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ABSTRACT The Deflate compression algorithm provides one of the most widely used solutions for lossless
data compression. Field-programmable gate arrays (FPGAs) are commonly used to implement hardware
accelerators that speed up computation-intensive applications. In this article, FPGA-based accelerators for
Deflate compression and decompression are described. These accelerators were specified in C++ and
synthesized using Vivado High-Level Synthesis (HLS) for a Xilinx Virtex UltraScale+ series FPGA and
a system clock frequency of 250 MHz. The proposed compressor processes data at a fixed input throughput
of 4.0 GB/s and achieves a geometric mean compression ratio of 1.92 on the Calgary corpus benchmark files
using static Huffman encoding. While not the first compressor synthesized using high-level synthesis, our
design achieves a 25% greater throughput and an 11% greater compression ratio than the only other published
design that uses Vivado HLS. The proposed decompressor design achieves average input throughputs
of 196.61 MB/s and 97.40 MB/s, for statically and dynamically encoded Calgary corpus files, respectively.
This is the first published decompressor design that is synthesized using high-level synthesis and provides
performance that is comparable to that of the best published designs, having static throughputs 11% higher
and dynamic throughputs only 10% lower than the expertly-optimized design sold by Xilinx.

INDEX TERMS Deflate algorithm, lossless compression, LZ77 compression, hardware accelerator, FPGA-
based accelerator, high-level synthesis.

I. INTRODUCTION
Data compression enables more efficient utilization of fixed
data communication bandwidth and storage space. While
some types of data can tolerate the loss of information result-
ing from lossy compression (e.g., audio, video, image files),
many types of data cannot and must be compressed losslessly
(e.g., text, source code, financial data). Deflate [1] is an
important lossless data compression algorithm that is used in
many compressed file formats (e.g., .zip, .gz, .png files) as
well as the Hypertext Transfer Protocol (HTTP) [2].

In Deflate compression implementations, there is a trade-
off between the compression ratio (i.e., the ratio of the input
data size to the size of the compressed output) and the
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compression throughput. Compressors that offer the most
compression tend to be slower than designs that maximize
the compression speed. At the system level, the compression
process can be accelerated through task-level parallelism
by using multiple compressors. Unfortunately, the standard
Deflate compressed format hinders parallelism in the decom-
pression process within each task, requiring other methods of
acceleration.

Increasingly, the Central Processing Units (CPUs) in con-
ventional computers are enhanced with heterogeneous com-
puting resources such as field-programmable gate arrays
(FPGAs). FPGAs allow accelerators to be designed that
exploit the structure and parallelism of computation-intensive
applications. High-level synthesis is a technology that allows
FPGA designs to be specified in a high-level programming
language, instead of a hardware description language, with
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the objective of increasing designer productivity. Using high-
level synthesis, however, requires designing at a higher level
of abstraction and implies sacrificing a relatively large degree
of control over the final design. High-level synthesis software
tends to have a steep learning curve to use effectively, which
can make creating a design that is both functional and effi-
cient a challenging process.

In this article, we describe two FPGA-based accelera-
tors: one for performing Deflate compression and the other
for Deflate decompression. Both accelerator designs were
created using high-level synthesis, from C++ source code,
and target Xilinx FPGAs using a 250-MHz system clock.
In the compressor design, meeting timing objectives at this
relatively high frequency likely requires sacrificing some
compression ratio (compared to previous designs). Our main
design goal was thus to investigate ways to optimize this
trade-off and to maximize both the compression throughput
and compression ratio. In the design of the decompressor, our
main goal was to find sources of exploitable parallelism in
order to accelerate the process and maximize the decompres-
sion throughput. The main contributions of this article are as
follows:
• We propose a compressor design that compresses data
at a fixed input throughput of 4.0 GB/s while achieving
a geometric mean compression ratio of 1.92 across the
widely used Calgary corpus benchmark files [3] using
static Huffman encoding. This compressor design pro-
vides both higher throughput and higher compression
ratios compared to [4], the other published compressor
design implemented using Vivado HLS.

• We propose a decompressor design with average
input decompression throughputs of 196.61 MB/s and
97.40MB/s, for statically and dynamically encoded Cal-
gary corpus files, respectively. These values are higher
than most other reported decompressors while being
achieved for the first time using high-level synthesis.

This article is structured as follows: Section II reviews
the Deflate file format and the compression and decom-
pression processes. Sections III-A and III-B survey the pub-
lished work on Deflate compression and decompression.
Section IV describes the compressor design while Section V
describes the decompressor. Section VI reports and discusses
the performance results on the Calgary corpus and suggests
directions for future work. Lastly, Section VII provides a
concluding summary.

