
Received January 28, 2020, accepted March 17, 2020, date of publication March 30, 2020, date of current version April 17, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2984023

Hybrid Nature-Inspired Optimization Algorithm:
Hydrozoan and Sea Turtle Foraging
Algorithms for Solving Continuous
Optimization Problems
DARANAT TANSUI AND ARIT THAMMANO
Computational Intelligence Laboratory, Faculty of Information Technology, King Mongkut’s Institute of Technology Ladkrabang, Bangkok 10520, Thailand

Corresponding author: Arit Thammano (arit@it.kmitl.ac.th)

This work was supported by the King Mongkut’s Institute of Technology Ladkrabang.

ABSTRACT In this paper, we develop a hybrid optimization algorithm inspired by the reproduction
processes of hydrozoans and the foraging behavior of sea turtles for solving continuous optimization
problems. Our hybrid algorithm combines the exploration capability of the hydrozoan algorithm with the
exploitation capability of the sea turtle foraging algorithm. Moreover, a new adaptive crossover operator
was introduced and integrated into the hybrid algorithm to further enhance exploration capability. Our
hybrid algorithmwas evaluated and compared to the individual algorithms and 12 state-of-the-art algorithms.
Results on 21 standard benchmark functions showed that our algorithm was very effective and was among
the best of the group, specifically it converged faster than the individual algorithms on most functions and
reached optimal or near-optimal results on all functions.

INDEX TERMS Hybrid algorithm, hydrozoan, nature-inspired algorithm, optimization, sea turtle.

I. INTRODUCTION
Optimization is an applied science that determines the best
values of parameters so as to minimize or maximize an objec-
tive function of a problem, subject to constraints on the vari-
able values. Many real-life problems, when modeled mathe-
matically, turn out to be optimization problems. Discovering
global optimal solutions is needed in many fields, for exam-
ple, science, engineering, economics and finance [1], [2].

Methods to solve optimization problems can be classi-
fied either as exact or approximate. Exact algorithms often
require unacceptably large computational resources and time
to find the optimum; good approximate algorithms can find
near-optimal solutions using only a fraction of the resources
and time. Approximate algorithms are further divided into
two main groups: heuristic and metaheuristic algorithms.
The metaheuristic algorithms optimize the solution of a
problem by iteratively improving a candidate solution with
regard to a given quality measure. The goal is to effi-
ciently explore the search space in order to find near–optimal

The associate editor coordinating the review of this manuscript and
approving it for publication was Jenny Mahoney.

solutions [3], [4]. Over the past decade, nature-inspired
metaheuristic algorithms have been widely used to find
solutions for many complex problems in engineering and
computer science [5]. Examples include Genetic Algo-
rithm (GA), Particle Swarm Optimization (PSO), Flower
Pollination Algorithm (FPA), Invasive Weed Optimization
(IWO), Biogeography-Based Optimization (BBO), Bat Algo-
rithm (BA) and Firefly Algorithm (FA). GA is an optimiza-
tion algorithm based on the Darwin’s model of natural selec-
tion and evolution [6]. PSO was motivated by the social
behavior of living organisms, for example, flocking birds and
schooling fish. FPA was inspired by flower pollination [7].
IWO is a metaheuristic algorithm that was inspired by the
spreading process in weed colonization. BBO was inspired
by the emigration and immigration of living organisms into
and out of various habitats based on biophysical theories of
distribution of living organisms. The outstanding feature of
BBO is the sharing of information between solutions, which
enables them to converge rapidly to the global optimum [8].

Each of the metaheuristic algorithms has their own
strengths and drawbacks; there is no method that can effec-
tively solve all optimization problems [9]. The performance

65780 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0002-0446-5396
https://orcid.org/0000-0002-4317-7370

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

of the metaheuristic algorithms depends on their ability to
explore widely and find deep solutions. Therefore, many
researchers have often combined two or more metaheuristic
algorithms to form hybrid ones, which improve overall per-
formance by using the strength of one to compensate for lim-
itations of another. As a result, near global optimal solutions
can be obtained more efficiently than by using one algorithm
alone. The structure of a hybrid metaheuristic algorithm usu-
ally consists of a main algorithm, reinforced by an auxiliary
metaheuristic. The main algorithm is an iterative generation
process, that directs an auxiliary metaheuristic to explore
and exploit the search space. Several hybrid algorithms are
discussed in the following paragraphs.

Genetic algorithm (GA) is a widely recognized, com-
monly used optimization method [10]. Basically, a GA is a
population-based stochastic search approach that mimics nat-
ural selection in the biological world. However, a GA has two
major drawbacks: low convergence speed and easily being
trapped in local optima. To remedy these drawbacks, Mah-
moodabadi and Nemati [11] introduced an adaptive genetic
algorithm (AGA) with new crossover and mutation operators.
The new crossover operator was based on the combination
of the traditional crossover and the particle swarm optimiza-
tion, while the mutation operator used the concepts of the
sliding mode control. The performance of this algorithm was
tested using both unimodal and multimodal test functions
and was found to be better than some well-established GAs.
Farnad et al. [4] combined a GA, a particle swarm optimiza-
tion (PSO) and a symbiotic organisms search (SOS) into a
new hybrid method, capable of solving continuous optimiza-
tion problems. The GA created offspring which inherited a
better genetic structure from their parents. This helped PSO to
find a better experience for each organism and this experience
helped the SOS to catch a better survival opportunity in the
symbiotic interaction. Together, these three component algo-
rithms reduced the execution time and improved the solution
quality. Zhang et al. [12] described a new hybrid PSO-GA for
optimizing the performance of a biodiesel engine. Their algo-
rithm had a two-step process, ‘‘PSO update step’’ followed by
‘‘GA step.’’ The hybrid converged faster and performed better
than the original GA and PSO.

Particle swarm optimization (PSO) is a widely used
population-based algorithm for solving continuous optimiza-
tion problems. In spite of its simplicity and efficiency, PSO
often converges prematurely [13]. To overcome this draw-
back, many researchers hybridized PSO with other algo-
rithms. Hakli and Uğuz [14] hybridized PSO with Levy
flight. The new hybrid algorithm, called LFPSO, searched
in the large spaces more effectively due to the long jumps
made by particles. In this method, a jump limit was defined
for each particle. The jump limit was increased, if the par-
ticles were unable to sufficiently improve at the end of
an iteration. Its performance exceeded that of other PSO
variants in solution quality and robustness. Javidrad and
Nazari [15] hybridized PSO with simulated annealing (SA)
to integrate the good exploration capability of PSO with

the good exploitation capability of SA. This hybrid tech-
nique was evaluated on three criteria: stability of solution,
average number of function evaluations in successful runs
and average number of function evaluations, considering all
successful and unsuccessful runs. On these criteria, their
hybrid PSO-SA performed better than the standard PSO
and Shieh’s PSO-SA method. Garg [16] described another
PSO-GA hybrid, in which the genetic operators, crossover
and mutation, were embedded in the standard PSO to attain a
balance between the exploration and exploitation. The perfor-
mance on several engineering problems was better than other
reported methods.

The Flower Pollination Algorithm (FPA) was developed
by Yang [17], inspired by the pollination of flowering plants.
Pollination occurred in twomajor ways: abiotic pollen disper-
sion, in which wind or rain spreads pollen locally and biotic
pollen dispersion, in which living organisms that visit flowers
carry pollen to places in the global search space. Nabil [18]
developed a metaheuristic algorithm that combined FPA with
the Clonal Selection Algorithm (CSA). In each iteration,
the best fourteen solutions from the population were cloned
proportionally to their fitness by the clonal operator. Cloning
enhanced the exploitation ability. Their algorithm was able to
find more accurate solutions than five other well-known opti-
mization algorithms. Zhou et al. [19]modified FPA to an Elite
Opposition-based Flower Pollination Algorithm (EOFPA).
To enhance the exploitation and exploration abilities of FPA,
two optimization strategies were incorporated into the FPA: a
global elite opposition-based learning which enhanced pop-
ulation diversity and a local self-adaptive greedy strategy
which enhanced exploitation ability. EOFPA was able to find
accurate solutions quickly, with a high degree of stability.

