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ABSTRACT Today’s information systems of enterprises are incredibly complex and typically composed of
a large number of participants. Running logs are a valuable source of information about the actual execution
of the distributed information systems. In this paper, a top-down process mining approach is proposed
to construct the structural model for a complex workflow from its multi-source and heterogeneous logs
collected from its distributed environment. The discovered top-level process model is represented by an
extended Petri net with abstract transitions while the obtained bottom-level process models are represented
using classical Petri nets. The Petri net refinement operation is used to integrate these models (both top-level
and bottom-level ones) to an integrated one for the whole complex workflow. A multi-modal transportation
business process is used as a typical case to display the proposed approach. By evaluating the discovered
process model in terms of different quality metrics, we argue that the proposed approach is readily applicable
for real-life business scenario.

INDEX TERMS Workflow models, multi-source running log, distributed process mining, petri nets,
refinement operation.

I. INTRODUCTION
Workflow Management Systems (WfMSs) support the exe-
cution of business processes [1] as they require the definition
of processes, automate the enactment of process steps and
their execution is guided by business rules and execution
logic, and finally they record the execution steps of a business
process. In particular, workflow logs [2], [3]–[7], contain the
execution information for all instances of activities of. They
depict when and which actor performed which task, which
contains very valuable information of the actual execution of
business processes (as opposed of merely specified or desired
descriptions of business processes). Thus they could be a
valuable resource for business process improvement, reorga-
nizations, and re-engineering. Process mining (also referred
to as workflowmining) is a subfield of data mining concerned
with method(s) of distilling a structured process description
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from a set of real executions [3]. Its goal is to analyze a
running log to construct a workflow (or process) model that
best describes all its recorded instances.

Today’s information systems are incredibly complex and
typically composed of a large number of applications or
components. Applications typically support fragments [8] of
a process and as a result, the information required for pro-
cess mining is scattered over different enterprise information
systems. Therefore, the step to collect the event log used as
input for process mining is far from trivial [2]. Even within
a single product, events may be logged at several different
parts of the system. Consider for example an ERP (Enterprise
Resource Planning) system like SAP (System Applications
and Products) [9], there are dozens of logs relevant for process
mining and these logs are always kept by different partners
or organizations. One approach is to use a data warehouse to
extract the information from these distributed logs [10], and
then mining the process model directly from the centralized
warehouse with integrated log data. The other way is to
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conduct a distributed mining technique, i.e. mining process
models of different organizations separately, and then inte-
grate them to obtain the whole one.

In contrast to the existing work [11]–[13], we explore the
distributed process mining from heterogeneous logs which
have the following characteristics: (1) The workflow logs
used for process mining are distributed on different servers;
(2) The workflow logs are recorded on different servers
with different log structures; (3) The workflow logs are
kept by their own organization or partner, and they are not
accessible to others for security; and (4) The workflow logs
of single organization can only reflect part of the business
processes of the whole workflow and its interactions with
other organizations. Therefore, this paper adopts the later
idea. Towards this issue, we have introduced a bottom-to-
top process mining approach in [2]. This work first separately
obtain the process models of each organization, and then inte-
grate these models using four coordination patterns to obtain
the integrated process model. This work assumed that those
distributed servers are the same, i.e. they are functionally
equal with each other. However, servers are not always in
the same status for some real-life applications. Consider for
example, a service out-sourcing scenario will usually involve
one main workflow describing the businesses of the whole
enterprise and several out-sourcing sub-processes provided
by other enterprises. Therefore, its corresponding running
logs are distributed over one main server and several local
servers. To cope with this problem, a top-down process min-
ing approach is proposed in our work.

The rest of this paper is organized as follows. Section II
presents a brief review of the related work. Section III
defines some related preliminaries. Section IV presents the
framework of the top-down process mining. Section V intro-
duces the detailed mining approaches to obtain the integrated
model. Section VI introduces a multi-modal transportation
process as a typical case to illustrate our top-down process
mining approaches. Finally, Section VII concludes the paper.

II. RELATED WORK
In this section, we mainly discuss two related research areas,
i.e. process mining and Petri net refinement.

A. PROCESS MINING
Process mining is used to discover, monitor and improve
real processes by extracting knowledge from event logs [14].
Many works that address on process mining techniques,
which take event logs to produce a process model without
using any priori information, have been published, in partic-
ular those on control-flow discovery, such as [11]–[13], [15],
[16], and the existing process mining approaches and future
directions are surveyed in [17].

A large number of techniques have been developed to
solve process mining tasks in last decade. As an often
cited example, α−Algorithm [11] first defined four kinds of
log-based ordering relations, based on which the ordering
relations among activities are obtained. And then a workflow

net was derived from these activity dependency relations.
Following this work, some improvements [12], [13] on the
α−Algorithm were introduced to promote its performance.
To further its application for less-structured event log and
overcome the ‘‘spaghetti-like’’ models which contain all
details without any hierarchies, Christian and Wil [18] pro-
posed the fuzzy mining approach. In this approach, activities
and their relations are clustered and abstracted according
to their importance to demonstrate different hierarchies or
levels. However, the fuzzy miner does not have any semantic
significance with respect to the domain, therefore it may suf-
fer the risk of aggravating some irrelevant activities together
to a cluster. Towards this limitation, Bose et al. [19] proposed
hierarchical discovery approaches using a set of interrelated
plug-ins in ProM to deal with fine-grained event log and
less structures process models. Different from the traditional
fuzzy miner, the hierarchies are obtained through the auto-
mated discovery of pattern abstractions [20]. It is proved
that the discovered patterns always have its specific domain
semantics. To be able to analyze incomplete and noisy event
logs with various guarantees, a set of inductive process min-
ing techniques [21] on the basis on process trees are well-
developed, which can well guarantee the discovered model
to be sound.