II. BACKGROUND INFORMATION ON DEFLATE
Deflate is the concatenation of two other compression algo-
rithms: byte-level compression using LZ77 encoding [5] fol-
lowed by bit-level compression using Huffman encoding [6].
In LZ77 encoding, the input data file is scanned to find
repeated strings of bytes. When a match is found with an
earlier string of bytes, the repeated string is replaced with a
length-distance pair, representing the length of the matched
string and the distance it was found earlier within the input
data stream, as shown in Fig. 1. In Deflate, matching strings

FIGURE 1. An example of LZ77 compression where repeated strings of
characters are replaced with length-distance pairs.

can have lengths of 3 to 258 bytes and distances of up to
32,768 bytes back. The string search is typically performed
by hashing into a history of previously encountered strings
(i.e., a hash table) instead of by exhaustive comparison.
To search for similar strings, a string of bytes from the current
position in the data is input to a hash function and the resulting
hash signature is then looked up in the hash table, which
contains the positions of previously hashed strings.

Following LZ77 encoding, the data, now composed of
unmatched literal bytes and length-distance pairs, is split
into blocks of arbitrary size and each block is Huffman-
encoded in one of two ways: using static (fixed) codes or
dynamic codes. In static encoding, the literals and length-
distance pairs, which shall be referred to as symbols, are
encoded using pre-defined code tables given in the Deflate
standard [1]. In dynamic encoding, custom Huffman code
tables are created for each block based on the frequency
of the literals and length-distance pairs within that block.
Compressing a block using dynamic codes takes longer but
allows a greater compression ratio to be achieved.

During the Huffman encoding process, two code tables are
used: one for encoding literals and lengths, and the other
for encoding distances [1]. A special code for the end-of-
block (EOB) symbol, which is used to indicate the end of a
Deflate block, is included in the literal/length table. The static
literal/length codes are from 7 to 9 bits longwhile the distance
codes are fixed-length 5-bit codes. For dynamic encoding,
both the literal/length and distance codes can be from 1 to
15 bits long. In both static and dynamic encoding, the length
and distance codes may be followed by additional bits that
correspond to an offset value that is added to the decoded
base length or distance value. Length codes can be followed
by 0 to 5 extra bits and distances can be followed by 0 to
13 extra bits. Besides static and dynamic Deflate blocks, there
is a third type of block called a stored block. Stored blocks
contain uncompressed data and are typically used when the
data cannot be usefully compressed (e.g., already compressed
data). Every Deflate block begins with a block header that
identifies the type of the block.

III. LITERATURE REVIEW
A. COMPRESSION-RELATED WORK
State-of-the-art FPGA-based compression accelerators have
a fixed-throughput pipeline that performs LZ77 string match-
ing on multiple candidate strings in parallel [4], [7]–[10].
At every clock cycle, potential matches are looked up and
compared to multiple substrings within a sliding window,
with only the best matches found being used. The number
of bytes read and the number of substrings matched are
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determined by a key parameter called the Parallel Window
Size (PWS). This process differs from how software compres-
sion is typically performed, in which multiple attempts may
be made searching for potential matches for a single string
in order to find the best one. As a result, the average com-
pression ratios achieved by fixed-throughput FPGA-based
designs are lower, around 2.00, compared to software com-
pressors, which can achieve ratios of around 3.00. However,
because only one clock cycle is spent searching for matches,
the FPGA-based designs can achieve constant throughput val-
ues on the order of multiple GB/s, much greater than software
compressors, for which the highest published throughputs are
around 340 MB/s [11]. Most FPGA-based compressors also
use only static Huffman encoding. This allows the literals and
length-distance pairs to be Huffman encoded immediately
following LZ77 encoding without the additional work of
constructing dynamic Huffman code tables.

Reference [7] was one of the first proposed fixed-
throughput FPGA-based compressor designs but this paper
is unfortunately no longer accessible. The authors of [8]
propose a similar design that was implemented usingOpenCL
[12] and that differs from other designs in that it utilizes a
fully-connected hash dictionary. In this design, each substring
in the sliding window has uncontested write access to its
own hash dictionary and each hash dictionary is duplicated
enough times so that it can be read for every substring. This
dictionary architecture ensures that no hash conflicts can
occur and, as a result, the compressor from [8] is able to
achieve the highest compression ratios of all of the reported
FPGA-based compressor designs, having a geometric mean
compression ratio of 2.17 over the Calgary corpus [3]. With
a clock frequency of 193 MHz and a PWS of 16 bytes, [8]
reports an input decompression throughput of 2.84 GB/s.

