values at any location for a wide range of time
and space separation and validated using measured data. The
model estimates the correlation coefficient with RMSE of less
than 0.03 in space and 0.05 in time. The model will not only

help researchers and practitioners estimate values at time and
space separations at which they may not have data but reduce
the time it takes to compute the values from measured data.

Themodels proposed in this paper will assist engineers and
scientists in developing a number applications, e.g. allocat-
ing additional satellite resources to mitigate against adverse
weather conditions, site diversity techniques and instanta-
neous joint fade experienced by all links in a microwave
network, etc.. It is particularly true for satellite network sys-
tems where the optimization of an adaptive onboard com-
mon resource-sharing system and fade mitigation technique
require detailed knowledge of the space-time characterization
of rain fields. The models proposed in this paper can be
applied to a detailed study of rain attenuation statistics at any
location in North West Europe.
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