In our previous work, a process mining approach was
presented to obtain the structural model with timing con-
straints for a workflow from its timed running logs in [22].
By constructing its reachability graph, we found the running
schemas of a workflow with timing constraints on each activ-
ity. In [8], we calculated the minimum execution time of a
workflow and how to fragment it to achieve a high server
usage according to the workflowmodel mined from its corre-
sponding running logs. In [2], we conducted the application
of process mining for workflow integration, where four coor-
dination patterns between different organizations are defined.
Process mining approaches are used to discover the workflow
model of each organization and corresponding coordination
patterns, based on which the process integration is conducted.

B. PETRI NET REFINEMENT
Generally speaking, Petri net refinement technique is used
as a top-down approach for supporting hierarchical mod-
eling and properties analysis of complex systems [23].
Zuberek et. al. [24] formalized the concepts of hierarchies
of refinements in Petri nets and demonstrated some sim-
ple applications in traditional flexible manufacturing sys-
tems. On the work of [24], Huang and Mak [25] performed
a further study on the structural and dynamical properties
preservation of refinement in system design. More recently,
Jiao et. al. [26] considered two kinds of refinement trans-
formations, and proved that regularity can be preserved auto-
matically for a kind of pure and ordinary connected nets. The
two refinement transformations can be used to construct large
and complex net models in Petri-net-based system design and
verification.
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In the area of business process management,
van der Aalst [27] first applied the refinement technique
to model hierarchical workflow nets. In [28], refinement
operation of workflow nets was applied to model and
analyze an integrated workflow. They proved that step-
by-step refinement of transitions could realize hierar-
chical modeling of workflow and workflow integration.
In [29], a series of concepts were defined for formalizing the
refinement of workflow net. And then the net languages of
the refined net can be obtained, which is proved in a lower
complexity. In [30], Ding et. al. first introduced the Petri net
refinement on the basis of a type of k-well-behaved Petri net
and then the property relationships among sub-, original, and
refined Petri nets from the perspective of system synthesis
and net language preservation via stepwise refinement was
studied in depth.

C. SUMMARY OF THE RELATED WORK
Based on the aforementioned summaries, we conclude that
existing work on process mining [11]–[13] suffers from the
following two limitations: (1) existing mining techniques
only suit a centralized mining demand, i.e. they only take
in centralized log set; and (2) only homogeneous-structured
running logs are used to conduct the mining process. As the
inner data of one organization is not accessible to other
organizations for security sake, the former approach is not
applicable in real-life use. Moreover, the running logs stored
by different organizations are usually heterogeneous, which is
not easy to integrate them for centralized mining. In contrast
to the existing work we explore the distributed process min-
ing from a set of multi-source heterogeneous running logs.
Different from traditional idea that only takes the Petri net
refinement operation [23]–[26] as a means to model and anal-
yse structural and dynamic properties of complex systems,
our scope is to use it as a technique to integrate the top-level
process model and its corresponding bottom-level ones.

The main contributions of our work include: (1) The
top-down process mining architecture is first presented to
handle process mining in a distributed case; (2) The top-level
process mining algorithm is proposed whose result is rep-
resented as an extension of Petri nets; (3) The bottom-level
process mining algorithm is proposed and its result is for-
malized with traditional Petri net model; and (4) Petri net
refinement operation is used to refine the abstract transi-
tions in the top-level process model with their corresponding
bottom-level models to obtain the integrated process model.

III. PRELIMINARY
As Petri nets [31] are capable of combining the graphical
representation of workflows and a formal foundation, so they
have been widely used to model, analyze and verify work-
flows [32]–[44]. Some of the essential terminology and nota-
tions regarding the Petri net used in this paper are presented
as follows.
N = (P,T ;F) is named as a net if (1) P∩T = φ, P∪T 6=

φ; (2) F ⊆ (P× T ) ∪ (T × P); and (3) Dom(F) ∪ Cod(F) =
P∪T . ∀x ∈ P∪T , the set •x = {y|y ∈ P∪T and (y, x) ∈ F}

FIGURE 1. An example top-level process model.

is the preset of x and x• = {y|y ∈ P ∪ T and (x, y) ∈ F} is
the postset of x. A Petri net is a 4-tuple 6 = (P,T ;F,M0),
where N = (P,T ;F) is a net, and M0 : P→ Z+ (Z+ is the
non-negative integer set) is the initial marking of 6.
Definition 1 (Top-Level Process Model): A Petri net

6TPM = (P,T ;F,M0) is a top-level process model for a
workflow if (1) P = PL ∪ PM where PL represents the logic
places and the PM represents the message places exchanged
between different organizations or partners; (2) T = TA∪TP,
TA ∩ TP = ∅, where TA represents the activities of a process,
and TP represents the abstract procedures in 6TPM ; (3) ps ∈
PL is the start place of 6TPM where •ps = ∅, and pe ∈ PL
is the end place of 6TPM where p•e = ∅; and (4) ∀p ∈ P,
M0(p) = 1 if p = pe, M0(p) = 0 otherwise.
The top-level process model 6TPM is a kind of Petri nets

extended with abstract transitions, i.e. there are two kinds of
transitions, one kind to represent the normal activities, and the
other to represent the abstract procedures. To differ from the
normal transitions, an abstract transition is represented by a
double rectangle. For example, a top-level Petri net is shown
in Fig. 1, in which T1 is an abstract transition.
An abstract transition in the top-level model is just like a

black-box, and its semantics and contents are not clear for
this level, so the structure of each abstract transition should
be refined. The operation to refine the content of an abstract
transition is called Petri net refinement [23]–[26]. In this
paper, an abstract transition will be refined by a bottom-level
process model.
Definition 2 (Bottom-Level Process Model): A Petri net

6BPM = (P,T ;F,M0) is a bottom-level process model for a
workflow if (1) P = PL∪PM where PL is the logic places and
the PM is the message places exchanged between different
organizations or partners; (2) T represents the activities of a
process; and (3) For any p ∈ P, M0(p) = 0.
A bottom-level model 6BPM is different from a top-level

model as it does not contain any abstract transition. Therefore,
its firing rule is same as that of a standard Petri net, i.e., ∀t ∈
T , ∀M ∈ R(M0), t is enabled underM iff ∀p ∈• t ,M (p) ≥ 1.
Definition 3 (Refinement Operation): Let 6TPM =