In [9], a compressor is proposed that is scalable with the
PWS value. The trade-off between the PWS value and the
resulting compression ratio and area cost is then explored.
It was found that as the PWS is increased, the compres-
sion ratio increases logarithmically (providing diminishing
returns) while the area cost increases quadratically. Using
a PWS of 16 bytes seems to be the most efficient trade-
off as matches longer than 16 bytes are relatively rare in
most types of data [9]. Unique to this design is the use of
a double-clocked hash bank architecture, i.e., the hash banks
are run at double the clock frequency compared to the rest
of the compressor. This allows each hash bank to serve two
requests from hashed substrings instead of only one, reduc-
ing the number of dropped substrings due to hash conflicts.
For a design with a PWS of 16 bytes, [9] reports an input
throughput of 2.80 GB/s and an average compression ratio
of 2.05 across the Calgary corpus. When the PWS is scaled
up to 32 bytes, the throughput increases to 5.60 GB/s and the
average compression ratio increases only slightly to 2.09 at
the cost of 2.8× more area.

The authors of [4] describe a compressor design similar
to the above designs using Vivado HLS [13]. Unfortunately,
however, few design details are provided. Using a 16-byte

PWS, they achieved an input throughput of 3.20 GB/s (ignor-
ing interface bottlenecks) and a geometric mean compression
ratio of 1.73 on the Calgary corpus.

The authors of [10] used the results from [9] and deter-
mined that implementing multiple compression engines in
parallel is a more efficient way to increase the system-level
compression throughput while increasing the area cost only
linearly. Consequently, they focused on implementing multi-
core compressor designs. They also made improvements to
the hash bank architecture, such as utilizing multiple hash
banks chained together to give the hash banks ‘‘depth’’ allow-
ing them to store multiple previous matches for each hash
signature. Another improvement was to perform the match
comparisons at the output of the hash banks to reduce the size
of themultiplexers (MUXs) used. Since thematch lengths can
be from 0 to 16 bytes long, 5-bit MUXs can be used to route
the resulting best match length back to each substring instead
of using 16-byte-wideMUXs to route the entire strings before
performing the comparisons. A single compressor core with
a PWS of 16 bytes provides an input throughput of 3.20 GB/s
and an average compression ratio of 2.10 on the Calgary
corpus.

The authors in [14] focus on designing an LZ77 encoder
that has two modes: one that prioritizes maximizing the
throughput and the other that prioritizes maximizing the
compression ratio. Their LZ77 encoder performs searches
for matches and comparisons for a variable amount of time
as opposed to the previously described fixed-rate designs,
in which all searches and comparisons are done within a
single clock cycle. This is similar to how software compres-
sors, like zlib, function. In throughput-priority mode, fewer
searches and fewer comparisons are made to save time. Con-
versely, in compression-ratio-priority mode, more searches
and comparisons are done to increase the compression ratio.
They also implement ‘‘false history filtering’’ in their design
(from a previous paper of theirs [15]) in which string-tags
are also stored along with string-positions in the hash table.
Before performing string comparisons, the tags are checked
to see if the strings are remotely similar or were two very
different strings that happened to hash to the same signature.
In the second case, the comparison does not need to be per-
formed in order to save time since doing more comparisons
increases the compression time. With a compression system
composed of 16 LZ77 encoders and 4Huffman encoders, [14]
reports an average input throughput of 3.16 GB/s and an aver-
age static compression ratio of 2.73 on the Canterbury corpus
[16] (in compression-ratio-priority mode). In [9], however,
the authors are able to achieve average compression ratios
of around 2.70, only 0.03 lower. This suggests that fixed-
rate LZ77 encoders may be able to perform string matching
almost as well as variable-rate encoders despite having much
higher throughputs.

B. DECOMPRESSION-RELATED WORK
Due to the serial nature of the Deflate compressed for-
mat, accelerating the decompression process using task-level
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parallelism is challenging. Because of the variable length of
the Deflate blocks as well as the variable-length Huffman
codes contained within, each block must be processed seri-
ally, one code at a time, until the EOB code is found. This
prevents parallel decoding of the Huffman-encoded blocks.
A further complication is that the LZ77 length-distance
pairs are allowed to back-reference data from other previous
Deflate blocks prior to the current one, which hampers the
ability to perform LZ77 decoding on all of the blocks in
parallel.

The authors of [17] make several alterations to the Deflate
format in order to work around these limitations. Their for-
mat includes a file header containing indexes to all of the
Huffman blocks; also, length-distance pairs are not allowed
to reference other blocks, allowing both the Huffman and
LZ77 decoding processes to be performed on all blocks in
parallel. By exploiting these format changes, among others,
they achieve significantly increased output decompression
throughputs of over 13 GB/s using Graphics Processing
Units (GPUs).

In [18], [19], and [20], the technique of performing spec-
ulative parallelization of the Huffman decoding process is
investigated. By scanning ahead to find the EOB code of the
current Deflate block, it may be possible to begin Huffman
decoding the next block in parallel with the current one.
However, the possibility of finding false-positive boundaries
makes the process speculative and any speedups that this
technique can provide are statistical. Also, the technique only
helps to parallelize the Huffman decoding process and not
the LZ77 decoding. As a result, the decompression speedups
obtained in [18] and [19] are only slightly higher than sequen-
tial decompression. The authors of [20] attempt to parallelize
the LZ77 decoding using a two-pass method in which length-
distance pairs pointing to earlier Deflate blocks are skipped
in the first pass and then resolved in the second pass. They
also focused on decompressing files containing ASCII data
only and exploited that knowledge in a filter when performing
speculative parallelization in order to reduce the number
of false-positive boundaries encountered. They reported an
impressive input throughput of 611 MB/s.