The Invasive Weed Optimization (IWO) of Mehrabian and
Lucas [20] was motivated by the ecological process of weeds
colonization and distribution; it was an efficient and robust
optimizer. However, it suffered from low convergence. Naidu
and Ojha [21] hybridized IWO with a Quadratic Approxima-
tion (QA) operator to form QAIWO, which converged faster.
QAIWO performed significantly better than IWO and GA.
Cai et al. [22] hybridized IWO and Differential Evolution
(DE). IWO was used as a local refinement step to adaptively
exploit local regions around solutions with high fitness. DE,
a global stochastic search algorithm, was used to find more
promising solutions among elite solutions, refined by IWO.
An adaptive weighted sum fitness assignment and polyno-
mial distribution managed the reproduction and the local
dispersion of IWO. More recently, a new hybrid of IWO,
called IWO/BBO [8], was presented. IWO/BBO featured
three new components: (i) migration; (ii) gradient descent;
and (iii) mutation. In the original IWO, each individual
plant used its own features to randomly distribute new seeds
over the search space. There was no sharing of features
among individuals. In IWO/BBO, on the contrary, a migra-
tion operator from biogeography-based optimization (BBO)
provided the hybrid with a feature-sharing capability. This
modification improved the quality of the distributed seeds.

VOLUME 8, 2020 65781

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

Gradient descent improved the local search ability of IWO,
while mutation increased the population diversity.

Biogeography-based optimization (BBO) was originally
suggested by Simon [23]. Biogeography investigated the
distribution of organisms in an ecosystem and the relations
between them. Migration and mutation were the two main
operators. The migration operator provided exploitation abil-
ity, while the exploration of the search space was based on
the mutation operator. As in other biology-based algorithms,
BBO had features to share information among solutions and
to maintain good solutions from one iteration to the next.
Chen et al. [24] embedded the covariancematrix basedmigra-
tion (CMM) into BBO to relieve BBO dependence upon
the coordinate system. In CMM-BBO, the original coor-
dinate system was rotated into an eigenvector-based coor-
dinate system, in which solutions shared their information
more efficiently. Gong et al. [25] developed a real-coded
biogeography-based optimization (RCBBO) to extend the
original BBO, so that each individual was directly encoded
as a floating-point entity for solving global continuous
optimization problems. Three mutation operators, Gaussian
mutation, Cauchy mutation, and Lévy mutation, were also
integrated into BBO to enhance its exploration ability and
improve population diversity.

Yang’s Bat Algorithm (BA) [26] was inspired by the social
behavior of bats and their ability to use echolocation to
sense distance. Liu et al. [27] incorporated the chaos strategy
and Extremal Optimization (EO) algorithm into the BA to
enhance the local search capability and the ability to escape
from local optima. Yildizdan and Baykan [28] combined the
Differential Evolution (DE) algorithm with the modified BA
to balance the exploration and exploitation capability. The
resulting hybrid algorithm showed superior performance to
the standard BA in all tests. Ramli et al. [29] added adap-
tive dimension and inertia weight modifications to BA. The
search performance and convergence speed of the modified
BA significantly improved.

The Firefly Algorithm (FA) [30] was influenced by
the flashing behavior of fireflies to attract one another.
Rizk-Allah et al. [31] combined the FA with an ant colony
optimization (ACO) algorithm. This hybrid was initialized
using the ACO algorithm. Then the firefly algorithm was
put to work as a local search to refine the solutions found
by the ants. Ritthipakdee et al. [32] presented Firefly Mat-
ing Algorithm (FMA) for solving continuous optimization
problems, in which GA was used as the core, incorporating
a new mating pair selection method, which was inspired by
the natural mating behavior of fireflies. The new mating pair
selection method helped to improve convergence.

Several other interesting metaheuristic algorithms pre-
sented recently are reviewed next. Khalilpourazari and
Khalilpourazary [33] used a Multi-Objective Dragonfly
Algorithm (MODA) to simultaneously optimize final sur-
face roughness, time and cost of grinding. The quality of
the non-dominated Pareto optimal solutions, obtained from
MODA, was significantly better than existing approaches.

Pasandideh and Khalilpourazari [34] devised a Sine Cosine
Crow Search Algorithm (SCCSA) based on two metaheuris-
tics, Crow Search Algorithm and Sine Cosine Algorithm.
SCCSA combined the concepts and operators of the two
algorithms to ensure that all search agents followed other
solutions and no low-quality random solution was generated.
Significant improvements over the individual algorithms
were shown. Khalilpourazari and Khalilpourazary [35]
presented Sine Cosine Whale Optimization Algorithm
(SCWOA), a hybrid of Sine Cosine Algorithm and Whale
Optimization Algorithm, to optimize the parameters of a
multi-pass milling process. SCWOA outperformed several
previous works. Khalilpourazari and Khalilpourazary [36]
devised a hybrid of Water Cycle Algorithm (WCA) and
Moth-Flame Optimization (MFO) for solving numerical
and constrained engineering optimization problems. In this
hybrid, the spiral movement of the MFO was introduced
into WCA to enhance its exploitation ability. Moreover,
the streams in WCA were allowed to update their positions
using a random walk, which helped improve exploration.
Khalilpourazari and Pasandideh [37] used an exact method,
called Sequential Quadratic Programming (SQP), and two
hybrid metaheuristic algorithms, named Sine Cosine Crow
Search Algorithm (SCCSA) and Water Cycle Moth-Flame
Optimization (WCMFO) algorithm, to solve multi-item
multi-constrained economic order quantity model. SQP
solved small size problems efficiently; however, WCMFO
was the best method for medium and large problems. Tansui
and Thammano [38] developed Hydrozoan Algorithm (HA)
based on the life cycle of hydrozoans, especially regeneration
and transplantation, which included the formation of new
animals, that are genetically different from their parents,
as well as new ones, that are genetically identical to their par-
ents. HA was specifically designed to find the best solutions
for continuous optimization problems. It was benchmarked
against GA and PSO on 20 standard benchmark functions.
Even though HA was more successful than GA and PSO,
HA did not find the global optima for most of the benchmark
functions. Tansui and Thammano [39] presented Sea Turtle
Foraging Algorithm (STFA), which imitated the foraging
behavior of sea turtles moving toward a food source using
an odor trail of dimethyl sulfide (DMS), which faded with
distance and time. Further, turtle movement also depended on
the direction and speed of the ocean current. The performance
test on five unimodal functions revealed very good results,
achieving optimal solutions in 4 out of 5 unimodal functions.
However, STFA suffered from local optima stagnation due to
its poor exploration capability.

To summarize, many individual metaheuristic algorithms
have some weaknesses, for example, low robustness, prema-
ture convergence and little or no use of prior knowledge.
Hybrids of metaheuristic algorithms have achieved better
performance in finding optimal or near-optimal solutions than
individual algorithms.

The algorithm described here is a hybrid of HA and STFA.
This algorithm combined the advantages of both algorithms,

65782 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

viz. the good exploitation capability of STFA and the good
exploration capability of HA.