(P,T ;F,M0) be a top-level process model and 6BPM =

(P1,T1;F1,M01) be a bottom-level process model. Given t
(t ∈ T ) is an abstract transition, t can be replaced by6BPM =

(P1,T1;F1,M01) if •t = {p|p ∈ P1 and •p = ∅} and t• =
{p|p ∈ P1 and p• = ∅}. The top-level model after refinement
is 6′TPM = (P′,T ′;F ′,M ′0), where (1) P′ = P ∪ P1;
(2) T ′ = (T − {t}) ∪ T1; (3) F ′ = ((P′ × T ′) ∪ (T ′ × P′)) ∩
(F ∪ F1); and (4) For any p′ ∈ P′,M ′0(p

′) = M0(p′) if p′ ∈ P,
and M ′0(p

′) = M01(p′) otherwise.
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FIGURE 2. An example bottom-level process model.

FIGURE 3. An example model after refinement.

TABLE 1. Symbols and meanings.

According to Definition 3, the refinement operation aims
to refine an abstract transition by a bottom-level model. The
structure of a bottom-level model will replace the abstract
transition and other parts in the original top-level model
keep invariant. For example, a bottom-level process model is
shown in Fig. 2, and we use this bottom-level process model
to refine the abstract transition T1. The top-level model after
refinement is shown in Fig. 3. Obviously, the top-level model
becomes a standard one after refinement.
Definition 4 (Input/Output Place and Read/Write Place):

Let 6TPM = (P,T ;F,M0) be a top-level process model, t ∈
T be an abstract transition, and a bottom-level model 61 =

(P1,T1;F1,M01) be the refinement model of t . We have (1)
The set {p|p ∈ ∪•(t ′), t ′ is a start transition of 61}, is the
input places of t , denoted by ◦t; (2) The set {p|p ∈ ∪(t ′)•,
t ′ is an end transition of 61}, is the output places of t ,
denoted by t◦; (3) The set •t −◦ t , denoted by �t , is named as
the read places of t; and (4) The set t• − t◦, denoted by t�,
is named as the write places of t .

Table 1 compares these six notations for each abstract
transition. To differ the read (write) places of an abstract
transition from its input (output) places, the arcs between
the read (write) places and the abstract transition are drawn
in broken lines. For example, in Fig. 1, T1 is an abstract
transition, and pm3 (pm4) is the input (output) place and pm2
(pm1) is the read (write) places of T1. Both arcs from T1 to
pm1 and that from pm2 to T1 are drawn in broken lines.
The firing rules of the top-level process model are defined

as follows: (1) ∀t ∈ TA, ∀M ∈ R(M0), t is enabled under
M iff ∀p ∈• t , M (p) ≥ 1; and (2) ∀t ∈ TP, ∀M ∈ R(M0),

FIGURE 4. Framework for top-down process mining.

t is enabled under M iff ∀p ∈◦ t , M (p) ≥ 1. These rules
are different from that of a standard Petri net. For example,
in Fig. 1, T1 can be fired if pm3 has at least one token even if
pm2 has no any token. Other properties about the top-level
model such as reachability, boundedness, and etc. can be
defined same as that of a standard one.

IV. FRAMEWORK FOR TOP-DOWN PROCESS MINING
In this section, the framework for top-down process mining is
first proposed, and then formal definitions of the multi-source
running logs are defined.

A. FRAMEWORK FOR TOP-DOWN PROCESS MINING
A framework for top-down process mining based on Petri net
refinement operation is illustrated in Fig. 4, which includes
four main steps:
Recording Running Logs: While a workflow system runs

on several distributed servers, each server can record the run-
ning logs for each activity and store them into a log database.
Such running logs collected from multi-source servers are
used for our top-down process mining. An example of run-
ning logs will be presented in the following subsection.
Process Mining From Top-Level Workflow Running Logs:

Using the collected running logs, our top-level process min-
ing algorithm aims to discover the top-level process model of
the workflow system. The mining results can be represented
in the formalized form of Petri nets extended with abstract
transitions. To protect security, the detailed contents of the
abstract transition cannot be obtained in this step.
Process Mining From Bottom-Level Workflow Running

Logs:Using the collected running logs, our bottom-level pro-
cess mining algorithm aims to discover the detailed model for
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FIGURE 5. An introduction example of the running logs.

each abstract procedure. The obtained bottom-level model is
shown in the standard form of Petri nets without any abstract
transitions.
Model Integration Based on Petri Net Refinement

Operation: After obtaining both the top-level process model
and the bottom-level process models from the distributed run-
ning logs, Petri net refinement operation is applied to refine
the abstract transitions with its corresponding bottom-level
models to obtain the integrated model of the whole workflow
system.

B. A MULTI-SOURCE RUNNING LOG EXAMPLE
During the execution of workflow systems, the information of
each activity and abstract procedure is recorded. For example,
Fig. 5 presents a screenshot segment of the running logs in
the XES format, which is a standard format developed by the
IEEE Task Force [45] for logging events. Its source event log
data is available at [46]. The following explanations are given
for the running logs.

(1) There are two running logs in the segment which
records the information about one activityA3 and one abstract
procedure PA1 (recorded as T1 in the event log); (2) The run-
ning log of one activity records the activity ID, case ID, oper-
ator, the start time, the end time, input messages and output
messages of this activity. For example, the operator of A3 is
theConsigner , the start time of activityA3 is [09:13April 04],
and the end time is [09:16 April 04]. The input message
record of A3 is empty, which means that the execution of
A3 does not need any message from other partners, and its
output message is pm1; and (3) There are some differences
between the running log of one activity and that of an abstract
procedure. Obviously, the log of an abstract procedure also

records the procedure ID, case ID, start time, and end time,
input messages and output messages. In addition, the mes-
sages read and writen during its execution are also recorded.
For example, the messages read of PA1 are pm3, pm6 and pm7,
and its write messages are pm2, pm5 and pm8, which means
that during its execution PA1 receives messages pm3, pm6 and
pm7 from other partners and sends messages pm2, pm5 and pm8
to others.