References [21], [22], and [23] propose FPGA-based
decompressor designs. In [21], the authors describe a decom-
pressor that performs static Huffman decoding only. When
decompressing statically compressed Calgary corpus files,
they achieve an average output decompression throughput
of 159 MB/s and a maximum of 206 MB/s. In [22], the pro-
posed decompressor achieves a maximum input throughput
of 125 MB/s. Unfortunately, the average values or the test
files that were used were not disclosed. The authors of [23]
propose a new dynamic Huffman decoder design. While the
static Huffman codes can be easily decoded using a 512-index
lookup table (LUT) for literals/lengths and a 32-index table
for distances, the 1 to 15-bit dynamic codes require 32,768-
index LUTs, one for literals/lengths and another for distances,
to decode in the same way. The design in [23] complicates
the decoding process slightly, but allows dynamic codes to

FIGURE 2. Compressor architecture.

be decoded using a 286-index LUT with one index per code.
The decoding process involves determining the length of a
code by comparing it to the base value of each code length
before calculating the address to look up in the table. Their
decompressor has a maximum throughput of 300 MB/s (it
is unstated whether this is an input or output value) but no
average values are given and the test files are not disclosed.

The authors of [24] propose an FPGA-based LZ77 decoder
design that is capable of processingmultiple LZ77 commands
(literals and length-distance pairs) at a time. This is done
by cyclically partitioning the history buffer (as done in our
design as well and explained further in Section V-C) so that
multiple memory locations can be accessed simultaneously.
Multiple LZ77 commands are read at a time and are broken
down into individual read and write operations that are given
to each memory partition. Relatively complex control logic is
used to ensure that memory access conflicts (when multiple
read and write operations access the same memory partition)
and data dependencies (when a length-distance pair refer-
ences data that has not beenwritten yet) are resolved properly.
Their design is capable of performing LZ77 decoding with
output throughputs ranging from 4.40 to 7.20 GB/s on various
files.

A proprietary decompressor intellectual property (IP) core
created by Cast Inc. [25] can be purchased on Xilinx’s web-
site. The core is reported to have an average dynamic output
throughput of 375MB/s and an average static output through-
put of 495 MB/s, though the test files and methods used to
achieve these numbers are not disclosed.

IV. PROPOSED COMPRESSOR DESIGN
The proposed compressor design comprises two cores: an
LZ77 encoder and a Huffman encoder, as shown in Fig. 2.
Both cores are specified in C++ and synthesized in Vivado
HLS for a target clock frequency of 250 MHz. The cores
are connected using standard AXI-Stream interfaces [26].
As with previous designs, a PWS of 16 bytes is used and
only static Huffman encoding is performed, providing a fixed
input compression rate of 16 bytes per clock cycle. Therefore,
the design of the Huffman encoder is simplified and most of
the design effort was spent on the larger LZ77 encoder, which
has greater impact on the compression ratio and throughput.

A. LZ77 ENCODER
With the compression rate held constant, as well as the PWS
value and static Huffman encoding decided, there are still two
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other factors that impact the compression ratio: the hash func-
tion and the hash bank architecture (i.e., the number and size
of hash banks). Our original plan was to utilize the fully con-
nected dictionary architecture from [8], thus avoiding hash
conflicts, but this design was found to require toomany Block
Random-Access Memories (BRAMs). We instead used the
hash bank architecture from [10], comprising 32 hash banks,
each with a depth of 3 (providing the capacity to store 3 pre-
vious matches at a time), and 512 indexes.1 Consequently,
it became important to use a hash function that minimizes the
probability of hash conflicts occurring (when two substrings
attempt to access the same bank) as this strongly impacts the
compression ratio whenmatches are dropped due to conflicts.
When resolving conflicts, substrings from later positions in
the window are given priority over earlier ones to coincide
with the last-fit match selection heuristic used later.