The rest of this article is organized as follows.
Section II describes the theoretical background. Section III
explains our algorithm in detail. Section IV discusses the
experimental results. Section V concludes with our contri-
butions and indicates several directions for future research.

II. THEORETICAL BACKGROUND
A. HYDROZOAN ALGORITHM
The hydrozoan algorithm (HA) was inspired by reproduc-
tion in the hydrozoan life cycle. Hydrozoans are very small
predators; most live in saltwater, but some species are found
in freshwater. The hydrozoan has a very complex life cycle,
which includes both sexual and asexual reproduction. A typ-
ical hydrozoan life cycle has three stages: the motile planula
larva, the polyp, and the pelagic medusa [40]–[42]. Plan-
ula larvae are developed from sexual reproduction between
medusae. The planula larvae then navigate through the water
until they reach a hard surface and grow into polyps. Polyps
reproduce asexually by developing small, genetically iden-
tical buds that protrude from the parent polyps. When the
buds mature, they bud off to become independent medusae.
In budding, the onset of budding and the bud development
are controlled by two morphogens, called an activator and
an inhibitor. These morphogens interact with each cell and
control the increment and decrement of a growth parame-
ter [43]. Once the medusae are released from the polyps, they
gradually mutate. Some are stronger than others. Thenmating
pairs form and reproduce sexually.

HA imitates the nature of these three main stages of
hydrozoan life cycle to make the search more effective. The
operators used in HA are:
• one type of mutation operator is used to imitate the
planula larvae swimming through the water,

• clonal selection is used to imitate asexual reproduction
of the polyps and

• another type of mutation operator and the crossover
operator are used to mimic medusa behavior.

The pseudocode of the HA is shown in Algorithm 1 and
described below:

Step 1: Randomly generate the positions of N hydrozoans.

Hi(0) =
[
h1i , h

2
i , . . . , h

D
i

]
(1)

where i = 1 to N.
Step 2: Evaluate the fitness of each hydrozoan at its current

position.
Step 3: The growth factor of each hydrozoan, Gi(t), is

determined from the ratio of the activator value (Aci) to the
inhibitor value (Ini) as shown in (2)–(4).

Gi(t) =
Aci
Ini

(2)

Aci = [f (Hi)]β (3)

Ini = [f (Hi)]α (4)

where β is a significance factor of the activator and α is a
significance factor of the inhibitor.

Step 4: The median of a set of growth factors {G1(t),
G2(t), . . . ,GN(t)} is calculated.
Step 5: Calculate the number of buds to be dissected for

each hydrozoan i by using (5) and (6).

DMi = Gi(t)−Median (5)

Budi =

0; if DMi < 0
1; if DMi = min+

3; if DMi = max+

2; otherwise

(6)

where min+ is the smallest positive DMi and max+ is the
largest positive DMi.

Step 6: Clone each hydrozoan according to its Budi value.
Step 7: Mutate all newly created medusae by increasing

or decreasing values of the randomly selected genes of the
medusa by a small fraction.

Step 8: Evaluate the fitness of all mutated medusae.
Step 9: Select pairs of parents from the pool of medusae by

using a roulette wheel selection method. In the roulette wheel
selection, the probability of the individual i to be selected is
defined:

Pi =
f (Mi)
Q∑
q=1

f (Mq)

(7)

where f (Mi) is the fitness value of the individual i at time t.
Step 10: Perform multi-point crossover to produce new

offspring.
Step 11: Mutate the newly created offspring by randomly

changing the value of one or more genes in the offspring.
Step 12: Evaluate the fitness of all offspring. Then the

group of offspring and the group of hydrozoans are merged.
The best N individuals are included in the next-generation
population.

Step 13: Repeat steps 3 – 12 until any stopping criteria is
met.

B. SEA TURTLE FORAGING ALGORITHM (STFA)
The power of nature-inspired algorithms comes from the fact
that they imitate the best characteristics of living individuals.
Some nature-inspired algorithmswere based on the swarming
behavior of social animals [44], [45], for example, ants, bees,
and birds, whereas some are inspired by solitary animals.
STFA belongs to the latter group. In nature, sea turtles are not
swarming animals; they independently forage for food. Their
foraging behavior is very interesting and effective. Sea turtles
are long lived and skilled ocean navigators, forever migrating
throughout their lives. Their unique migrating and foraging
behaviors inspired us to construct an algorithm that imitates
their behaviors. Normally, sea turtles move in a straight path
from one point to the next [46]. However, as they travel in
the open sea, ocean currents affect their movements. During
their long migration, sea turtles feed on small animals, sea

VOLUME 8, 2020 65783

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

grasses, algae and phytoplankton. In nature, sea grasses, algae
and phytoplankton release a substance, that disintegrates into
strong smelling dimethyl sulfide (DMS), to regulate the cli-
mate over the ocean to support their survival. Since DMS is
volatile and capable of crossing the sea-air boundary, it accu-
mulates in the air above areas that are abundant in sea grasses,
algae and phytoplankton. Sea turtles can detect DMS and find
areas with high concentrations of prey [47], [48]. Sea turtles
move toward the food source, that releases the strongest odor.
Their movement may be active and direct, but it may also
be passive, assisted by the ocean current. The pseudocode of
the STFA algorithm is in Algorithm 2 and described briefly
below:

Step 1: Randomly initialize the positions of N sea turtles
in a D-dimensional search space.

Ti(0) =
[
t1i , t

2
i , . . . , t

D
i

]
(8)

where i = 1 to N.
Step 2: Randomly initialize the velocity of each turtle,

Vi(0) =
[
v1i , v

2
i , . . . , v

D
i

]
. The velocity in each dimension of

turtle i, vdi , is constrained to be within
[
v_mind , v_maxd

]
:

v_maxd = λ
[
XUBd − XLBd

]
(9)

v_mind = −v_maxd (10)

where XUBd and XLBd are the upper and lower bounds of
the dth dimension of the search space and λ is a real number
in [0, 1].

Step 3: Randomly generate the positions of M food
sources.

Kj =
[
k1j , k

2
j , . . . , k

D
j

]
(11)

where j = 1 to M. Then the fitness values of all food sources
are determined.

Step 4: Evaluate the fitness of all turtles. Then the strongest
turtle is determined from:

I = argmaxi [f (Ti(t))] (12)

where f (Ti(t)) is the fitness of turtle i at time t.
Step 5: Calculate the ocean current velocity at the position

of each turtle, VCi =
[
vc1i , vc

2
i , . . . , vc

D
i

]
:

VCi(t) = γ [TI (t)− Ti(t)] (13)

Step 6: Update the velocity of each sea turtle:

Vi(t + 1) = Vi(t)+ VCi(t)

+

[
f (Ti(t))− f (Ti(t − 1))

f (Ti(t − 1))

]
[Ti(t)− Ti(t − 1)]

(14)

where Ti(t) is the position of turtle i at time t and f (Ti(t)) is
the fitness of the turtle i at time t.

Step 7: Calculate the strength of the DMS odor from the
food source j that is sensed by the turtle i, Cij(t), by comparing
the fitness of the turtle with the fitness of the food source.
If the turtle fitness is higher than that of the food source, then

the strength of odor from that food source is taken as zero.
On the other hand, if the turtle fitness is lower than that of the
food source, then the strength of odor from that food source
is determined by:

Cij(t) =
f (Kj)

M∑
q=1

f (Kq)

e
−

[
d2ij

2σ2(t)

]
(15)

where f (Kj) is the fitness of the food source j. dij is the
distance between turtle i and food source j. σ (t) controls how
far the DMS odor spreads; it decreases exponentially with
time:

σ (t) = σ0e−[
t
T] (16)

Step 8: Identify the best food source for turtle i. The best
food source is the one that has the highest value of Cij(t)
among all food sources.