C. FORMAL DEFINITIONS OF THE MULTI-SOURCE
RUNNING LOGS
In this sub-section, we present the formal definitions of the
multi-source running logs.
Definition 5 (Running Log of an Activity): A running log

of an activity is a 7-tuple, ARLog = (Ai, ts, te, Operator ,
CaseID, InputMessage, OutputMessage), where (1) Ai is the
name (ID) of the activity; (2) ts is the start running time of
activity Ai; (3) te is the end running time of activity Ai, and
te ≥ ts; (4) Operator is the operator ID of Ai; (5) CaseID
indicates the case which Ai runs in; (6) InputMessage is the
input message set to execute Ai; and (7)OutputMessage is the
output message set when finishing Ai.

For example, the formalized form of the first log of activity
A3 in Fig. 5 as (A3, [09:13 April 04], [09:16 April 04],
Consigner , Case1122, ∅, {pm1}). In the following discussions,
we use Ai.ts and Ai.te to represent the start and end time
of activity Ai respectively, i.e., A3.ts =[09:13 April 04] and
A3.te =[09:16 April 04].
Definition 6 (Running Log of an Abstract Procedure): A

running log of an abstract procedure is a 9-tuple,
PRLog = (PAi, ts, te, Operator , CaseID, InputMessage,
OutputMessage, ReadMessage, WriteMessage), where (1)
PAi is the name (ID) of an abstract procedure; (2) ts is the start
running time of the abstract procedure PAi; (3) te is the end
running time of the abstract procedure PAi, and te ≥ ts; (4)
Operator is the operator ID of PAi; (5) CaseID indicates the
case whichPAi runs in; (6) InputMessage is the input message
set to execute PAi; (7) OutputMessage is the output message
set when finishing PAi; (8) ReadMessage is the read message
set during the execution of PAi; and (9) WriteMessage is the
write message set during the execution of PAi.

For example, the formalized form of the abstract pro-
cedure PA1 in Fig. 5 is (PA1, [09:18 April 04], [10:34
April 04], Consigner , Case1122, {pm1}, {pm3, pm6, pm7},
{pm2, pm5, pm8}, {pm9}).

In the following, both the activity and abstract pro-
cedure are called by a joint name as the assignment,
which is formalized as ASLog = (ASi, ts, te, Operator ,
CaseID, RequiredMessage, SentMessage). It is worth not-
ing that (1) for an activity, the RequiredMessage and
the SentMessage are same as its InputMessage and Out-
putMessage; and (2) for an abstract procedure, we have
RequiredMessage = InputMessage ∪ ReadMessage and
SentMessage = OutputMessage∪WriteMessage. For the rest
of this paper, we use the term assignment synonymously with
activity and abstract procedure.
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Definition 7 (Case): A case of a set of running logs of
assignments, i.e., RCase = {ASLog|} ASLog is a running log
of an assignment.
Definition 8 (Logs): A log is a set of cases, i.e., RLogs =
{RCase|RCase is a running case}.

Taking the running logs of logtop.XES in [46] as an exam-
ple, case RCase1122 = {A1,A2,A3,A4,A5,A6,A7,A8,A9,
A10,A11,A12,PA1,PA2,PA3} and the running logs RLogs =
{Case1122,Case1123,Case1124,Case1125}.
Definition 9 (Activity Set): Let RLogs be the running

logs of a workflow system, (1) ∀RCasei ∈ RLogs,
ActivitySet(RCasei) = {Aj|∀Aj ∈ RCasei, Aj = (Aj, ts,
te, Operator , CaseID, InputMessage, OutputMessage)} is
the activity set of RCasei; and (2) ActivitySet(RLogs) =⋃
RCasei∈RLogs

ActivitySet(RCasei) is the activity set of RLogs.

Definition 10 (Abstract Procedure Set): Let RLogs be
the running logs of a workflow system, we have
(1) ∀RCasei ∈ RLogs, ProcedureSet(RCasei) =

{PAj|∀PAj ∈ RCasei, PAj = (PAj, ts, te, Operator ,
CaseID, InputMessage, OutputMessage, ReadMessage,
WriteMessage)} is the abstract procedure set of RCasei; and
(2) ProcedureSet(RLogs)
=

⋃
RCasei∈RLogs

ProcedureSet(RCasei) is the abstract proce-

dure set of RLogs.
Following Definitions 9-10, we can also define

AssignmentSet(RCasei) as the assignment set of RCasei
and AssignmentSet(RLogs) of RLogs in the same way.
Obviously, we have: (1) AssignmentSet(RCasei) =

ActivitySet(RCasei)∪ProcedureSet(RCasei) where∀RCasei ∈
RLogs, 1 ≤ i ≤ |RLogs|; and (2) AssignmentSet(RLogs) =
ActivitySet(RLogs) ∪ ProcedureSet(RLogs). Considering for
example, we have AssignmentSet(RCase1122) = {A1,A2,
A3,A4,A5,A6,A7,A8,A9,A10,A11,A12,PA1,PA2,PA3},
ActivitySet(RCase1) = {A1,A2,A3,A4,A5,A6,A7,A8,A9,
A10,A11,A12} and
ProcedureSet(RCase1122) = {PA1,PA2,PA3}.
Definition 11 (Pre-Assignments and Post-Assignments):

Let RLogs be the running logs of a workflow system,
∀ASi,ASj ∈ AssignmentSet(RLogs), ASj is one of the post-
assignments of ASi (or ASi is one of the pre-assignments of
ASj), denoted by ASi � ASj, if ASi.te ≤ ASj.ts holds in all
cases of RLogs.
Definition 12 Direct Pre-Assignments and Direct Post-

Assignments: Let RLogs be the running logs of a workflow
system, ∀ASi,ASj ∈ AssignmentSet(RLogs), ASj is one of the
direct post-assignments of ASi (or ASi is one of the direct pre-
assignments of ASj), denoted by ASi ≺ ASj, if ASi � ASj and
there is no assignment ASk ∈ AssignmentSet(RLogs) such
that ASi � ASk and ASk � ASj.