With 32 hash banks containing 512 indexes each,
we require a 14-bit hash function: the upper 5 bits address the
banks and the lower 9 bits address the indexes within a bank.
Out of all of the previous works described in Section III-A,
only [8] describes the hash function used. We used their
10-bit hash function, which performs left-shift and XOR
operations on 4 bytes, as a starting point in our search for an
improved 14-bit function. We experimented with other oper-
ations to find a function that minimized the amount of hash
conflicts and, therefore, provided the highest compression
ratios. These operations included performing shifts, rotations,
multiplication, addition, and XOR on various amounts of
bytes. In total, we empirically evaluated about 100 different
hash functions before settling on the one that was found to
provide the highest geometric mean compression ratio across
the Calgary corpus. This new hash function, which takes in 5
substring bytes as inputs, is shown in Algorithm 1.2

Algorithm 1:
Input: curr_window[2× PWS], array of 8-bit ints
Output: hash[PWS], array of 14-bit ints

1 for i← 0 to PWS-1 do
2 hash[i] =

(curr_window[i]× 31)⊕ (curr_window[i+ 1]);
3 hash[i].rrotate(4);
4 hash[i] = (hash[i]× 3)⊕ curr_window[i+ 2];
5 hash[i].rrotate(4);
6 hash[i] = (hash[i]× 3)⊕ curr_window[i+ 3];
7 hash[i].rrotate(4);
8 hash[i] = (hash[i]× 3)⊕ curr_window[i+ 4];

As done in [10], we perform the match comparisons at
the output of the hash banks before multiplexing the best
match length result back to the sliding window to minimize

1When storing 128-bit (16-byte) words, at least four BRAM18K modules
are required. These four BRAM18Ks are fully utilized when storing 512 128-
bit words.

2In this algorithm, the ‘rrotate(4)’ operation rotates the bits of the hash
function four positions to the right.

both the area and delay. For the match selection stages of
the LZ77 encoder, we used the same last-fit heuristic as
in [8], in which later potential matches within the window
are kept over earlier ones. We also added match-trimming to
the match selection: earlier matches that conflict with later
matches are trimmed (if possible without trimming matches
below 3 bytes) so that both matches can be kept. Following
match selection, each location in the sliding window, which
we will call boxes, contains an unmatched byte, a length-
distance pair (where a match begins), or a matched byte
(at locations following a length-distance pair). The boxes
are each 3 bytes wide to accommodate length-distance pairs
and are identified using a 2-bit TUSER signal. The final
synthesized LZ77 encoder core produced by Vivado HLS has
43 pipeline stages.

B. HUFFMAN ENCODER
The Huffman encoder receives PWS=16 boxes from the
LZ77 encoder, statically encodes the contents of each using
Read-Only Memories (ROMs), and then packs the encoded
bits into an output window. Unmatched bytes are replaced
with literal codes, length-distance pairs are replaced with
length and distance codes (as well as their extra bits), and
matched bytes are removed from the data stream. Although
programmed to have PWS=16 stages and to encode and pack
one box at each pipeline stage, Vivado HLS was able to
automatically optimize the pipeline down to only 6 stages.
Since it is possible for two consecutive encoded windows to
be greater than 256 bits long, a 512-bit wide double buffer and
a 256-bit output interfacemust be used to prevent overflowing
or stalling.

V. PROPOSED DECOMPRESSOR DESIGN
Our pipelined decompressor core comprises four VivadoHLS
synthesized cores: a Huffman decoder, an LZ77 decoder,
a literal stacker, and a byte packer, as shown in Fig. 3. A first-
in, first-out (FIFO) memory is placed in between the two
decoders to alleviate stalling. An initial version of our decom-
pressor was presented in [27]. Since then, improvements were
made to the design of the Huffman decoder, as described in
Section V-A. As with the compressor, each core is synthe-
sized for a 250-MHz clock and uses AXI-Stream interfaces.

A. HUFFMAN DECODER
The Huffman decoder reads the Huffman encoded data from
its input stream into a buffer called the accumulator. The
bits in the accumulator are scanned and decoded to convert
them back into literals and length-distance pairs. The first
version of our Huffman decoder could decode a static literal
in 3 clock cycles, a static length-distance pair in 4 cycles,
a dynamic literal in 4 cycles, and a dynamic length-distance
pair in 7 cycles. When decoding a length-distance pair (static
or dynamic), two consecutive table lookups need to be per-
formed: the first, to decode the length code and determine
the number of extra length bits, and the second, to decode
the distance code that follows. To reduce the delay caused
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FIGURE 3. Decompressor architecture.

by two consecutive table lookups, we attempted to perform a
preemptive lookup of the distance in parallel with the length.
Since a static length code can be 7 or 8 bits long, which
can then be followed by 0 to 5 extra length bits, there are
12 different possibilities. Of these 12 possibilities, there are
actually only 7 different positions where the beginning of
the distance code may occur (e.g., an 8-bit length followed
by 2 extra bits and a 7-bit length followed by 3 extra bits
will both have the same distance starting location). Since
the static distance codes are all 5 bits long, we only need to
perform 7 parallel distance code lookups alongside the length
decoding. Once the length and number of extra length bits is
determined, the correctly decoded distance is then selected.
By doing this, along with making some other improve-
ments to the static literal decoding, we reduced the time to
decode both static literals and length-distance pairs to 2 clock
cycles.