J = argmax
[
Cij
]

(17)

Step 9: Update the position of each turtle.

Ti(t + 1) = Ti(t)+ ηVi(t + 1)+ CiJ (t) [KJ − Ti(t)] (18)

Step 10: Check the stopping criteria. If any one of them is
met, the algorithm will be terminated. If not, two conditions
are checked: i) If the value of t/T is an integer, go back to
step 3; ii) If the value of t/T is not an integer, go back to step 4.

III. HA-STFA
The HA–STFA algorithm combines the advantages of the
hydrozoan and the sea turtle foraging algorithms—the sea
turtle foraging algorithm is embedded in the hydrozoan algo-
rithm. The main idea is to provide a better balance between
exploration (the advantage of HA) and exploitation (the
advantage of STFA) capabilities. HA is based on clonal
selection, crossover and mutation—three operators which
are known to be efficient for exploring the problem space.
STFA, which is based on local search, is embedded in HA to
exploit the promising areas found by HA. In addition, two
new features are introduced in this new hybrid algorithm:
i) an adaptive two-point crossover operator and ii) an adaptive
mutation probability, which is directly proportional to the
rank of each individual in the population.

The detailed steps for the HA-STFA are set out in Algo-
rithm 3 and described below:

Step 1: An initial population of N hydrozoans is randomly
generated.

Step 2: Evaluate the fitness of each hydrozoan, f(Hi).
Step 3: Calculate the growth factor for the hydrozoan i,

Gi(t), by using (2).
Step 4: Determine the median of a set of growth factors

{G1(t), G2(t), . . . , GN(t)}. In the calculation of the median,
the growth factors must first be ranked (sorted in ascending
order) then the median is the one in the middle. More accu-
rately, when a set of growth factors has an odd number of

65784 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

Algorithm 1 Pseudocode of the Hydrozoan Algorithm
1: Objective function: min or max f(x);
2: Randomly create an initial population of N hydrozoans;
3: t = 1;
4: while (t < MaxGeneration)
5: Evaluate the fitness values of all N hydrozoans;
6: Calculate the growth factors of all hydrozoans using (2);
7: Calculate the median of the growth factors of all hydrozoans;
8: Calculate the number of buds to be dissected for each hydrozoan using (6);
9: Create medusae by cloning each hydrozoan;
10: Mutate all newly created medusae and evaluate their fitness;
11: Select pairs of parents from the medusae pool by using the roulette wheel selection;
12: Crossover the selected pairs of parents with an multi-point crossover operator;
13: Evaluate the fitness of all offspring;
14: Combine the group of offspring with the group of hydrozoans;
15: Sort the combined list according to their fitness values;
16: Select the top N individuals;
17: t = t + 1;
18: end while
19: Output the best individual;

Algorithm 2 Pseudocode for the Sea Turtle Foraging Algorithm
1: Objective function: min or max f(x);
2: Randomly initialize the positions and velocities of N sea turtles;
3: Randomly create M food sources and evaluate their fitness;
4: t = 1;
5: while (t <MaxGeneration)
6: Evaluate the fitness of all N turtles;
7: Determine the strongest turtles in the population;
8: for i = 1: N
9: Calculate the velocity of the ocean current at the current position of the turtle i using (13);
10: Update the velocity of the sea turtle i using (14);
11: Calculate the DMS odor strength from each food source sensed by the turtle i using (15);
12: Determine the food source with the highest DMS odor strength;
13: Update the position of the turtle i using (18);
14: end for
15: t = t + 1;
16: if (t mod T = 0)
17: Randomly create M food sources and evaluate their fitness;
18: end if
19: end while
20: Output the position of the strongest turtle;

members, themedian is the value of themiddlemember; how-
ever, when a set has an even number of members, the median
is the average of the values of two middle members.

Step 5: For each hydrozoan i, the number of buds to be
dissected, Budi, is determined by using (5) and (6).
Step 6: Each hydrozoan is cloned Budi times to produce

a population of medusae. Then each newly created medusa
Mi =

[
m1
i ,m

2
i , . . . ,m

D
i

]
is mutated with a probability Pm1,

which is defined by the user. The mutation is done by adding
small random values to the values of the randomly selected
genes of the medusa.

Step 7: Evaluate the fitness of each medusa. The strongest
one is considered the global best.

Step 8: Calculate the velocity of the ocean current at
the position of each medusa, VCi =

[
vc1i , vc

2
i , . . . , vc

D
i

]
,

by using (13).
Step 9: Calculate DMS odor strength from the food source j

that is perceived by medusa i, Cij(t). This perceived odor
strength and the ocean current velocity, calculated in the
last step, influence the movement of the medusa to its next
position. In finding Cij(t), the medusa fitness is compared
with the fitness of the food source. If the medusa fitness is

VOLUME 8, 2020 65785

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

higher than that of the food source, then the odor strength
from that food source is set to zero. On the other hand, if the
medusa fitness is lower than that of the food source, then the
odor strength from that food source is:

Cij(t) =
f (Kj)

M∑
q=1

f (Kq)

e
−

[
d2ij

2σ2(t)

]
(19)

where f (Kj) is the fitness of food source j, dij is the distance
between medusa i and the food source j, σ (t) controls the
spread of theDMS; it decreases with time (i.e. the odor slowly
fades away) following (16).

Step 10: For medusa i, identify the food source with the
highest Cij(t) among all food sources, using (17).

Step 11: Update the position of the medusa:

Mi(t + 1) = Mi(t)+ ηVCi(t)+ CiJ (t) [KJ −Mi(t)] (20)

where CiJ (t) is the odor strength of food source J.
Step 12: Select pairs of parents from the medusa pool using

the roulette wheel selection.
Step 13: Each selected pair is mated to generate an off-

spring. The crossover operator used here yields only one off-
spring that inherits more genes from the higher fitness parent
than from the lower fitness parent. The number of genes
that each parent contributes to the offspring is determined
according to (21) and (22).

nh =
[
a− b
a

] [
D
2

]
+

[
D
2

]
(21)

nl = D− nh (22)

where nh and nl are the number of genes that the higher fitness
parent and the lower fitness parent contribute to the offspring
respectively. a is the fitness of the stronger parent and b is the
fitness of the weaker parent. D is the dimension of the search
space.

Afterward, the offspring is created by combining the first
nh genes of the stronger parent with the last nl genes of the
weaker parent.

Step 14: The generated offspring are mutated as follows:
i) sort the offspring according to fitness; ii) calculate the
mutation probability for each gene of offspring i, Pm2i,
using (23); iii) generate a random number in the range
of [0, 1] for each gene of the offspring i and compare it with
Pm2i; iv) if the random number is less than or equal to Pm2i,
mutate the gene; otherwise, keep the gene as it is.

Pm2i =
ri
N

(23)

where N is the population size; ri is the rank of offspring i; the
best offspring is assigned a rank of 1 while the worst offspring
is assigned a rank of N.

Step 15: The combined list of offspring and the hydrozoans
are sorted by fitness. Then the top N individuals are selected
for the next generation.

Step 16: Steps 3 – 15 are repeated until any stopping criteria
is met.

Note that when solving the constrained optimization prob-
lems, the updated position of the medusa in steps 6 and 11 is
checked to ensure it is still within the boundary. If the element
in any dimension of the new position is out of bounds, it is
replaced with a random number between the lower and upper
boundaries of that dimension.