The direct pre-assignments (or post-assignments) set ofASi
is denoted by ASi.PreSet (or ASi.PostSet). In the Case1122
in [46], the post-assignments of A3 are A4 and PA1, and A4 is
the direct post-activity of A3, denoted as A3.PostSet = {A4}.
The pre-assignments of PA1 are A3 and A4, and A4 is its direct
post-activity, denoted as PA1.PreSet = {A4}.

In this paper, we assume that the multi-source running logs
collected from those distributed servers are complete, i.e., the
logs contain sufficient information to derive the model.

V. TOP-DOWN PROCESS MINING FROM MULTI-SOURCE
RUNNING LOGS
In this section, top-down process mining approaches are first
presented and then Petri net refinement operation is used to
obtain the integrated model.

A. TOP-LEVEL PROCESS MINING
It is known that α−algorithm [11] is a classical algorithm
for process mining. Unfortunately, α−algorithm cannot be
applied directly to mine the process model for a top-level
process model with abstract procedures and messages. Here
we first present our mining approach to discover the top-level
process model. Our approach is mainly composed of two
functional components presented in Algorithms 1-2. Algo-
rithm 1 obtains assignment dependency relations, and Algo-
rithm 2 takes these relations as inputs to construct the final
top-level process model. Before rendering our mining algo-
rithms, we first define a function PostSet(ASi,RCase) to
calculate the direct post-assignments of assignment ASi in a
specific running case RCase.
Function 1: To obtain the ASi·PostSet of ASi in running

case RCase.
Begin:
1: For each ASi ∈ AssignmentSet(RCase) Do

ASi·PostSet ← ∅;
For each ASj ∈ AssignmentSet(RCase) Do
If ASi·te < ASj·ts then

ASi·PostSet ← ASi·PostSet ∪ {ASj};
End if

End do
End do

2: For each ASj ∈ ASi·PostSet Do
For each ASk ∈ ASj·PostSet Do
ASi·PostSet ← ASi·PostSet − {ASk};

End do
End do

3: return ASi·PostSet .
End

The complexity of Function 1 mainly lies in its first step
whose complexity is O(|RCase|2). Therefore, Function 1 has
its O(|RCase|2) complexity.

Table 2 shows part of an example running logs of the
top-level process model that involves two running cases,
Case1 and Case2. Based on the running log, required mes-
sages and sent messages of each assignment can be obtained
directly. Next, we propose Algorithm 1 to obtain the depen-
dency relations between different assignments.
Theorem 1: The complexity of Algorithm 1 is O(|Rlog| ∗
|RCase|3), where |Rlog| is the number of running cases in the
running logs and |RCase| is the number of assignments in a
running case.
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TABLE 2. Part of the example running logs of the top-level process model.

Algorithm 1 To Obtain the ASi·PreSet and ASi·PostSet of
Each Assignment ASi in the Running Logs
Input: RLogs
Output: (ASi, ASi·PreSet , ASi·PostSet ,

ASi·ReceivedMessage, ASi·SentMessage).
1: For each ASi ∈ AssignmentSet(RCase) Do

(1.1)ASi·PreSet ← ∅;
(1.2)ASi·PostSet ← ∅;

End do
2: For each ASi ∈ AssignmentSet(RCase) Do

ASi·PostSet ← ASi·PostSet ∪⋂
1≤j≤|RLog|

PostSet(ASi,RCasej);

3: For each ASi ∈ AssignmentSet(RCase) Do
For each ASj ∈ AssignmentSet(RCase) Do
ASi·PreSet ← ASi·PreSet∪{ASj|ASi ∈ ASj·PostSet};

End do
End do

4: return (ASi, ASi·PreSet , ASi·PostSet ,
ASi·ReceivedMessage, ASi·SentMessage).

Proof: The complexity of the function PostSet is
O(|RCase|2), thereby complexity of Step 2 is O(|Rlog| ∗
|RCase|3). Because the complexity of Algorithm 1 is mainly
determined by its second step, the complexity of Algorithm 1
is O(|Rlog| ∗ |RCase|3).

Take the example running logs in Table 2 as an exam-
ple. By executing Algorithm 1, the Pre-Set, Post-set,
ReceivedMessage and SentMessage are shown in Table 3.
Based on the assignment dependency relations in Table 3,
we present Algorithm 2 to construct the top-level process
model.
Theorem 2: The complexity ofAlgorithm 2 isO(|RCase|2)

where|RCase| is the number of assignments in a running case.
Proof: The complexity of Algorithm 2 is mainly deter-

mined by Step 3 whose complexity is O(|RCase|2). There-
fore, Algorithm 2 has a O(|RCase|2) complexity where
|RCase| is the number of assignments.
As the input of Algorithm 2 contains both abstract pro-

cedures and normal activities, thereby its mining result is a

TABLE 3. Pre-set and post-set of each assignment in the top-level
example process model.

Petri net extended with abstract transitions, i.e. a top-level
process model as defined in Definition 1. Take the assignment
dependency relations in Table 3 as an example. By executing
Algorithm 2, the model mined for the top-level example
process is shown in Fig. 1, satisfying: (1) there are 5 activities
and 1 abstract procedure that are represented by transition ti
(i = 1, 2, · · · , 5) and abstract transition T1 respectively;
and (2) the detailed process of the abstract procedure cannot
be obtained at this stage. Therefore, we need to mine its
corresponding bottom-level models from its running logs to
refine it.