In dynamic decoding, the length codes may be 1 to 15 bits
long and are followed by 0 to 5 extra bits, which gives 20 pos-
sible locations where the distance code may start. Since the
distance codes may also be 1 to 15 bits long, for each starting
position there are 16 possible positions where a distance code
may end. However, since we are using the two-step dynamic
decoding method from [23], we can perform the code base
value comparison on all 20 distance code possibilities and
find code lengths for all of them.While performing the length
code lookup, we can then perform 20 parallel distance code
lookups at the same time in a duplicated dynamic distance
code table memory. As with static decoding, once the length
is decoded and the number of extra length bits is known,
the correctly decoded distance is selected. By doing this,
we reduced the dynamic length-distance pair decoding time
to 4 clock cycles. The dynamic literal decoding time remains
unchanged at 4 cycles.

B. LITERAL STACKER
The purpose of the literal stacker module is to collect and
pack together consecutive literal outputs from the Huffman
decoder. Since the AXI-Stream data width is 4 bytes wide,
up to 4 consecutive transfers containing literal bytes can be
combined into a single transfer. This helps to utilize space in
the FIFO more efficiently and also helps the LZ77 decoder
to catch up on backlogs of data, which inevitably form in the
FIFO while the LZ77 decoder is processing a length-distance
pair.

C. LZ77 DECODER
The LZ77 decoder uses a circular buffer to record the last
32,768 bytes of data, which is the largest allowed distance that
can be referenced. As literals are received, they are recorded
in the buffer and written to the output stream. When a length-
distance pair is encountered, the LZ77 encoder stops reading
data from its input while it copies the string of bytes pointed to
by the length-distance pair. The circular buffer in our design
is cyclically partitioned into 4 separate dual-port BRAMs,
allowing up to 4 literal bytes to bewritten to the circular buffer
at once or up to 4 bytes of a length-distance pair to be copied
at every clock cycle.

D. BYTE PACKER
The byte packermodule is required because the LZ77 decoder
can write multiple bytes per cycle. When fewer than 4 bytes
are output, an AXI-Stream transfer with empty ‘‘null’’ bytes
is created. To ensure a gapless data stream at the decompres-
sor output, these null bytes must be removed. The byte packer
retains transfers that contain fewer than 4 bytes and combines
consecutive transfers so that only full 4-byte transfers are
output (until the last transfer in the stream).

VI. PERFORMANCE RESULTS AND DISCUSSION
A. COMPRESSOR RESULTS
Our compressor corewas implemented on aXilinxXCVU3P-
FFVC1517 Virtex UltraScale+ FPGA [28]. With a PWS
of 16 bytes and a clock frequency of 250 MHz, the com-
pressor has an input throughput of 4.0 GB/s. As mentioned in
Section IV-A, the hash bank architecture comprises 32 banks,
with 3 depth levels and 512 indexes per bank. The resulting
area utilization of the compressor is shown in Table 1. The
compressor core was tested using the Calgary corpus bench-
mark files [3] and the resulting compression ratios are shown
in Table 2. The output of the compressor was verified by
decompressing the files and comparing them to their origi-
nals. Our compressor achieves a geometric mean compres-
sion ratio of 1.92 across the Calgary corpus. Compared to the
previous designs, shown in Table 3, this ratio is slightly lower
than all other designs except [4]. Note that the results shown
in this table are for single compressor core performance.

As mentioned in Section IV-A, we empirically evalu-
ated about 100 different hash functions to find the one
that provided the greatest geometric mean compression ratio
across the Calgary corpus for the hash bank architecture that
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FIGURE 4. Effect of the hash bank architecture on the compression ratio and memory cost. a) Varying the hash bank depth with 32 hash banks
and 16,384 total indexes. b) Varying the number of hash banks with 512 indexes per bank and 3 depth levels.

TABLE 1. FPGA resource utilization of the compressor.

TABLE 2. Compression results on the calgary corpus.

was used. Across all of the different hash functions, most
were able to provide geometric mean compression ratios of
around 1.90 and no hash function was significantly better
than the rest. Some of the hash functions tested, however,
provided very poor hash bank distributions (i.e., they were
prone to causing hash conflicts) and had poor compression
ratios as a result. Since the Calgary corpus contains files of
many different kinds of data, the chosen hash function is one
that should work well for the compression of a wide variety
of data types. If desired, a hash function could be developed
that is optimized for a specific type of data (e.g., text) in order
to even out the bank distribution when hashing and therefore
provide better compression ratios for that type of data.