IV. RESULTS AND DISCUSSION
Twenty-one standard benchmark functions shown in Table 1
were used to show the performance of HA-STFA. These
functions were in two categories: unimodal and multimodal.
The first category included five simple unimodal functions:
Sphere (f2), Zakharov (f 6), Dixon and Price (f8), Rotated
Hyper-Ellipsoid (f18), and Matyas (f19). The dimensions of
these five functions was 30. The complexity of these uni-
modal functions at this high dimension were comparable to
that of a multimodal function. The second category included
sixteen complex high-dimensional multimodal functions, that
had two or more local optima: Ackley (f1), Griewank (f3),
Rastrigin (f4), Rosenbrock (f5), Michalewicz (f7), Levy
(f9), Cross-in-Tray (f10), Drop-Wave (f11), Eggholder (f12),
Holder table (f13), Schaffer function N. 2 (f14), Shubert (f15),
Schaffer function N. 4 (f16), Beale (f17), Styblinski –Tang
(f20), and De Jong function N. 5 (f21). Table 1 shows the test
function details.

Our hybrid HA-STFA was compared to two sets of algo-
rithms:

i) HA and STFA – This comparison determined whether
the hybrid HA-STFA performed better than individual HA
and STFA.

ii) Twelve state-of-the-art algorithms: Flower Pollina-
tion Algorithm (FPA), Modified Flower Pollination Algo-
rithm (MFPA), Bat algorithm (BAT), Firefly algorithm (FF),
Genetic Algorithm (GA), Simulated Annealing (SA), Bird
Swarm Algorithm (BSA), Chicken Swarm Optimization
(CSO), Grey Wolf Optimizer (GWO), Novel Bat Algo-
rithm (NBA), Moth-Flame Optimization (MFO), Water
Cycle Algorithm (WCA). The test results of FPA, MFPA,
BAT, FF, GA and SA were obtained from [18], whereas for
BSA, CSO, GWO, NBA, MFO and WCA, we used codes
from Mathworks File Exchange [49]–[54].

In addition, five real-life engineering problems were used
to test the efficiency of HA-STFA in solving complex prob-
lems. These problems are highly nonlinear with dimensions
from 2 to 20. The formulation of these problems are:

i) R1: Optimal capacity of gas production facilities [55]

Min : f (x)=61.8+5.72x1+0.2623[(40−x1)ln(
x2
200

)]−0.85

+ 0.087(40− x1)ln(
x2
200

)+ 700.23x−0.752

subject to x1 ≥ 17.5, x2 ≥ 200

Bounds : 17.5 ≤ x1 ≤ 40, 300 ≤ x2 ≤ 600

The best-known optimal value is fmin = 169.844.

65786 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 1. Standard benchmark functions used for validation.

VOLUME 8, 2020 65787

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 1. (Continued.) Standard benchmark functions used for validation.

ii) R2: Gas transmission compressor design [55]

Min : f (x) = 8.61× 105 × x(1/2)1 x2x
(−2/3)
3 (x22 − 1)(−1/2)

+ 3.69× 104 × x3+7.72× 108×x−11 x0.2192
− 765.43× 106 × x−11

Bounds : 10 ≤ x1 ≤ 55, 1.1 ≤ x2 ≤ 2, 10 ≤ x3 ≤ 40

The best-known optimal value is fmin = 2.96438E + 06.
iii) R3: Optimal thermohydraulic performance of an artifi-

cial roughened air heater [55]

Max : L = 2.51lne+ + 5.5− 0.1RM − GH

where

RM = 0.95x0.532 , GH = 4.5(e+)0.28(0.7)0.57,

e+ = x1x3(
f
2
)(1/2), f =

fs + fr
2

,

fs = 0.079x−0.253 ,

fr = 2(0.95x0.533 + 2.5ln(1/2x1)2 − 3.75)−2

Bounds : 0.02 ≤ x1 ≤ 0.8, 10 ≤ x2 ≤ 40,

3000 ≤ x3 ≤ 20000

The best-known optimal value is fmax = 4.21421.
iv) R4: Spread spectrum radar poly-phase code design

problem [55]

Min : f (x) = max {f1(X), f2(X), . . . , f2m(X)}

where

X = (x1, x2, . . . , xn) ∈ Rn|0 ≤ xj ≤ 2π,

j = 1, 2, . . . , n and m = 2n− 1,

f2i−1(x) =
n∑
j=i

cos

 j∑
k=|2i−j−1|+1

xk

 , i = 1, 2, . . . , n

65788 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

Algorithm 3 Pseudocode of the HA–STFA Algorithm
1: Objective function: min or max f(x);
2: Randomly create an initial population of N hydrozoans;
3: t = 1;
4: while (t <MaxGeneration)
5: Evaluate the fitness of all N hydrozoans;
6: Calculate the growth factor for each hydrozoan and determine the median of those growth factors;
7: Determine the number of buds of each hydrozoan using (6);
8: Create medusae by cloning each hydrozoan at the same number of buds of that hydrozoan;
9: Mutate all newly created medusae;
10: Evaluate the fitness of each newly created medusa and find the one with the highest fitness value;
11: for each newly created medusa
12: Calculate the velocity of the ocean current at the position of the medusa using (13);
13: Calculate the DMS odor strength from each food source sensed by each medusa using (19);
14: Determine the food source with the highest odor strength;
15: Update position of the medusa using (20);
16: end for
17: Select pairs of parents from the pool of medusae by using the roulette wheel selection;
18: Crossover the selected parent pairs;
19: Mutate the offspring;
20: Evaluate the fitness of all offspring;
21: Combine the group of offspring with the group of hydrozoans;
22: Sort the combined list according to fitness;
23: Select the top N individuals;
24: t = t + 1;
25: end while
26: Output the best individual;

f2i(x) = 0.5+
n∑
j=i

cos

 j∑
k=|2i−j|+1

xk

 ,
i = 1, 2, . . . , n− 1

fm+i(x) = −fi(x), i = 1, 2, . . . ,m

The best-known optimal value is fmin = 0.
v) R5: Chemical equilibrium application [56]

x1x2 + x1 − 3x5 = 0,
2x1x2 + x1 + x2x23 + R8x2 − Rx5 + 2R10x22 + R7x2x3

+R9x2x4 = 0,
2x2x23 + 2R5x23 − 8x5 + R6x3 + R7x2x3 = 0,

R9x2x4 + 2x24 − 4Rx5 = 0,
x1(x2 + 1)+R10x22 + x2x

2
3 + R8x2 + R5x

2
3 + x

2
4 − 1+ R6x3

+R7x2x3 + R9x2x4 = 0

where

R = 10, R5 = 0.193, R6=
0.002597
√
40

, R7=
0.003448
√
40

,

R8 =
0.00001799

40
, R9 =

0.0002155
√
40

,

R10 =
0.00003846

40
The best-known optimal value is fmin = 0.
The performance of HA-STFA was compared to the

Invasive weed optimization (IWO), Differential evolution

with probabilistic parent centric crossover (Pro. DEPCX),
and Quadratic approximation invasive weed optimization
(QAIWO). The results of these three algorithms were
obtained from Naidu and Ojha [21] and Ali et al. [55].

A. RESULTS FOR STANDARD BENCHMARK FUNCTIONS
For the standard benchmark functions, each algorithm was
run five times on each test function. Each run started with a
different initial population and stopped when the maximum
number of function evaluations (maxNFE) was reached. The
parameters of HA-STFA, HA and STFA are given in Table 2.

Table 3 compares HA-STFA, HA and STFA. Table 4
compares HA-STFA with twelve state-of-the-art algorithms.
These tables report minimum, maximum, mean and standard
deviation from 5 runs. Performance was measured in terms
of the ability to locate the global minimum. The best results
(both lowest mean and standard deviation) obtained among
all algorithms are shown in bold.