B. BOTTOM-LEVEL PROCESS MINING
To refine abstract procedures in a top-level process model,
bottom-level process models are needed. Then Algorithm 3
is proposed to mine the bottom-level model from its corre-
sponding running logs.
Theorem 3: The complexity ofAlgorithm 3 isO(|RCase|2)

where |RCase| is the number of activities in a running case.
Proof: The complexity of Algorithm 3 is mainly deter-

mined by Step 2 whose complexity is O(|RCase|2). Thus, the
complexity of Algorithm 3 is O(|RCase|2) where |RCase| is
the number of activities.

As the input of Algorithm 3 contains only normal activ-
ities, thereby its mining result is a traditional Petri net, i.e.
a bottom-level process model as defined in Definition 2. Take
the running logs in Table 4 as an example. By executing
Algorithm 1, the Pre-Set, Post-set, ReceivedMessage and
SentMessage of each assignment are shown in Table 5. Then,
by executing Algorithm 3, we can obtain the bottom-level
process model as shown in Fig. 2. Then, how to integrate the
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Algorithm 2 To Obtain the Top-Level Process Model 6TPM

Input: {(ASi,ASi·PreSet,ASi·PostSet,ASi·ReceivedMessage,
ASi·SentMessage)|1 ≤ i ≤ |RCase|,RCase ∈ RLog}.

Output: 6TPM = (P,T ;F,M0).
1: P← ∅, PL ← ∅, PM ← ∅, T ← ∅, TA ← ∅, TPA ← ∅,
F ← ∅, andM0← ∅.

2: For each ASi ∈ AssignmentSet(RCase) Do
If ASi ∈ ActivitySet(RCase) then
TA← TA ∪ {ASi};

else if ASi ∈ ProcedureSet(RCase)
TPA← TPA ∪ {ASi};

End if
End do
T ← TA ∪ TPA;

3: For each ASi,ASj ∈ T Do
If ASj ∈ ASi·PostSet then

(3.1) PL ← PL ∪ {pij};
(3.2) F ← F ∪ {(ASi, pij), (pij,ASj)};

End if
End do

4: For each ASi ∈ T Do
If ASi·ReceivedMessage 6= ∅ then
For each mi ∈ ASi·ReceivedMessage Do

(4.1) PM ← PM ∪ {pmi};
(4.2) F ← F ∪ {(pmi,ASi)};

End do
End if

End do
5: For each ASi ∈ T Do

If ASi·SentMessage 6= ∅ then
For each mi ∈ ASi·SentMessage Do
(5.1) PM ← PM ∪ {pmi};
(5.2) F ← F ∪ {(ASi, pmi)};

End do
End if

End do
6: For each ASi ∈ T Do

If ASi·PreSet == ∅ then
(6.1) PL ← PL ∪ {ps};
(6.2) F ← F ∪ {(ps,ASi)};

Else if ASi·PreSet == ∅ then
(6.3) PL ← PL ∪ {pe};
(6.4) F ← F ∪ {(ASi, pe)};

End if
End do

7: For each p ∈ P Do
If p == ps then
M0(p)← 1;

Else
M0(p)← 0;

End if
End do

8: return 6TPM = (P,T ;F,M0).

Algorithm 3 To Obtain the Bottom-Level Process Model
6BPM

Input: {(ASi,ASi·PreSet,ASi·PostSet,ASi·ReceivedMessage,
ASi·SentMessage)|1 ≤ i ≤ |RCase|,RCase ∈ RLog}.

Output: 6BPM = (P,T ;F,M0).
1: P ← ∅, PL ← ∅, PM ← ∅, T ←

AssignmentSet(RCase), F ← ∅,andM0← ∅.
2: For each ASi,ASj ∈ T Do

If ASj ∈ ASi·PostSet then
(2.1) PL ← PL ∪ {pij};
(2.2) F ← F ∪ {(ASi, pij), (pij,ASj)};

End if
End do

3: For each ASi ∈ T Do
If ASi·ReceivedMessage 6= ∅ then

For each mi ∈ ASi·ReceivedMessage Do
(3.1) PM ← PM ∪ {pmi};
(3.2) F ← F ∪ {(pmi,ASi)};

End do
End if

End do
4: For each ASi ∈ T Do

If ASi·SentMessage 6= ∅ then
For each mi ∈ ASi·SentMessage Do
(4.1) PM ← PM ∪ {pmi};
(4.2) F ← F ∪ {(ASi, pmi)};

End do
End if

End do
5: P← PL ∪ PM .
6: return 6BPM = (P,T ;F,M0).

bottom-level processmodels with the top-level processmodel
will be discussed in the following.

C. PETRI NET REFINEMENT FOR PROCESS INTEGRATION
Process mining technology is used to separately discover the
top-level and bottom-level models. Then how to integrate
them to obtain the integrated model is our main concern. Petri
net refinement operation as defined in Definition 3 is used.
With the refinement operation, one abstract transition in the
top-level process model can be refined by its corresponding
bottom-level model. Next, we present Algorithm 4 to conduct
the refinement operation.
Theorem 4: The complexity of Algorithm 4 is O(|TPA|2)

where|TPA| is the number of abstract procedures in a running
case.

Proof: The complexity of Algorithm 4 is mainly deter-
mined by Step 3 whose complexity is O(|TPA|2). Therefore,
the complexity of Algorithm 4 isO(|TPA|2) where |TPA| is the
number of abstract procedures.
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TABLE 4. Part of the running logs of the example abstract procedure.