To investigate the effects that the hash bank architecture
has on the compression ratio, a design space exploration on

the various parameters was performed. In Vivado HLS, our
hash bank architecture is specified as a three-dimensional
array in the C++ code with the three dimensions being
the number of hash banks, the size of each hash bank, and
the depth of each hash bank. These three dimensions can
be easily adjusted allowing the design to be re-synthesized
and re-evaluated with respect to performance and hardware
cost. Fig. 4 shows the effect on the compression ratio and
the architecture cost in BRAMs when varying the hash bank
depth and the number of hash banks. Fig. 4a shows that
the hash bank depth can be scaled up with a linear increase
in BRAM cost, while increasing the compression ratio only
slightly. A much larger increase in the compression ratio can
be obtained by increasing the number of hash banks (and the
total number of indexes) but at an exponentially increasing
BRAM cost, as shown in Fig. 4b. Increasing the number of
hash banks or hash bank depth, however, is likely to require
decreasing the clock frequency in order to accommodate the
longer wiring as the current architecture proved difficult to
meet timing at 250 MHz due to relatively long routing delays
between the BRAMs. This illustrates the trade-off between
the compression ratio and the throughput in the compressor
design.

In the LZ77 encoder, we addedmatch-trimming to increase
the number ofmatches kept during thematch selection stages.
The addition of match-trimming increased the geometric
mean compression ratio by 5.49% while adding 3 pipeline
stages, increasing the total LUT usage by 3% and the total
flip-flop (FF) usage by 1%. Compared to the other methods
for increasing the compression ratio, this is a worthwhile
trade-off. As mentioned in Section IV-A, the match selection
stages use a last-fit selection heuristic, where later matches
are chosen over earlier matches. Using amore complexmatch
selection algorithm (e.g., one that considers the lengths of all
of the matches in order to maximize the number of matched
bytes in a window) at the cost of additional area or delay
might yield more efficient match selection results and achieve
higher compression ratios.

Performing dynamic Huffman encoding may be another
way to significantly improve the compression ratio but this
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TABLE 3. FPGA-based deflate compressor design comparison.

would likely decrease the throughput because both the Huff-
man and LZ77 encoders cannot be run simultaneously at all
times. This is because dynamic Huffman encoding cannot
begin until the dynamic Huffman tables for a block have
been created, which cannot start until the entire block has fin-
ished LZ77 encoding and the frequency of symbols has been
measured. This type of architecture thus also requires elastic
buffering between the two encoders to hold the LZ77 encoded
data until the block is finished (see [29]).

The most directly comparable compressor is from [4],
which was also synthesized from C/C++ using Vivado HLS.
Our design has an 11% higher geometric mean compression
ratio than [4], while using 17.3% fewer LUTs, 23.4% fewer
FFs, and a clock frequency that is 50 MHz higher. Our design
achieves higher compression throughput than most previous
designs by using a 250-MHz clock. The only exception is the
compressor from [9], which has a higher throughput when
scaled up to a PWS of 32 bytes. As explained in Section III-A,
increasing the compression throughput by increasing the
PWS of one compressor is much less efficient for a compres-
sor system than simply incorporatingmultiple compressors in
parallel. This is likely the better option for achieving higher
system-level throughputs if the slight drop in compression
ratio can be tolerated. Increasing the clock frequency of our
design above 250 MHz might be possible, but this would
likely require shrinking the hash bank architecture and sac-
rificing some compression ratio.

B. DECOMPRESSOR RESULTS
Like our compressor, the decompressor was synthesized for
a Xilinx XCVU3P-FFVC1517 Virtex UltraScale+ FPGA for
a 250-MHz clock. Table 4 shows the resource utilization
of the decompressor modules. The decompressor was tested
using static and dynamic compressed versions of the Calgary
corpus (i.e., containing only static or only dynamic Huffman
blocks), which were compressed using zlib with the default
compression settings, and the results are shown in Table 5.
The output of the decompressor was verified by comparing
the files to their originals. Our decompressor has average
static and dynamic input throughputs of 196.61 MB/s and
97.40MB/s, respectively. Output throughputs can be obtained
by multiplying the input throughput by the compression

TABLE 4. FPGA resource utilization of the decompressor.

ratio, giving us respective average static and dynamic output
throughputs of 551.03 MB/s and 336.03 MB/s.

The performance of our design is compared to that of
other FPGA-based designs in Table 6. Compared to the static-
only decompressor in [21], our static output throughput is
3.47 times higher over the Calgary corpus. Compared to the
proprietary IP sold by Xilinx [25], our static and dynamic
output throughputs are 11% higher and 10% lower, respec-
tively. This is only a loose comparison, however, since the
test files used in [25] are unknown. For [25], two areas are
reported: the first when configured to perform both static
and dynamic decompression and the second when configured
to perform static-only decompression. In terms of area, our
design uses twice as many LUTs but half as many BRAMs
as the design from [25]. Since their design is proprietary we
can only speculate, but the larger number of BRAMs may
suggest the use ofmultiple decoders in parallel in their design.
Part of the reason that our design uses more LUTs is due
to the addition of joint length-distance decoding, which adds
4,500 LUTs, as explained in the next paragraph.