Table 3 shows that the hybrid HA-STFA performed better
than HA and STFA individually. When any individual algo-
rithms obtained the optimal solution, HA-STFA also obtained
it. When any individual algorithms did not obtain the opti-
mal solution, HA-STFA always obtained a better solution.
Besides achieving better results, HA-STFA also converged
faster than both HA and STFA on most functions. As an
example, figures 1 – 5 compare the convergence curves of

VOLUME 8, 2020 65789

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 2. Parameters of HA-STFA, HA and STFA.

FIGURE 1. Convergence curves for f6.

FIGURE 2. Convergence curves for f10.

STFA, HA and HA-STFA for f6, f10, f11, f14 and f19.
In these figures, all three algorithms obtained either optimal
or near-optimal solutions. For functions f10, f11 and f14,
HA-STFA converged slightly faster than HA, and converged
much faster than STFA. HA-STFA converged slightly slower
than STFA for function f6 and converged slightly slower than
HA for function f19. However, it converged to better solutions
than any of the other algorithms.

From the results in Table 4, the following paragraphs
summarize the results of HA-STFA according to function
categories – unimodal and multimodal.

FIGURE 3. Convergence curves for f11.

FIGURE 4. Convergence curves for f14.

FIGURE 5. Convergence curves for f19.

For all but one of the 30-dimensional unimodal functions,
the hybrid HA–STFA algorithm ranked fourth, after NBA,
GWO and BSA. HA-STFA performance was very close to
that of the top three algorithms. These unimodal functions
were f 2, f 6, f 18 and f19. For the remaining unimodal func-
tion, f 8, HA-STFA came a very close second to MFPA.

For the 2-dimensional multimodal functions, the hybrid
HA–STFA algorithm was able to find the global minimum
on the following 6 out of 9 functions: f7, f10, f11, f12, f13
and f21. HA-STFA found the global minimum of the above
six functions on all 5 runs, regardless of initial population
states. For f14 and f16, HA-STFA came in second place.
For f17, only MFPA was able to find the global mini-
mum, whereas all the other algorithms obtained near-optimal
solutions.

For the 5-dimensional multimodal function, f15, all algo-
rithms except GA converged to the global minimum.

65790 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 3. Comparative results of HA-STFA, HA and STFA on standard benchmark functions.

VOLUME 8, 2020 65791

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 4. Comparative results of HA-STFA with twelve state-of-the-art algorithms on standard benchmark functions.

65792 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 4. (Continued.) Comparative results of HA-STFA with twelve state-of-the-art algorithms on standard benchmark functions.

VOLUME 8, 2020 65793

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 4. (Continued.) Comparative results of HA-STFA with twelve state-of-the-art algorithms on standard benchmark functions.

65794 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 4. (Continued.) Comparative results of HA-STFA with twelve state-of-the-art algorithms on standard benchmark functions.

VOLUME 8, 2020 65795

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 4. (Continued.) Comparative results of HA-STFA with twelve state-of-the-art algorithms on standard benchmark functions.

65796 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 5. The number of functions for which each algorithm obtained the best results.

TABLE 6. Results of wilcoxon signed rank test between HA-STFA and other twelve algorithms.

For the 30-dimensional multimodal functions, the hybrid
HA–STFA algorithm achieved very good results on 5 out of 6
benchmark functions: f1, f3, f4, f5 and f20. It tied for the first
place withMFPA and BSA for f1. For f3, f4 and f5, HA-STFA
ranked second only to MFPA. HA-STFA, CSO, NBA, MFO
and WCA successfully found the global minimum for f20.
Our HA–STFA only struggled in finding the global minimum
with f9; it came in eighth, losing by small margins to the other
seven algorithms.

In summary, HA-STFA algorithm was able to obtain very
good results on both unimodal and multimodal functions; it
successfully located the global or near-global minima for all
tested functions.Moreover, HA-STFAwas also very robust—
the deviation between runs was very low—indicated by low
standard deviations shown in Table 4. The success was due to
the combination of the advantages from HA and STFA— the
good exploration capability of HA and the good exploitation
capability of STFA. In addition, cloning also retained good
solutions for the next iteration.

Further analyzing the results in Table 4, Table 5 shows
the number of functions, for which each algorithm obtained
the best result. These are the results, ranked from best to

worst: MFPA (9 functions); NBA (8 functions); HA-STFA
(7 functions); CSO and MFO (5 functions); BSA and WCA
(4 functions); FPA and BAT (1 function); FF, GA, SA and
GWO (0 function).

Finally, the Wilcoxon signed-rank test was determined
whether HA-STFA performed significantly better than the
other twelve algorithms. The Wilcoxon test was used, rather
than t-test, because we cannot guarantee that the results
will be normally distributed [57]. We performed a one-tailed
hypothesis test, using 0.05 and 0.1 significance levels:

H0 : MHA−STFA ≥ MCompared Method

H1 : MHA−STFA < MCompared Method

The significance tests are shown in Table 6. In Table 6,
with the exception of FPA and MFPA, it can be seen that
the null hypothesis was rejected. In other words, HA-STFA
performed significantly better than the others.More precisely,
HA-STFA outperformed BAT, FF, GA, SA, BSA, GWO,
MFO and WCA with statistical significance of 0.05, and
outperformed CSO and NBA with statistical significance
of 0.10. For FPA andMFPA, however, the null hypothesis was

VOLUME 8, 2020 65797

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

TABLE 7. Performances of four algorithms on real-life engineering problems.

accepted, indicating that HA-STFA did not perform better
than FPA and MFPA. Comparing HA-STFA with FPA and
MFPA (see Table 3), we can observe, in 21 functions:

• HA-STFA performed better than FPA on 9 functions,
worse on 3 functions, and equally well on 9 functions;

• HA-STFA performed better than MFPA on 4 functions,
worse on 7 functions, and equally well on 10 functions.

B. RESULTS FOR REAL-LIFE ENGINEERING PROBLEMS
To further demonstrate the capability of the hybrid HA–
STFA, a set of five real-life engineering design problemswere
used as benchmarks. In Table 7, HA-STFA was compared
with Invasive weed optimization (IWO), Quadratic approx-
imation invasive weed optimization (QAIWO) and Differ-
ential Evolution with probabilistic Parent Centric Crossover
(Pro.DEPCX) algorithms. Table 7 reports means and stan-
dard deviations (SD) from 30 independent runs, when the
termination condition was met. The mean and SD reveal the
effectiveness and consistency of the algorithm over 30 runs.
A small SD signified that the algorithm is more consistent.
Table 7 shows that the mean and SD for all algorithms were
similar.

V. CONCLUSION
We designed a new hybrid algorithm for solving opti-
mization problems. It combines the search features of two
nature-inspired optimization algorithms: Hydrozoan Algo-
rithm (HA) and Sea Turtle Foraging Algorithm (STFA),
to achieve better exploration and exploitation capabilities
than the individual algorithms. The performance of our
HA-STFA was examined with twenty-one benchmark func-
tions and compared to twelve other widely used algorithms:
FPA, MFPA, BAT, FF, GA, SA, BSA, CSO, GWO, NBA,

MFO and WCA. The results from the Wilcoxon signed-rank
test indicated that HA-STFA, FPA and MFPA performed
equally well, whereas HA-STFA performed significantly bet-
ter than BAT, FF, GA, SA, BSA, CSO, GWO, NBA, MFO
and WCA. For future work, additional crossover operators
as well as a self-adaptive strategy for selecting crossover
operators will be included to further enhance the search
capability.

CONFLICTS OF INTEREST
The authors declare that there is no conflict of interest regard-
ing the publication of this paper.