Algorithm 4 To Refine a Top-Level Process Model 6TPM
Using a Set of Bottom-Level Process Models 6BPMi

Input: 6TPM = (P,T ;F,M0) and 2 = {6BPMi =

(Pi,Ti;Fi,M0i)|1 ≤ i ≤ |TP|}.
Output: 6′TPM = (P′,T ′;F ′,M ′0).
1: P′← P, T ′← T , F ′← F ,andM ′0← M0.
2: For each 6BPMi ∈ 2 Do

(2.1) In(6BPMi) ← ∅; /*In(6BPMi) is the input place
set of 6BPMi*/

(2.2) Out(6BPMi) ← ∅; /*Out(6BPMi) is the output
place set of 6BPMi*/

For each pi ∈ P Do
If •pi == ∅ then
In(6BPMi)← In(6BPMi) ∪ pi;

Else if p•i == ∅ then
Out(6BPMi)← Out(6BPMi) ∪ pi;

End if
End do

3: For each t ∈ TPA Do
For each 6BPMi ∈ 2 Do

If (•t == In(6BPMi)) ∧ (t• == Out(6BPMi)) then
(3.1) P′← P′ ∪ Pi;
(3.2) T ′← (T ′ − t) ∪ Ti;
(3.3) F ′← (F ′ ∪ Fi) ∩ ((P′ × T ′) ∪ (T ′ × P′));

End if
End do

End do
4: return 6′TPM = (P′,T ′;F ′,M ′0).

As all abstract transitions in the top-level process model is
refined with its corresponding bottom-level process models,
therefore no abstract transition is involved in the refined
process model, i.e. it is a traditional Petri net. By exe-
cuting Algorithm 4, the integrated model is shown
in Fig. 3.

VI. RUNNING CASE AND EXPERIMENTAL VERIFICATION
In this section, a multi-modal transportation business process
is used as a typical case to illustrate our top-down process
mining approaches.

A. A MULTI-MODAL TRANSPORTATION BUSINESS
PROCESS CASE
For security and privacy sake, the inner data of a partner will
be stored in its own database and will not be accessed by

TABLE 5. Pre-set and post-set of each assignment in the bottom-level
example process model.

TABLE 6. Dataset and objectives of experiments.

others. To satisfy the requirements of security, a two-level
system architecture is required.

To realize this two-level architecture, four distributed
database servers will be used to record the system running
logs. (1) The top-level architecture is an abstraction of the
whole multi-modal transportation business process. The run-
ning logs of this level will be stored in a single database
server; (2) The transportation preparation procedure consists
of transportation planning, goods preparation with the sender
and the payment processes with the carrier and the shipper.
The running logs of this procedure will be stored in a database
server owned by the consigner; (3) The carrier transportation
procedure includes activities such as booking acceptance,
goods loading, issue waybill and payment. The running logs
of this procedure will be stored into the database server kept
by the carrier; and (4) The shipper transportation procedure
includes activities such as booking acceptance, shipper inven-
tory, terminal receipt, payment, delivery, goods arrival and
the interaction with the wharfinger. The running logs of this
procedure will be store in a database server within the shipper.

B. EXPERIMENTAL VERIFICATION
In this subsection, the mining methods will be validated using
the following experiments whose dataset [46] and objectives
are concluded in Table 6.
Experiment 1: Table 7 shows part of the running logs of the

top-level architecture that involves one running case, Case1.
According to Table 7, required messages and sent messages
of each assignment can be obtained directly. Taking these run-
ning logs as input and execute Algorithm 1, the Pre-Set, Post-
set, ReceivedMessage and SentMessage of each assignment
are shown in Table 8. By executing Algorithm 2 which takes
Table 8 as input, the top-level process model of multi-modal
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TABLE 7. Part of the running logs of the top-level process model.

TABLE 8. Pre-set and post-set of each assignment in the top-level process model.

FIGURE 6. Top-level model of the multi-modal transportation business
process.

transportation business process is shown in Fig. 6, and the
meanings of message places are given in Table 9.
The result of our top-level mining is a top-level process

model with abstract transitions that are represented by tran-
sition Ai (i = 1, 2, · · · , 12) and abstract transitions Tj (j =
1, 2, 3). The detailed process about these three abstract pro-
cedures cannot be obtained at this stage. Therefore, we need
to conductExperiment 2, i.e. mine the bottom-level models of

TABLE 9. Meaning of each message.

these three abstract procedures from their respective running
logs.
Experiment 2: Part of the running logs of the transporta-

tion preparation procedure, the carrier transportation proce-
dure and the shipper transportation procedure are shown in
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TABLE 10. Part of the running logs of the transportation preparation procedure.

TABLE 11. Part of the running logs of the carrier transportation procedure.

TABLE 12. Part of the running logs of the shipper transportation procedure.

FIGURE 7. Process model of the transportation preparation procedure.

FIGURE 8. Process model of the carrier transportation procedure.

Tables 10-12. First, we consider Table 10, the Pre-Set, Post-
set, ReceivedMessage and SentMessage of each assignment
are shown in Table 13 with Algorithm 1. Then, by executing
Algorithm 3 we can obtain the bottom-level process model
for the transportation preparation procedure (T1) as shown
in Fig. 7 where eight activities represented as A1.i (i =
1, 2, · · · , 8) are involved.
Finally, we consider the shipper transportation procedure

whose running log segment is shown in Table 12. By exe-
cuting Algorithm 1, the dependency relations between each

FIGURE 9. Process model of the shipper transportation procedure.

assignment are shown in Table 15. And then taking the
these dependency relations as inputs to run Algorithm 3,
we can obtain the bottom-level process model for the ship-
per transportation procedure (T3) as shown in Fig. 9 where
nine activities represented as A3.i (i = 1, 2, · · · , 9) are
involved.

Next, we consider the running logs in Table 11. By exe-
cuting Algorithm 1, the dependency relations between each
assignment are shown in Table 14. And then taking the
these dependency relations as inputs to run Algorithm 3,
we can obtain the bottom-level process model for the
carrier transportation procedure (T2) as shown in Fig. 8
where four activities represented as A2.i (i = 1, 2, 3, 4) are
involved.
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FIGURE 10. Refinement model for the multi-modal transportation business process.

Experiment 3: The bottom-level process models in
Figs. 7-9 are correspond with the three abstract procedures
in Fig. 6. Then the abstract transitions T1, T2 and T2 can be
refined by the models in Figs. 7-9 using Algorithm 4. The
refined multi-modal transportation business process model is
shown in Fig. 10. Because no abstract transition is involved
in the refined model, we argue that the integration result of
Algorithm 4 is a traditional Petri net.