The Huffman decoder was upgraded (with respect to
[27]) to be able to perform joint length-distance decoding.
This reduced the time to process static literals from 3 to
2 cycles, static length-distance pairs from 4 to 2 cycles,
and dynamic length-distance pairs from 7 to 4 cycles. This
upgrade increased the size of the Huffman decoder by about
4,500 LUTs and 1,250 FFs, which increased the total FPGA
LUT and FF usage by 1.15% and 0.16%, respectively. The
average static and dynamic throughput values were thereby
increased by 51% and 38%, respectively.

Having the literal stacker increases the compression
throughput by anywhere from 0 to 9.7%, depending on the
file, while requiring few LUTs and FFs and only adding
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TABLE 5. Decompression performance on the calgary corpus.

TABLE 6. FPGA-based decompressor design comparison.

two stages to the decompressor pipeline. The largest speedup
of 9.7% was obtained when decompressing the static ‘‘pic’’
file. Files with larger compression ratios tend to have more
and longer length-distance pairs, placing more stress on the
LZ77 decoder, which causes the decompressor to benefit
more from the literal stacker. Static files appear to benefit
more than dynamic files because dynamic files must have
their dynamic code tables reconstructed for every block, giv-
ing the LZ77 decoder time to catch up.

The performance of our Huffman decoder could possibly
be improved further. The dynamic decoding pipelinemight be
reduced to 3 cycles if an optimized design were implemented
using a hardware description language. The latency of the
static decoding portion, however, would be difficult to reduce
down to 1 cycle. To achieve this, the decoder would have to be
pipelined with an initiation interval of 1 cycle, which would
likely require substantially lengthening the clock period due
to the dependence on the accumulator.

The LZ77 decoder could be improved by partitioning
the circular buffer memory further, allowing more bytes of
a back-referenced string to be copied at the same time.
A decoder design capable of processing multiple LZ77 com-
mands could also be used, as done in [24]. Generally, though,
the current LZ77 decoder design is able to keep up with
the Huffman decoder when performing dynamic decoding,
so these techniques would not substantially increase the

decompression throughput except for static compressed files
or highly compressed files, like ‘‘pic’’, which place more
stress on the LZ77 decoder. As reported in [9], string matches
longer than 16 bytes are rare for most files. Consequently,
increasing the LZ77 decoding width above 16 bytes (i.e.,
having more than 16 partitions) is not likely to be worthwhile.

VII. CONCLUSION
In this article we proposed two new FPGA-based accelera-
tors for both Deflate compression and decompression. These
accelerators were specified at a high level in C++ and syn-
thesized using Vivado HLS for a Xilinx FPGA. Our com-
pressor adopted the same 16-byte-per-cycle high-throughput
design used in [4], [7]–[10]. We explored ways in which the
compression ratio can be improved while also operating with
a 250-MHz clock. This included varying the hash function as
well as exploring the trade-off between the compression ratio
and BRAM cost when scaling the hash bank architecture.
Though our geometric mean compression ratio of 1.92 on
the Calgary corpus was slightly lower than for most other
hardware compressors, we achieved a working design with
a 250-MHz clock and a PWS of 16 bytes, giving a constant
compression throughput of 4.0 GB/s, which is greater than
most other compressor cores. Compared to the other com-
pressor design that was implemented using Vivado HLS, [4],
our design has both a higher input throughput (800 MB/s
greater) and a higher compression ratio (11% greater), while
also occupying less chip area (with 17.3% fewer LUTs and
23.4% fewer FFs).

Our new decompressor design made improvements to our
earlier design [27] to substantially improve the throughput.
The improved Huffman decoder performs joint length-
distance decoding in which the distance code is preemp-
tively decoded at the same time as the length to reduce the
overall decoding time for both static and dynamic codes.
This allowed us to achieve average input decompression
throughputs of 196.61 MB/s and 97.40 MB/s for static and
dynamic compressed files, respectively. This gives us output

VOLUME 8, 2020 62215



M. Ledwon et al.: High-Throughput FPGA-Based Hardware Accelerators for Deflate Compression and Decompression

throughput values that are 11% higher (static) and 10%
lower (dynamic) when compared to the proprietary IP core
sold by Xilinx [25]. This is only a rough comparison, how-
ever, since the test files used in [25] were not disclosed.

The performance of our compressor and decompressor
designs are competitive with other works, despite being
implemented using high-level synthesis. The benefits of using
high-level synthesis to implement our designs did not come
easily, however. The lack of control over the details of the syn-
thesized design sometimes made it difficult to create designs
that functioned correctly while still performing well. Small
changes to the C/C++ source code can change the resulting
synthesized design in large ways, meaning that considerable
experimentation was required when developing our code to
find the syntax that generated the best results. More details
on our experience using Vivado HLS can be found in [30].
Despite these challenges, Vivado HLS proved to be a pow-
erful tool capable of producing efficient, high-performance
Deflate compressors and decompressors.
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