DATA AVAILABILITY
The details of the functions used to support the findings of
this study are included within the article.

REFERENCES
[1] M. Thakur, ‘‘A new genetic algorithm for global optimization of multi-

modal continuous functions,’’ J. Comput. Sci., vol. 5, no. 2, pp. 298–311,
Mar. 2014.

[2] H. Shan, T. Yasuda, and K. Ohkura, ‘‘A self adaptive hybrid enhanced
artificial bee colony algorithm for continuous optimization problems,’’
Biosystems, vols. 132–133, pp. 43–53, Jun. 2015.

[3] D. A. Wood, ‘‘Hybrid bat flight optimization algorithm applied to com-
plex wellbore trajectories highlights the relative contributions of Meta-
heuristic components,’’ J. Natural Gas Sci. Eng., vol. 32, pp. 211–221,
May 2016.

[4] B. Farnad, A. Jafarian, and D. Baleanu, ‘‘A new hybrid algorithm for con-
tinuous optimization problem,’’ Appl. Math. Model., vol. 55, pp. 652–673,
Mar. 2018.

[5] S. Desale, A. Rasool, S. Andhale, and P. Rane, ‘‘Heuristic and meta-
heuristic algorithms and their relevance to the real world: A survey,’’ Int.
J. Comput. Eng. Res. Trends, vol. 2, no. 5, pp. 296–304, 2015.

[6] B. A. Sawyerr, A. O. Adewumi, and M. M. Ali, ‘‘Real-coded genetic algo-
rithm with uniform random local search,’’ Appl. Math. Comput., vol. 228,
pp. 589–597, Feb. 2014.

65798 VOLUME 8, 2020

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

[7] O. Hegazy, O. S. Soliman, and M. A. Salam, ‘‘Comparative study between
FPA, BA, MCS, ABC, and PSO algorithms in training and optimizing of
LS-SVM for stock market prediction,’’ Int. J. Adv. Comput. Res., vol. 5,
no. 18, pp. 35–45, Mar. 2015.

[8] G. Khademi, H. Mohammadi, and D. Simon, ‘‘Hybrid invasive
weed/biogeography-based optimization,’’ Eng. Appl. Artif. Intell., vol. 64,
pp. 213–231, Sep. 2017.

[9] T. O. Ting, X. S. Yang, S. Cheng, and K. Huang, ‘‘Hybrid metaheuristic
algorithms: Past, present, and future,’’ in Recent Advances in Swarm
Intelligence and Evolutionary Computation. Cham, Switzerland: Springer,
2015, pp. 71–83.

[10] Y.-C. Chuang, C.-T. Chen, and C. Hwang, ‘‘A real-coded genetic algorithm
with a direction-based crossover operator,’’ Inf. Sci., vol. 305, pp. 320–348,
Jun. 2015.

[11] M. J. Mahmoodabadi and A. R. Nemati, ‘‘A novel adaptive genetic algo-
rithm for global optimization of mathematical test functions and real-
world problems,’’ Eng. Sci. Technol., Int. J., vol. 19, no. 4, pp. 2002–2021,
Dec. 2016.

[12] Q. Zhang, R.M. Ogren, and S.-C. Kong, ‘‘A comparative study of biodiesel
engine performance optimization using enhanced hybrid PSO–GA and
basic GA,’’ Appl. Energy, vol. 165, pp. 676–684, Mar. 2016.

[13] F. Jiang, H. Xia, Q. A. Tran, Q.M.Ha, N. Q. Tran, and J. Hu, ‘‘A new binary
hybrid particle swarm optimization with wavelet mutation,’’Knowl.-Based
Syst., vol. 130, pp. 90–101, Aug. 2017.

[14] H. Haklı and H. Uǧuz, ‘‘A novel particle swarm optimization algorithm
with levy flight,’’ Appl. Soft Comput., vol. 23, pp. 333–345, Oct. 2014.

[15] F. Javidrad and M. Nazari, ‘‘A new hybrid particle swarm and simulated
annealing stochastic optimization method,’’ Appl. Soft Comput., vol. 60,
pp. 634–654, Nov. 2017.

[16] H. Garg, ‘‘A hybrid PSO-GA algorithm for constrained optimization prob-
lems,’’ Appl. Math. Comput., vol. 274, pp. 292–305, Feb. 2016.

[17] X. S. Yang, ‘‘Flower pollination algorithm for global optimization,’’ in
Unconventional Computation and Natural Computation (Lecture Notes
in Computer Science), vol. 7445. Berlin, Germany: Springer, 2012,
pp. 240–249.

[18] E. Nabil, ‘‘A modified flower pollination algorithm for global optimiza-
tion,’’ Expert Syst. Appl., vol. 57, pp. 192–203, Sep. 2016.

[19] Y. Zhou, R. Wang, and Q. Luo, ‘‘Elite opposition-based flower pollination
algorithm,’’ Neurocomputing, vol. 188, pp. 294–310, May 2016.

[20] A. R. Mehrabian and C. Lucas, ‘‘A novel numerical optimization algo-
rithm inspired from weed colonization,’’ Ecol. Informat., vol. 1, no. 4,
pp. 355–366, Dec. 2006.

[21] Y. R. Naidu and A. K. Ojha, ‘‘A hybrid version of invasive weed opti-
mization with quadratic approximation,’’ Soft Comput., vol. 19, no. 12,
pp. 3581–3598, Dec. 2015.

[22] X. Cai, Z. Hu, and Z. Fan, ‘‘A novel memetic algorithm based on invasive
weed optimization and differential evolution for constrained optimiza-
tion,’’ Soft Comput., vol. 17, no. 10, pp. 1893–1910, Oct. 2013.

[23] D. Simon, ‘‘Biogeography-based optimization,’’ IEEE Trans. Evol. Com-
put., vol. 12, no. 6, pp. 702–713, Dec. 2008.

[24] X. Chen, H. Tianfield, W. Du, and G. Liu, ‘‘Biogeography-based optimiza-
tion with covariance matrix based migration,’’ Appl. Soft Comput., vol. 45,
pp. 71–85, Aug. 2016.

[25] W. Gong, Z. Cai, C. X. Ling, and H. Li, ‘‘A real-coded biogeography-
based optimization with mutation,’’ Appl. Math. Comput., vol. 216, no. 9,
pp. 2749–2758, Jul. 2010.

[26] X. S. Yang, ‘‘A new metaheuristic bat-inspired algorithm,’’ in Nature
Inspired Cooperative Strategies for Optimization (Studies in Computa-
tional Intelligence), vol. 284. Berlin, Germany: Springer, 2010, pp. 65–74.

[27] Q. Liu, L. Wu, W. Xiao, F. Wang, and L. Zhang, ‘‘A novel hybrid bat algo-
rithm for solving continuous optimization problems,’’ Appl. Soft Comput.,
vol. 73, pp. 67–82, Dec. 2018.

[28] G. Yildizdan and Ö. K. Baykan, ‘‘A novel modified bat algorithm hybridiz-
ing by differential evolution algorithm,’’ Expert Syst. Appl., vol. 141,
Mar. 2020, Art. no. 112949, doi: 10.1016/j.eswa.2019.112949.

[29] M. R. Ramli, Z. A. Abas, M. I. Desa, Z. Z. Abidin, and M. B. Alazzam,
‘‘Enhanced convergence of bat algorithm based on dimensional and inertia
weight factor,’’ J. King Saud Univ. Comput. Inf. Sci., vol. 31, no. 4,
pp. 452–458, Oct. 2019.

[30] X.-S. Yang, ‘‘Firefly algorithms for multimodal optimization,’’ in Stochas-
tic Algorithms: Foundations and Applications (Lecture Notes in Computer
Science), vol. 5792. Berlin, Germany: Springer, 2009, pp. 169–178.