C. EXPERIMENTAL RESULT ANALYSIS
According to integrated model shown in Fig. 10, the typical
scenario of this multi-modal transportation business process
is described as follows/ There are seven roles in the process
including the sender, consigner, carrier, shipper, and buyer
in the main transportation process. Besides, the consigner
should have customer service declaration before delivering
the goods to the carrier, especially for overseas business.
And, the shipper should transport goods to wharfinger for
long-term storage. Therefore, another two roles, customer
service center and wharfinger, are also involved. This typ-
ical multi-modal transportation business process scenario
includes the following steps: (1) To start a transportation,
the sender should first apply for a transportation task from
the consigner; (2) After accepting a transportation application
from the sender, the consigner will generate a transportation
contract; (3) Then the sender signs the contract together;
(4) Receiving the contract assigned by the sender, the con-
signer will send a booking request to the carrier partner and
the shipper partner, respectively; (5) If the booking requests
are both accepted, the consigner will prepare containers and
packing notice is sent to the sender to prepare the transporta-
tion goods; (6) When the goods arrive, the consigner pack
the goods and make the transportation declaration. The cus-
tomer service center will audit and then release the legitimate
goods to load by the carrier; (7) The carrier loads the trans-
portation goods and then issues its waybill to the consigner;
(8) According to the waybill, the consigner will give the
payment to the carrier; (9) After obtaining the payment, the

goods will be delivered and be transferred to the shipper by
the carrier; (10) After receiving the booking request from the
consigner, the shipper partner will inform the wharfinger to
tally the goods and prepare shipping; (11) When the shipper
receives the goods transferred from the carrier, the wharfinger
will inform the container entrance to prepare shipping; (12)
The terminal receipt will be sent to the consigner to obtain
the shipping payment; (13) After receiving the payment,
the goods will be delivered by the shipper; (14) Next the
sender will be informed to pay for the transportation goods
after payment by the consigner to the carrier and shipper;
(15) After payment, the consigner will generate a delivery
order and send a release form to the buyer; and (16) When
the goods arrival, the buyer will pick up them with the release
form.

As there are lots of messages exchanged between different
organizations or partners, the business logic is really com-
plex. As a consequence, to directly construct the model for
such a complicated cross-organizational business process is
obviously a time-consuming and error-prone process. Fortu-
nately, our top-down process mining approaches proposed
such a method to discover the complex business process
model from its system running logs.

D. QUALITY METRICS EVALUATION
Process mining algorithms typically aim to discover a process
model from event log that describe the recorded behavior.
In this sub-section, we measure the quality of the discovered
processmodel with our proposedmethod. Usually, the quality
of a process discovery approach is measured by the following
three quality dimensions:
• Fitness quantifies the extent to which a discovered
model can accurately reproduce the cases recorded in the
log.

• Precision quantifies the fraction of the behavior allowed
by the model which is not seen in the event log.

• Generalization assesses the extent to which the resulting
model will be able to reproduce future behavior of the
process.
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TABLE 13. Pre-set and post-set of each assignment in the transportation preparation procedure.

TABLE 14. Pre-set and post-set of each assignment in the carrier transportation procedure.

TABLE 15. Pre-set and post-set of each assignment in the shipper transportation procedure.

Besides the quality metric evaluations of the diovered pro-
cess model, we also compare the discovered process models
using the proposed approach with some related works, i.e.,
Alpha Miner [11], ILP (language-based region) Miner [47],
Inductive Miner [21]), in terms of different quality metrics.
Some of the comparison results and explanations are demon-
strated in the following. Generally speaking, our experiment
is conducted based on the open source process mining toolkit,
ProM, developed by the AIS group of TU/e. It contains the
following consecutive steps:
Step 1: As these existing process discovery approaches

cannot handle the distributed event logs, we first merge them
into an integrated data set using the plug-in ‘‘Merge Event
Logs’’ [48] by configuring the merge attribute as Case Id.
Step 2: By taking the merged event log as input, we apply

Alpha Miner, ILP Miner, Inductive Miner to discover their
respective process models.
Step 3: Using these discovered process models and the

merged event log, we run Replay a Log on Petri net for
conformance Analysis plugin [49] to measure the replay
fitness. Similarly, the precision and generalization metrics
are evaluated using Measure Precision and Generalization
plugins. The evaluation results is shown in Table 16.

According to Table 16, the typical algorithms guaranteeing
perfect replay fitness are ILP miner and our top-down miner.

TABLE 16. Quality comparison of process models using different miners.

However, the generalization of the ILP miner is relatively
low. The precision of the Alpha miner is the highest while it
tends to be less general. Moreover, while the Inductive miner
can guarantee a high fitness and generalization its precision
is poor. In a nutshell, our proposed mining approach allow for
more traces to fitting and are more precise even though it is
less general. This evaluation results also prove the conclusion
that process discovery algorithms typically consider at most
two out of these quality dimensions by [50].

VII. CONCLUSION
A complex enterprise information system is usually imple-
mented on a distributed platform. The running logs of the
workflow systems contain detailed information about the exe-
cution behaviors of activities. In this paper, we discuss how
to discover the model for a complex workflow from multi-
source heterogeneous logs collected from distributed servers.
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By obtaining the top-level process model with abstract proce-
dures and the bottom-level process models for each abstract
procedures, Petri net refinement operation is used to integrate
these process models to obtain the process model for the
whole workflow system.

In this paper, we assume that the running logs of the work-
flow used for process mining are well-formed and without
noise. However, a set of well-formed running logs is usu-
ally difficult to obtain. Noise may occur when, for example,
a wrong activity is executed before or after another activity.
Obviously, running logs with noise will definitely lead to
improper mining result. Therefore, the detection approach of
noise and infrequent behavior in the distributed running logs
is badly needed. Meanwhile, the running logs also record the
messages exchanged between different organizations. In fact,
the execution of some activities in one organization usually
need to access messages sent by other partner. As a conse-
quence, the approach towards cross-organizational message
consistency verification will also be highly desired in the
future.
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