[31] R. M. Rizk-Allah, E. M. Zaki, and A. A. El-Sawy, ‘‘Hybridizing ant
colony optimization with firefly algorithm for unconstrained optimization
problems,’’ Appl. Math. Comput., vol. 224, pp. 473–483, Nov. 2013.

[32] A. Ritthipakdee, A. Thammano, N. Premasathian, and D. Jitkongchuen,
‘‘Firefly mating algorithm for continuous optimization problems,’’ Com-
put. Intell. Neurosci., vol. 2017, pp. 1–10, 2017.

[33] S. Khalilpourazari and S. Khalilpourazary, ‘‘Optimization of time, cost
and surface roughness in grinding process using a robust multi-objective
dragonfly algorithm,’’ Neural Comput. Appl., to be published, doi:
10.1007/s00521-018-3872-8.

[34] S. H. R. Pasandideh and S. Khalilpourazari, ‘‘Sine cosine crow search algo-
rithm: A powerful hybrid meta heuristic for global optimization,’’ 2018,
arXiv:1801.08485. [Online]. Available: http://arxiv.org/abs/1801.08485

[35] S. Khalilpourazari and S. Khalilpourazary, ‘‘SCWOA: An efficient hybrid
algorithm for parameter optimization of multi-pass milling process,’’
J. Ind. Prod. Eng., vol. 35, no. 3, pp. 135–147, Apr. 2018.

[36] S. Khalilpourazari and S. Khalilpourazary, ‘‘An efficient hybrid algorithm
based on water cycle and moth-flame optimization algorithms for solving
numerical and constrained engineering optimization problems,’’ Soft Com-
put., vol. 23, no. 5, pp. 1699–1722, Mar. 2019.

[37] S. Khalilpourazari and S. H. R. Pasandideh, ‘‘Modeling and optimization
of multi-item multi-constrained EOQ model for growing items,’’ Knowl.-
Based Syst., vol. 164, pp. 150–162, Jan. 2019.

[38] D. Tansui and A. Thammano, ‘‘Nature-inspired optimization method:
Hydrozoan algorithm for solving continuous problems,’’ in Proc. 18th
IEEE/ACIS Int. Conf. Softw. Eng., Artif. Intell., Netw. Parallel/Distrib.
Comput. (SNPD), Kanazawa, Japan, Jun. 2017, pp. 23–28.

[39] D. Tansui andA. Thammano, ‘‘Sea turtle foraging algorithm for continuous
optimization problems,’’ inProc.WCSE, Tokyo, Japan, 2016, pp. 678–681.

[40] L. Leclère, R. R. Copley, T. Momose, and E. Houliston, ‘‘Hydrozoan
insights in animal development and evolution,’’ Current Opinion Genet.
Develop., vol. 39, pp. 157–167, Aug. 2016.

[41] P. Cartwright and A.M. Nawrocki, ‘‘Character evolution in hydrozoa (phy-
lumCnidaria),’’ Integrative Comparative Biol., vol. 50, no. 3, pp. 456–472,
Sep. 2010.

[42] S. Berking, ‘‘Amodel for budding in hydra: Pattern formation in concentric
rings,’’ J. Theor. Biol., vol. 222, no. 1, pp. 37–52, May 2003.

[43] S. Berking, ‘‘Principles of branch formation and branch patterning in
hydrozoa,’’ Int. J. Develop. Biol., vol. 50, nos. 2–3, pp. 123–134, 2006.

[44] S. Roy, S. Biswas, and S. S. Chaudhuri, ‘‘Nature-inspired swarm intel-
ligence and its applications,’’ Int. J. Modern Edu. Comput. Sci., vol. 12,
pp. 55–65, 2014.

[45] S. C. Chu, H. C. Huang, J. F. Roddick, and J. S. Pan, ‘‘Overview of
algorithms for swarm intelligence,’’ in Computational Collective Intelli-
gence. Technologies and Applications. Berlin, Germany: Springer, 2011,
pp. 28–41.

[46] J. Okuyama, O. Abe, H. Nishizawa,M. Kobayashi, K. Yoseda, and N. Arai,
‘‘Ontogeny of the dispersal migration of green turtle (Chelonia mydas)
hatchlings,’’ J. Experim. Mar. Biol. Ecology, vol. 379, nos. 1–2, pp. 43–50,
Oct. 2009.

[47] G. A. Nevitt, ‘‘Sensory ecology on the high seas: The odor world of the pro-
cellariiform seabirds,’’ J. Experim. Biol., vol. 211, no. 11, pp. 1706–1713,
Jun. 2008.

[48] C. S. Endres and K. J. Lohmann, ‘‘Perception of dimethyl sulfide (DMS)
by loggerhead sea turtles: A possible mechanism for locating high-
productivity oceanic regions for foraging,’’ J. Experim. Biol., vol. 215,
no. 20, pp. 3535–3538, Oct. 2012.

[49] X. B. Meng. (2015). Bird Swarm Algorithm. MathWorks File Exchange.
[Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/51256-bird-swarm-algorithm-bsa

[50] X. B. Meng. (2015). CSO. MathWorks File Exchange. [Online]. Available:
https://www.mathworks.com/matlabcentral/fileexchange/48204-cso

[51] S. Mirjalili. (2018). Grey Wolf Optimizer. [Online]. Available: https://
www.mathworks.com/matlabcentral/fileexchange/44974-grey-wolf-
optimizer-gwo,MathWorks File Exchange

[52] X. B. Meng. (2015). Novel Bat Algorithm. MathWorks File Exchange.
[Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/51258-novel-bat-algorithm-nba

[53] S. Mirjalili. (2018). Moth-Flame Optimization Algorithm. MathWorks
File Exchange. [Online]. Available: https://www.mathworks.com/
matlabcentral/fileexchange/52269-moth-flame-optimization-mfo-
algorithm

VOLUME 8, 2020 65799

http://dx.doi.org/10.1016/j.eswa.2019.112949
http://dx.doi.org/10.1007/s00521-018-3872-8

D. Tansui, A. Thammano: Hybrid Nature-Inspired Optimization Algorithm

[54] A. Sadollah. (2016). Water Cycle Algorithm. MathWorks File Exchange.
[Online]. Available: https://www.mathworks.com/matlabcentral/
fileexchange/56339-water-cycle-algorithm-wca

[55] M. Ali, M. Pant, and V. P. Singh, ‘‘Two modified differential evolution
algorithms and their applications to engineering design problems,’’ World
J. Model. Simul., vol. 6, no. 1, pp. 72–80, 2010.

[56] Y. Zhou, Q. Luo, and H. Chen, ‘‘A novel differential evolution invasive
weed optimization algorithm for solving nonlinear equations systems,’’
J. Appl. Math., vol. 2013, pp. 1–18, 2013.

[57] D. S. Moore and G. P. McCabe, Introduction to the Practice of Statistics,
New York, NY, USA: W. H. Freeman, 1989.

DARANAT TANSUI is currently pursuing the
Ph.D. degree with the Faculty of Information
Technology, King Mongkut’s Institute of Tech-
nology Ladkrabang, Bangkok, Thailand. Her cur-
rent research interests include swarm intelligence,
memetic algorithms, and optimization techniques.

ARIT THAMMANO is currently anAssociate Pro-
fessor with the Faculty of Information Technol-
ogy, King Mongkut’s Institute of Technology Lad-
krabang, Bangkok, Thailand. His current research
interests include evolutionary algorithms, memetic
algorithms, swarm intelligence, and optimization
techniques.

65800 VOLUME 8, 2020

